ARKANSAS PUBLIC SERVICE COMMISSION

Arkansas Technical Reference Manual Version 10.0

Approved in Docket 10-100-R

August 28, 2024

EVALUATION, MEASUREMENT & VERIFICATION PROTOCOLS

TRM Version 10.0 Volume 1: EM&V Protocols

Applicable Beginning January 1, 2025 Submitted to:

Arkansas Public Service Commission

Approved in Docket 10-100-R

Prepared by: The Independent Evaluation Monitor

on behalf of the

Parties Working Collaboratively

FINAL

August 28, 2024

Table of Contents

SECTION I: INTRODUCTION/OVERVIEW	.1
A. PURPOSE OF EM&V PROTOCOLS	2
B. BASICS TO GOOD EVALUATION PRACTICES	
C. ROLE OF EVALUATION	
D. DEFINITIONS OF PROCESS AND IMPACT EVALUATIONS	.5
E. EVALUATION TIMING	
F. DEFINING PROGRAM BASELINE, BASELINE ADJUSTMENTS, AND DATA COLLECTION	
G. DEFINING ADJUSTMENT FACTORS	
SECTION II: EM&V PROTOCOLS1	15
PROTOCOL A: PROGRAM TRACKING AND DATABASE DEVELOPMENT1	15
PROTOCOL B: PROTOCOLS FOR THE POST-IMPLEMENTATION VERIFICATION OF ENERGY EFFICIENCY PROGRAM	
MEASURE INSTALLATIONS AND ESTIMATION OF ENERGY AND DEMAND SAVINGS	
PROTOCOL B1: Recommended Protocols for Gross Energy Evaluation	18
PROTOCOL B2: Recommended Protocols for Gross Demand Evaluation	19
PROTOCOL B3: Recommended Protocols for Participant Net Impact Evaluation	
PROTOCOL B4: Sampling and Uncertainty Protocol	
PROTOCOL B5: Savings for projects spanning two program years	
PROTOCOL C: PROCESS EVALUATION GUIDANCE	
PROTOCOL C1: Process Evaluation Structure and Timing	21
PROTOCOL C1: Determining Appropriate Timing to Conduct a Process Evaluation	
PROTOCOL C1: Determining Appropriate Conditions to Conduct a Process Evaluation	22
PROTOCOL C2: Process Evaluation Planning	
PROTOCOL C2: Recommended Elements of a Process Evaluation Plan	27
PROTOCOL C3: Recommended Areas of Investigation in a Process Evaluation	
PROTOCOL D: "Level of Effort" Protocols	
PROTOCOL D2: M&V Protocols	
PROTOCOL E: PROTOCOLS FOR VERIFICATION AND ONGOING MODIFICATION OF DEEMED SAVINGS VALUES4	46
PROTOCOL E1: Revising and Updating Deemed Savings Values	46
PROTOCOL E2: Implementation of Code Changes4	
PROTOCOL F: PROTOCOLS FOR THE DETERMINATION OF NET PROGRAM IMPACTS	48
PROTOCOL G: PROVISIONS FOR LARGE CUSTOMERS	55
PROTOCOL H: TECHNICAL REFERENCE MANUAL (TRM)	58
PROTOCOL I: ROLE AND RESPONSIBILITIES OF THE INDEPENDENT EM&V MONITOR	
PROTOCOL J: RESIDENTIAL BEHAVIOR-BASED PROGRAM EVALUATION	54
PROTOCOL K: LEAKAGE	73
PROTOCOL L: NON-ENERGY BENEFITS	78
PROTOCOL L1: Non-Energy Benefits for Electricity, Natural Gas, and Liquid Propane ("Other fuels")?	78
PROTOCOL L2: Non-Energy Benefits for Water Savings	80
PROTOCOL L3: Non-Energy Benefits of Avoided and Deferred Equipment Replacement Costs	
REFERENCES	36
GLOSSARY	37
INDEX	92

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446

List of Figures

FIGURE 1: PROGRAM IMPLEMENTATION CYCLE WITH HIGH-LEVEL EVALUATION ACTIVITIES	4
FIGURE 2: TYPES OF DATA COLLECTION ACTIVITIES FOR PROCESS AND IMPACT EVALUATIONS	7
FIGURE 3: DETERMINING TIMING FOR A PROCESS EVALUATION	23
FIGURE 4: DETERMINING NEED TO CONDUCT A PROCESS EVALUATION	24
FIGURE 5: DECISION TREE FOR TIMING AND SELECTION OF NTG RESEARCH REPORTING REQUIREMENTS	53
FIGURE 6: FLOWCHART FOR TRM UPDATE PROCESS	60
FIGURE 7: DETAILED PROCESS FOR UPDATING TRM	62
FIGURE 8: RANDOMIZED CONTROLLED TRIALS WITH OPT-OUT ENROLLMENT	66
FIGURE 9: EXAMPLE OF DOUBLE-COUNTED SAVINGS	70

List of Tables

TABLE 1: COMPARISON OF PROGRAM EVALUATION OBJECTIVES	5
TABLE 2: SUMMARY OF IPMVP PROTOCOLS	12
TABLE 3: RECOMMENDED DATA FIELDS AND DESCRIPTION	15
TABLE 4: EXAMPLE OF DATA LEGEND FOR DATABASE TRACKING AND EVALUATION PURPOSES	17
TABLE 5: EXAMPLE OF CONTRACTOR CODES	17
TABLE 6: SUGGESTED DATA COLLECTION FIELDS	17
TABLE 7: VERIFICATION AND TRM UPDATE TIMELINE	61
TABLE 8: AVOIDED WATER COSTS IN ARKANSAS FOR USE IN PY2023	81
TABLE 9: AVOIDED WATER COSTS IN ARKANSAS FOR USE IN PY2024	81
TABLE 10: REQUIRED REPORTING TABLE FOR NEBS	84
TABLE 11: OPTIONAL REPORTING TABLE FOR NEBS	85

Section I: Introduction/Overview

In September 2007, the Arkansas Public Service Commission (Commission) ordered each of the investorowned, regulated utilities within the state to offer its customers energy savings programs. Now that Demand Side Management (DSM) programs are operating throughout Arkansas; it is important to periodically evaluate success factors and the level of market penetration for these programs to determine how effectively programs have been designed and implemented, estimate energy and demand savings attributable to the programs, and provide feedback and recommendations as the programs mature. Program evaluation is not an afterthought but a vital part of successful program implementation and development. This document provides guidance and insight regarding some of the important Evaluation, Measurement & Verification (EM&V) methods and recommends best approaches to use specifically with the Arkansas DSM Program Portfolio.

This document is divided into two sections:

- Section I Provides an overview of EM&V terms, methods, and approaches
- Section II Provides the EM&V Protocols

The protocols presented in this Volume 1 of the TRM are based on a review of the current industry literature on a broad range of topics, including:

- Master Plan and Project Management;
- Program Tracking and Database Development and Management;
- Protocols for Post-Implementation Verification;
- Process Evaluation Guidance;
- "Level of Effort" or "Rigor" Protocols;
- Protocols for the addition of new measures and deemed savings values as well as the Verification and Ongoing Modification of Deemed Savings Values;
- Protocols for the Determination of Accurate Net Program Impacts (including net-to-gross estimates and non-energy benefits) and;
- Provisions for Large Customers.

This review also draws heavily from the leading industry references used to guide EM&V activities for DSM Programs throughout the United States. This document also contains a complete bibliography of materials referenced to develop these EM&V Protocols for Arkansas and are cited as appropriate. A glossary of common EM&V terms is also included.

A. PURPOSE OF EM&V PROTOCOLS

The purpose of these EM&V Protocols is to provide a common framework and set of reference points for conducting cost-effective DSM Program evaluations. These protocols describe the types of *frequency* that must be reported during these evaluation activities.

These protocols provide additional guidance regarding the roles, as well as key definitions and recommendations regarding data that will be completed during the evaluation cycle.

This document addresses only some of the key topics in the EM&V field. Rather, it focuses on the specific topic areas in the Order 10-100-R which are:

- Evaluation Definitions;
- Evaluation Planning;
- The Value of Baseline Assessments;
- The Role of Process Evaluations;
- The Role of Impact Evaluations; and
- Specific Evaluation Protocols for the following topics:
 - Program Tracking and Database Development and Management;
 - Protocols for Post-Implementation Verification;
 - Process Evaluation Guidance;
 - "Level of Effort" Protocols;
 - o Protocols for Verification and Ongoing Modification of Deemed Savings Values;
 - Protocols for the Determination of Accurate Net Program Impacts (including net-togross estimates and non-energy benefits); and
 - Provisions for Large Customers

This document does not attempt to address the entire range of issues facing the current EM&V community. Therefore, these protocols will not address the following EM&V topics:

- Program Logic Models;
- Market Transformation Studies;
- Documenting Market Effects; or
- The Role of Economic Cost/Benefit Tests.

The goal of these EM&V Protocols is to provide the underlying evaluation framework for EM&V activities. The Arkansas Commission and the EM&V Parties Working Collaboratively (PWC) can then build on this framework to address additional EM&V issues as the energy efficiency market evolves and matures throughout the State. This document includes protocols on process evaluation and behavior-based energy efficiency programs. Subsequent revisions of this document will include protocols on various other important energy efficiency topics as they reflect advances in the market. Version 9.2 includes guidance on calculating Non-Energy Benefits (NEBs), which will be used to calculate program cost-effectiveness.

B. BASICS TO GOOD EVALUATION PRACTICES

EM&V is the embodiment of the old adage "Begin with the end in mind." Ideally, program evaluation is built into the fabric of every program design, so when the time comes for an evaluation, the baseline data and measure data will be readily available. The evaluation activity will be a seamless, integrated process. However, the ideal is rarely the reality in program evaluations. Often, evaluators called upon to review program operations must rely on less-than-perfect data. The goal of these EM&V Protocols is to move the Arkansas EM&V activities closer to the ideal evaluation process by providing a clear description of what is needed and required.

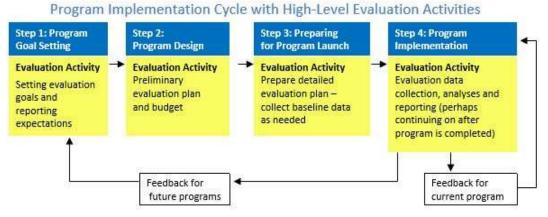
The first step is a proper understanding of what evaluation means and entails. If a DSM program worked successfully, less energy will have been consumed by end-users during a specific time period. Evaluation is not measuring an event that happened; rather, it attempts to measure "what did not happen. It is an estimate" (Schiller Consulting 2010).

It is critical to understand that even the best evaluation practices are based on highly refined estimates and do not provide absolute findings. The energy savings from a program cannot be determined directly from available energy use data. Still, they must be measured against what would have happened if the program did not exist. Therefore, the goal of a good EM&V protocol is to determine reasonable and defensible estimates – primarily based on surveys with program participants, non-participants, and other market actors – about events that would have happened in the absence of the programs. With any evaluation, there is a level of risk that the estimations are inaccurate, and there are different points for an acceptable margin of error (or levels of confidence). These protocols manage the risk of inaccuracy and minimize the margin of error by specifying the information and data points required to properly document savings and provide the best possible estimates of energy savings.

A second major issue regarding good EM&V is the need to obtain meaningful results while managing evaluation costs. It is important to weigh the costs associated with obtaining additional, incremental information (or developing more precise estimates of program impacts, i.e., higher certainty) with the incremental costs associated with gathering and studying additional information.

Therefore, EM&V methodologies:

- *Q1. "What is the comparison point?*
- Q2. "How good is good enough?"


The answers to these questions are based on the size, scale, and scope of the overall program portfolio as it relates to the ultimate energy savings goals and objectives.

C. ROLE OF EVALUATION

The role of a Program Evaluation is to:

- Quantify Results: Document, measure, and estimate the energy and demand savings of a program in order to determine how well it has achieved its goals and managed its budget.
- Gain Understanding: Determine why certain program effects occurred (or did not occur) and identify ways to improve and refine current and future programs; also to help select future programs (NAPEE 2007).

The National Action Plan for Energy Efficiency (2007), which is heavily referenced in these protocols, provides an excellent visual representation of the role of program evaluation activities during the life cycle of a typical DSM program.

(Source: NAPEE 2007)

Figure 1: Program Implementation Cycle With High-Level Evaluation Activities

As Figure 1 shows, program evaluation is viewed as an ongoing process that provides information regarding changes in program direction and adjustments to program goals and objectives over time.

D. DEFINITIONS OF PROCESS AND IMPACT EVALUATIONS

The American Evaluation Association defines evaluation as "assessing the strengths and weaknesses of programs, policies, personnel, products and organizations to improve their effectiveness."

- Process Evaluation describes and assesses the overall program structure, materials, and activities.
- Impact Evaluation examines the long-term effects of a specific program, including unintended effects.
- Process and Impact Evaluations *work together* to provide a complete picture; activities related to these separate evaluation efforts often overlap.

According to the U.S. Department of Energy, program evaluations are used to make future decisions regarding program operations. The key questions that program evaluations answer include (EERE 2006):

- Should the program continue?
- How should the program be changed? Should it be expanded, consolidated, or replicated?
- Do program funds need to be reallocated?
- How can program operations be streamlined, refined or redesigned to better meet program objectives?
- What elements of the program can or should be discontinued?
- Is it time for this program to be discontinued?

The first step in a program evaluation is to specify the evaluation objectives. The two most common types of objectives are 1) studies that guide decisions about future program implementation and 2) estimates of quantified savings and insight regarding a program's overall performance. Table 1 compares these two types of evaluation activities.

Table 1: Comparison of Program Evaluation Objectives

Informational Needs	Evaluation Type
<i>Efficiency of program implementation processes</i> , e.g., to document the effectiveness of specific activities, what works and what does not work, where additional resources could be leveraged, participant satisfaction.	Process
Quantified outcomes that can be attributed to the program's activities , i.e., what are the results or outcomes that would not have occurred without the influence of the program. This is also called "net impacts."	Impact

(Source: Modified from EERE 2006)

Examples of common program evaluation objectives are:

- Assess the program's impact on customer awareness and knowledge of energy efficiency actions.
- Measure customer response to "follow-up" program elements designed to encourage audit participants to implement recommendations.
- Examine program awareness, delivery channels, factors that influenced participation, program effects, and customer satisfaction levels.
- Document energy efficiency actions taken by program participants compared to actions taken by non-participants.
- Estimate energy savings accruing from participation in the program over time; verify the reported energy savings as a result of the program.

- Determine if there have been any changes in the building characteristics of program participants between program years.
- Evaluate the effectiveness of program modifications made in a specific fiscal year.
- Complete a customer segmentation analysis of the primary target population.
- Explore barriers to participation in program activities and develop recommendations for improving the promotion and targeting of existing services and new program knowledge and services (Source: Expanded and modified from EERE 2006).

Process Evaluations are effective management tools that focus on improving the design and delivery of energy efficiency programs. They are commonly used to document program operations for new programs or those in a pilot or test mode. Since process evaluations examine program operations, they can identify ways to make program enhancements and improvements that reduce overall program costs, expedite program delivery, improve customer satisfaction, and fine-tune programs and rebated technologies. Process evaluations rely on a variety of qualitative and quantitative research methods, beginning with a review of program materials and records, conducting in-depth interviews with program staff and implementers, and surveys with key customer and trade ally groups. Process evaluations can also provide feedback on streamlining and enhancing data collection strategies for program operations (NAPEE 2007).

Impact Evaluations measure the change in energy usage and demand (kWh, kW, and therms) attributable to a program. They are based on various approaches to quantify (estimate) energy savings, including statistical comparisons, engineering estimation, modeling, metering, and billing analysis. The impact evaluation approach selected is primarily a function of the available budget, the technologies or energy end-use measures (EUMs) targeted in the program, the level of certainty of original program estimates, and the overall level of estimated savings attributable to the program (NAPEE 2007).

Many decisions affect the design of an impact evaluation. However, each impact evaluation should address the following seven major issues before the budget and evaluation plan are prepared:

- 1. Define evaluation goals and scale (relative magnitude or comprehensiveness);
- 2. Set a time frame for evaluation and reporting expectations;
- 3. Set a spatial boundary for evaluation;
- 4. Define a program baseline, baseline adjustments, and data collection requirements;
- 5. Establish a budget in the context of information quality goals (level of acceptable margin of error and risk management);
- 6. Select impact evaluation approaches to estimate gross and net savings calculations; and
- 7. Select who (or which type of organization) will conduct the evaluation (NAPEE 2007).

NAPEE 2007 summarizes what it considers to be the "Best Practices in Evaluation." These EM&V best practices are summarized below to provide further guidance for evaluation activities conducted in Arkansas.

- Incorporate an overall evaluation plan and budget into the program plan at the beginning of program planning;
- Adopt a more in-depth evaluation plan each program year;
- Prioritize evaluation resources where the risks are highest. This includes focusing impact evaluation activities on the most uncertain outcomes and highest potential savings. New and pilot programs have the most uncertain outcomes, as do newer technologies;
- Allow evaluation criteria to vary across program types to allow for education, outreach, and innovation;
- Conduct ongoing verification as part of the program process;
- Establish a program tracking system that includes necessary information for evaluation;

- Match evaluation techniques to the situation with regard to the evaluation costs, the level of precision required, and feasibility;
- Maintain separate staff for evaluation and program implementation. Rely on an outside review of evaluations (e.g., state utility commission), especially if the program is implemented by internal utility staff. It is important that the program evaluation is an activity conducted independently of program operations and;
- Evaluate regularly to refine programs as needed to meet changing market conditions.

Process and impact evaluations require data collection from a variety of sources. The timing, mix, and types of data collection activities must be specified in the EM&V plans for each program. Figure 2 presents the types of data collection activities for process and impact evaluations.

(Source: Reynolds, Johnson & Cullen 2008)

Figure 2: Types of Data Collection Activities for Process and Impact Evaluations

It is important to note that not every process or impact evaluation will require a complete set of data collection activities. Rather, the evaluation plan specifies the data collection strategies that will be used in each phase of the program evaluation and the anticipated budget expenditures for each data collection activity.

E. EVALUATION TIMING

All dates are approximate and subject to change based on Commission rules and Orders.

The decision regarding the appropriate evaluation time frame has two components:

- 1. When and over what time period the evaluation effort will take place. A standard evaluation would begin before program implementation begins to collect important baseline including:
 - What will be the time period of analyses (i.e., how many years)?
 - Will persistence of savings be determined, and if so, how?
 - What is the timing for policy decisions and evaluation planning?
 - What is the need for early feedback for program implementers?
 - Where is the program in its life cycle?
 - What are the evaluation data collection time lags?
 - What other regulatory and/or management oversight requirements must be addressed in this evaluation?
 - What information or data are needed to update specific energy and demand savings from the measure and to quantify life estimates?
 - What is the timing and format required for the reporting needed, or are more frequent reports required?

In general, program evaluations are conducted with a three-year plan. Process evaluations are usually conducted at the end of the first year of program operations and after the program period. Impact evaluations may be conducted annually or after Program Years 2 and 3, and generally free ridership and spillover no more frequently than once every three years, provided there are sufficient data to determine energy savings estimates and adjustments and no significant changes in a program design. The timing for the EM&V activities must be specified in the EM&V plans.

2. What is the level of detail or "granularity" required for the evaluation analyses? This relates to whether 15-minute, hourly, monthly, seasonal, or annual data collection and savings reporting are necessary. The granularity decision is based on how the information will be used from the evaluation. Annual savings data provide an overview of program benefits. More detailed data are usually required for both cost-effectiveness analyses and resource planning purposes.

If demand savings are to be calculated, the choice of definition will be captured in the evaluation. The decision concerns whether savings will be evaluated for specific pieces of equipment. For example, the "boundary" may include motor savings or light bulb savings estimates, the end-use system (e.g., the HVAC system or the lighting system), the entire facility, or the entire energy supply and distribution system (Modified NAPEE 2007).

Therefore, the EM&V plans filed for each program portfolio will stipulate the sampling levels necessary to provide for a robust EM&V analysis of the savings estimates. Although the sampling strategy will vary by program and across the program portfolio, it must be fully described in each EM&V plan.

F. DEFINING PROGRAM BASELINE, BASELINE ADJUSTMENTS, AND DATA COLLECTION

A major impact evaluation decision is defining the baseline conditions. The baseline reflects the conditions, including energy consumption, that existed before the program's launch. Baseline definitions consist of site-specific issues and broader, policy-oriented considerations.

Site-specific issues include equipment characteristics in place before an efficiency measure is implemented and how and when the affected equipment or systems are operated. When defining the baseline, it is also important to consider where in the life cycle of the existing equipment or systems the new equipment was installed. The options are:

- *Early replacement* of equipment that had not reached the end of its useful life;
- *Failed equipment replacement (replace-on-burnout)*, with new energy efficient equipment installed; or
- New construction.

For each of these options, the two generic approaches to defining baselines are the *project-specific* and the *performance standard* procedure, described next.

Project-Specific Baseline

Under project-specific (used with all or a sample of the projects in a program), the baseline is defined by a specific technology or practice that would have been pursued, at the site of individual projects, if the program had not been implemented. For energy efficiency programs, the baseline is established by:

- Assessing the existing equipment's energy consumption rate based on measurements or historical data;
- Completing an inventory of pre-retrofit equipment; or
- Comparing to a control group's energy equipment (used where no standard exists or when the project is an "early replacement," i.e., implemented prior to equipment failure).

The most widely accepted method and recommended for these EM&V Protocols is to define the baseline by determining what technologies the new equipment replaces; that is, the baseline is related to actual historical base year energy consumption or demand, carried forward to future years (NAPEE 2007).

Performance Standard Baseline

The Performance Standard Baseline approach avoids project-specific determinations of quantified energy and demand savings. Instead, it develops a performance standard savings if it has a "lower" baseline than the performance standard baseline. Performance standards are sometimes referred to as "multi-project baselines" because they can be used to estimate baseline savings for multiple project activities of the same type.

Under the performance standard procedure, baseline energy and demand are estimated by calculating an average (or better-than-average) consumption rate (or efficiency) for a blend of alternative technologies or practices. These standards are used in large-scale retrofit (early replacement) programs when the range of equipment being replaced and how it is operated cannot be individually determined. This would be the case, for example, in a residential LED retail program, where the types of lamps being replaced and the number of hours they operate cannot be determined for each home. Instead, studies are used to determine typical conditions. Another common use of performance standards is to define a baseline as the minimum efficiency standard for a piece of equipment as defined by a law, code, or standard industry practice. This is commonly used for new construction or equipment that replaces failed equipment (NAPEE 2007).

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37,AM: Docket 19-101-Doc. 446 Arkansas Technology 10-10-00 Vol. 1

This approach is especially important when it is difficult to determine baselines, such as in new construction programs, since no comparison period exists. However, the concepts of project and performance standard baseline definitions can still be used in these circumstances. The industry-accepted methods of defining new construction baselines are based on:

- The specifications of buildings that would have been built or equipment installed without the program's influence at the specific site of each construction project. This might be evaluated by standard practice evaluation or building to the program being launched to the program being launched;
- Existing building codes and/or equipment standards; and
- The performance of equipment, buildings, etc., in a comparison group of similar program non-participants.

G. DEFINING ADJUSTMENT FACTORS

The values that the program implementer or end-user uses to bring energy use in the two time periods (before program launch and after or during program delivery) to the same set of conditions. Common adjustment examples are:

- Weather corrections;
- Changes in occupancy levels and hours;
- Production levels;
- Economic conditions;
- Energy prices;
- Changing codes/standards and common practice/changes to the baseline;
- Interactions with other programs; and
- Changes in household or building characteristics.

These factors all affect total energy used and energy demand levels. There are a few methods for isolating the impacts of these factors in order to accurately attribute energy and demand reductions to the program being evaluated.

One approach would be to calculate a gross energy savings project involving a contractor completing energy efficiency measures in a facility for the sole purpose of achieving energy savings (e.g., performance contracts). Net savings (which account for the range of independent variables discussed previously) are calculated when one wants to know the level of savings that occurred due to the program's influence on program participants and non-participants (Schiller Consulting 2010). The methods to adjust gross and net savings are summarized next:

Estimates of Gross Savings

Gross energy or demand savings are the expected change in energy consumption or demand that results directly from program-promoted actions (e.g., installing energy-efficient lighting) taken by program participants under pre-defined assumed conditions.

Estimates of Net Savings

Net energy or demand savings refer to the portion of gross savings that are directly attributable to the influence of the program. This involves separating the impacts that result from other influences, such as weather, energy prices, or even consumer self-motivation.

Most program evaluations seek estimates for both gross and net energy/demand savings. They require a net-to-gross estimate. For example, a program's overall impact is determined by calculating the actual savings less than the anticipated or projected estimates and adjusting for free ridership and spillover.

Impact = Actual post – Projected_{pre} \pm Adjustments

The level of effort necessary to complete an evaluation is driven by the equipment type and data collection needs. The International Performance Measurement and Verification Protocol (IPMVP) is an important and widely used guidance document for determining the level of effort required to conduct EM&V studies. The IPMVP presents various M&V options, summarized in Table 2, that help guide savings verification methods and levels of effort.

IPMVP M&V Option	Measure Performance Characteristics	Data Requirements
Option A: Engineering calculations using spot or short-term measurements, and/or historical data.	Constant performance	 Verified Installation¹ Nameplate or stipulated performance parameters Spot measurements Run-time hour measurements
Option B: Engineering calculations using metered data.	Constant or variable performance	 Verified Installation Nameplate or stipulated performance parameters End-use metered Data
Option C: Analysis of utility meter (or sub- meter) data using techniques from simple comparison to multi- variate regression analysis.	Variable performance	 Verified Installation Utility metered or end-use metered data Engineering estimate of savings input to SAE model
Option D: Calibrated energy simulations/modeling; calibrated with hourly or monthly utility billing data/or end-use metering.	Variable performance	 Verified Installation Spot measurements, run-time hour monitoring Utility billing records, end-use metering, or other indices to calibrate models

Table 2: Summary of IPMVP Protocols

(Source: IPMVP Protocols 2010)

¹ Field verification of the installation of rebated units is not intended to replace TRM defined In-Service Rates (ISRs). Verification of installations in the field can help inform future ISRs where applicable.

Budget Considerations

Establishing a budget-acceptable level of uncertainty is often a subjective judgment based on the value of the energy and demand savings, the risk to the program associated with over or underestimated savings, and a balance between encouraging efficient actions and high levels of certainty. An important aspect of evaluation planning is deciding what level of risk is acceptable, thus determining the requirements for accuracy and a corresponding budget.

The level of acceptable risk is usually related to:

- The overall amount of savings expected from the program;
- Whether the program is expected to grow or shrink in the future;
- The uncertainty about expected savings and the risk the program poses in the context of achieving portfolio;
- The length of time since the last evaluation was conducted and the degree to which the program has changed in the interim; and
- The requirements of the regulatory commission or oversight authority and/or the requirements of the program administrator.

On a practical level, the evaluation budget reflects several factors. At the portfolio level, for example, evaluation budgets may be established in regulatory proceedings. However, evaluation needs and costs require scrutiny at the program level to ensure proper funding levels. At the program level, budgets are often influenced by factors that affect the level of quality associated with evaluation results. For example, budgets may increase to accommodate follow-up studies aimed at assessing and reducing measurement error or to pay for additional short-term metering, training of staff, or testing of questionnaires and recording forms to reduce data collection errors. Additional resources might be required to ensure that "hard-to-reach" portions of the population are included in the sampling frame (reducing non-coverage error) or devoted to follow-up aimed at increasing the number of sample members for whom data are obtained (reducing non-response bias).

The determination of the appropriate sample size also affects the evaluation budget. Procedures such as a statistical power analysis help researchers determine the sample size needed to achieve the desired level of precision and confidence for key outcomes. In this way, researchers are assured of a statistically significant sample size.

The National Action Plan for Energy Efficiency (2007) suggests that a reasonable spending range for evaluation is three to six percent of program budgets. In general, on a unit-of-saved-energy basis, costs are inversely proportional to the magnitude of the savings (i.e., larger projects have lower per-unit evaluation costs) and directly proportional to the uncertainty of predicted savings (i.e., projects with greater uncertainty in the predicted savings warrant higher EM&V costs) (NAPEE 2007).

Cost-Effective Strategies for Program Evaluation

One effective way to minimize the EM&V evaluation costs – while maximizing the overall effectiveness of the final program evaluations – is to encourage the Parties Working Collaboratively (PWC) to take advantage of synergies between utilities and economies of scale on EM&V activities, where possible.

In particular, larger utilities should be encouraged to include smaller utilities in EM&V planning and research.2 The potential cost savings, market assessments, and baseline studies naturally lend themselves to a regional approach because markets do not conform to service-territory boundaries.

Specific types of evaluation activities

- 1. Baseline Studies;
- 2. Market Assessment Studies;
- 3. Incremental Cost Studies;
- 4. Process or Impact Evaluations where programs are substantially similar; and
- 5. DSM Potential Studies.

If programs meet the following criteria, then conducting EM&V activities collectively via the PWC is strongly encouraged:

- The programs delivered across multiple utility territories are very similar. If the programs target the same customer class and offer the same measure mix, then there are significant cost savings to be gained by conducting a joint evaluation across the utility service territories. The most common DSM programs that encourage this PWC effort include residential weatherization and energy audit programs.
- The findings should be reported consistently across utility service territories where appropriate. This PWC effort will only work if the participating utilities track customer data similarly across the joint programs. The individual utilities can report their EM&V activities separately but share the EM&V costs associated with executing these activities (Reynolds et al., 2009).

The Importance of Independence

EM&V requires third-party verification and reporting. Therefore, the organization selected to conduct any EM&V activities should be an independent effort. The evaluations should be conducted at an "arms-length distance," so the verification professionals have no financial stake in the program or program components being evaluated beyond the contracted evaluation efforts.

 $^{^{2}}$ Although not mandatory, collaboration is a potentially cost-effective option that should be given consideration.

Section II: EM&V Protocols

This section describes the recommended EM&V Protocols that should be incorporated in process and impact evaluations of the DSM programs pursuant to Docket No. 10-100-R.

PROTOCOL A: PROGRAM TRACKING AND DATABASE DEVELOPMENT

Protocol Scope: This protocol provides guidance to develop an effective DSM program tracking, evaluation, and project database. It lists the key data elements that must be tracked, the key measure characteristics, key customer demographics, and other data fields.

Customer Classes: All except self-directing customers

All tracking systems should capture all the variables required to determine energy savings.

Please refer to the most recent version of the Deemed Savings estimates developed for the Arkansas Technical Reference Manual (TRM) as specified in the Deemed Savings No. 07-152-TF.

Table 3: Recommended Data Fields and Description

Recommended Data Fields	Description
 Participating Customer Information Unique customer identifier, such as account number Customer contact information – name, mailing address, telephone number, email address Date/s of major customer milestone/s such as rebate application date, approval date, rebate processing date, etc. 	Information used to readily identify customers for follow-up contact.
 Measure-Specific Information Measure Group (Equipment Type) Equipment Fuel/Energy Source Equipment Size Equipment Quantity Efficiency Level 	Information that documents the details of the equipment installed and equipment replaced under the program.

Recommended Data Fields	Description
 Measure-Specific Information Estimated Savings Estimated incremental measure cost, if applicable Equipment Useful Life Measure Name - Text Description Measure Code - Numerical Code* Serial Number (where applicable) Reported age of equipment replaced (if available) Reported measure type of equipment replaced (if available) Other inputs necessary for the use and compliance with the TRM 	*Measure Codes: Ideally, all data should be captured in numeric format to facilitate data tracking and analysis. Therefore, a data legend should identify each measure be clearly labeled in the program database's supporting materials.
 Vendor-Specific Information Name and Contact Information for Contractor Contractor Type Date of Installation Cost of the installed equipment (if available) Efficiency level of the installed equipment 	To be collected when the measure is installed by a third-party vendor. This information can be determined from the supporting documentation provided to qualify for the program incentive.
 Program Tracking Information Date of the initial program contact/rebate information Date of rebate/incentive paid Incentive amount paid to date Incentive amounts remaining Application Status (i.e., number of applications approved, pending or denied) Reason and Reason code for application denial 	Information to determine program cost effectiveness and timing for rebate applications and processing.
 Program Costs Overall program budgets Program expenditures to date Incentive Costs Administrative Costs Marketing/Outreach Costs Evaluation Costs 	This information is directly related to program expenses. This information may be tracked in a separate worksheet from measure costs; however, the totals should be reported annually.
 Marketing and Outreach Activities Advertising and marketing spending levels Media schedules Summary of number of community events/outreach activities Other media activities – estimated impressions via mailings, television/radio, print ads 	The program implementers should be able to provide separate documentation regarding the type, number, and estimated impressions made for each marketing activity.

Example Measure Category	Example Measure Code
Air Source Heat Pump	1
Room Air Conditioner	2
Central Air Conditioner	3
Natural Gas Furnace	4
Storage Water Heater (Gas)	5
Tankless Water Heater (Gas)	6
Storage Water Heater (Electric)	7
Heat Pump Water Heater	8
Attic Insulation	9
Wall Insulation	10

Table 4: Example of Data Legend for Database Tracking and Evaluation Purposes

Similarly, the contractor type could also be identified by a category and a numeric code to facilitate analysis and tracking. Ideally, the program database and tracking system would be linked to the utility's or energy provider's current Customer Information System so that it can be updated regularly to verify eligibility.

Table 5: Example of Contractor Codes

Example Contractor Type	Example Contractor Code
Architect	11
Engineer	22
Plumber	33
HVAC	44
Insulation Installer	55
Home Builder (Production)	66
Home Builder (Custom)	67
Specialty	90

"Best practices" regarding database tracking and development also suggest capturing additional types of information during data collection to facilitate EM&V. Examples are provided in Table 6.

Table 6: Suggested Data Collection Fields

Suggested Data Collection Fields	Description
 Premise Characteristics Housing Type Number of Occupants Estimated/Actual Square Footage 	This information includes descriptions of the housing type and similar data points asked of participants during the measure installation.
 Measure Characteristics Efficiency level of equipment removed (retrofit only) Model level for equipment removed (retrofit only) 	This information is commonly captured by the contractor or recorded from the invoice and could be tracked in the program database.

PROTOCOL B: PROTOCOLS FOR THE POST-IMPLEMENTATION VERIFICATION OF ENERGY EFFICIENCY PROGRAM MEASURE INSTALLATIONS AND ESTIMATION OF ENERGY AND DEMAND SAVINGS

Protocol Scope: This protocol specifies the types and categories of measures that require postimplementation verification, the recommended timing for these activities, and the key data to capture during on-site inspections. For more detailed information regarding the data collection requirements for on-site inspections, refer to the IPMVP listed on <u>www.evo-world.org</u> and the requirements listed in the Deemed Savings Docket 07-152-TF.

Customer Classes: All except self-directing customers

<u>Calculating Energy and Demand Savings</u>: For efficiency programs, determining energy savings is the most common goal of impact evaluations. Energy usage and savings are expressed in terms of consumption over a set time period and defined in well understood terms (e.g., therms of natural gas consumed per month, megawatt hours [MWh] of electricity consumed over a year, season, or month). Energy savings results may also be reported by costing period, which break the year into several periods coinciding with a utility rate schedule. Special cases of savings by period include demand savings for peak and off-peak periods or summer and winter periods.

Examples of demand savings definitions are:

Annual average demand (MW) savings – Total annual savings divided by the hours in the year (8,760).

Peak demand reductions – The maximum amount of demand reduction achieved during a period of time. This time period should be clearly defined, whether it is annual, seasonal, or during a specific period of time, such as summer weekday afternoons or winter peak billing hours.

Coincident peak demand reduction – The demand savings that occur when the servicing utility is at its peak demand from all (or segments) of its customers. This indicates what portion of a utility's system peak demand is reduced during the highest periods of electricity consumption. Calculating coincident peak demand requires knowing when the utility has its peak (which is not known until the peak season is over).

PROTOCOL B1: Recommended Protocols for Gross Energy Evaluation

- 1. A Simple Engineering Model (SEM) with M&V equal to IPMVP Option A and meeting all requirements for this M&V Protocol is recommended. Other approaches and options should be considered as evaluation requirements or studies dictate.
- 2. Normalized Annual Consumption (NAC) using pre- and post-program participation consumption from utility bills from the appropriate meters related to the measures installed, weather-normalized, using the identified weather data to normalize for heating and/or cooling as appropriate. Twelve or more months' pre-retrofit and twelve months' post-retrofit consumption data is recommended.

(Source: CA Evaluators' Protocols 2006)

PROTOCOL B2: Recommended Protocols for Gross Demand Evaluation

- 1. Requires using secondary data to estimate demand impacts as a function of energy savings. End-use savings load shapes or end-use load shapes will be used to estimate demand impacts as available:
 - a. End-use savings load shapes, end-use load shapes, or allocation factors from simulations conducted for Arkansas TRM as available.
 - b. Allocation factors from forecasting models or utility forecasting models through the evaluation plan review process such as econometric, end-use, load forecast, and other models as appropriate.
 - c. Allocation based on end-use savings load shapes or end-use load shapes from other studies for related programs/similar markets with approval through the evaluation review process as applicable.

(Source: Modified from the CA Evaluators' Protocols 2006)

PROTOCOL B3: Recommended Protocols for Participant Net Impact Evaluation

- 1. Analysis of utility consumption data that addresses the issue of self-selection bias for both participants and non-participants.
- 2. Enhanced self-report includes: record/business policy and paper reviews, interviews with mid-stream and upstream market actors, reviews of standard buildings and equipment installation practices by builders and/or stocking practices, standard buildings and equipment installation practices by builders.

(Source: Modified from the CA Evaluators' Protocols 2006)

PROTOCOL B4: Sampling and Uncertainty Protocol

Level Gross Impact Options:

Simplified Engineering Models (SEM): The sampling selected must be justified in the evaluation plan and approved as part of the evaluation planning process.

Protocols for Estimating Net Impacts:

If the method used for estimating net energy and demand impacts and net-to-gross ratios (NTGR) is regression-based; there are no relative precision targets. For both impacts and NTGR calculation, evaluators are expected to conduct, at a minimum, a statistical power analysis as a way of initially estimating the required sample size. Other information can be considered such as professional judgment and prior evaluations of similar programs or similar measures.

Normalized Annual Consumption (NAC) Models:

If NAC models are used, there are no targets for relative precision. This is because NAC models are typically estimated for all participants for whom there is an adequate amount of pre- and post-billing data. Thus, there is no sampling error. However, if sampling is conducted, either a power analysis or justification based upon prior evaluations of similar programs must be used to determine sample sizes. The sample size selected should be justified in the evaluation plan and approved as part of the evaluation planning process.

(Source: Modified from the CA Evaluators' Protocols 2006)

PROTOCOL B5: Savings for projects spanning two program years

There are instances where large custom projects are implemented during one program year, but sufficient data is not available to complete final M&V until the following program year. In these cases, programs can claim the savings for a project in the year of completion of its M&V, provided that they include no more than twelve (12) months of savings for that project. It would also be appropriate, but not required, to split the savings across program years.

Appropriate Savings Split

Utilities can split projects across program years. The exact percentage can change depending on the project and the utilities' specific risk appetite. However, the first-year total savings true-up should be applicable to a given 12-month time-frame as savings are represented on an annual basis.

Evaluation of Split Projects

The evaluation of projects split will also be split across the program years. The initial evaluation will assess the project based on the information that is available at the time of the evaluation, and any necessary corrections will be made. The remaining percentage of savings will be evaluated the following program year when sufficient data is available. This second evaluation will be used as a true up to ensure the appropriate savings are claimed for the project as a whole. Therefore, it is possible that if savings were significantly overstated during the previous program year, the evaluated savings during the second year could be negative.

For example, a custom project is initially estimated to save 100,000 kWh of electricity. Since the project was completed in September, the utility decides to claim 60% during the current year, or 60,000 kWh. The remaining 40,000 kWh will be claimed the following year. The evaluator uses the information available at the time to validate that the initial claim of 60,000 kWh is reasonable. However, during the evaluation the following year, the evaluator determined the customer made significant operational changes to the project and it is only expected to save 50,000 kWh total. The evaluator would therefore report -10,000 kWh (negative savings) during the second year to true up the project as a whole.

Evaluation of Projects of Non-Split Projects

In the cases where a project is implemented in one program year, but the final M&V is not completed until the following program year, evaluation of the full project savings will take place in the year of completion of its M&V.

For example, a custom project is completed in September, is initially estimated to save 100,000 kWh of electricity, and requires 12 months of billing data for M&V. The program can claim the full 100,000 kWh in the second program year at the conclusion of the 12-month M&V period, even though three of the months were in the first program year. Because no savings were claimed by the program in the year of implementation (the first year), the project is not evaluated in that year but instead evaluated in the second year. During the evaluation in the second year, if the evaluator determines that the project is only expected to save 50,000 kWh total, the evaluator would report the 50,000 kWh in the second year.

PROTOCOL C: PROCESS EVALUATION GUIDANCE

Protocol Scope: This protocol provides guidance regarding the timing and scope for process evaluations of the Arkansas utility programs. Process evaluations focus on determining the overall effectiveness of program delivery, identifying opportunities for program improvements and assessing key program metrics, including participation rates, market barriers, and overall program operations.

PROTOCOL C1: Process Evaluation Structure and Timing

Protocol Scope: This protocol section provides additional guidance on how to best structure process evaluations at the state, portfolio, program, service, and market sector level. Process evaluations need to be structured to meet the specific goals and objectives at a particular point in time.

<u>Customer Classes</u>: All expect self-directing customers

Program Types: All

Approach: The process evaluation decision-maker, either the utility or third-party administrator, should determine if a process evaluation is needed based on any of the criteria described in Protocols C1 and C2, which summarize the two major criteria for determining if a process evaluation is necessary. The first criterion is to determine if it is time for a process evaluation; the second criterion is to determine if there is a need for a process evaluation. Figures 3 and 4 illustrate this decision-making process.

Keywords: timing; portfolio level evaluations; process evaluation structure; diagnostic process evaluations; under-performing programs; programs not meeting targets."

PROTOCOL C1: Determining Appropriate Timing to Conduct a Process Evaluation

- 1. New and Innovative Components: If the program has new or innovative components that have not been evaluated previously, then a process evaluation needs to be included in the overall evaluation plan for assessing their level of success in the current program and their applicability for use in other programs.
- 2. No Previous Process Evaluation: If the program has not had a comprehensive process evaluation during the previous funding cycle, then the Program Administrator should consider including a process evaluation in the evaluation plan.
- 3. New Vendor or Contractor: If the program is a continuing or ongoing program, but is now being implemented, in whole or in part, by a different vendor than in the previous program cycle, then the administrator should consider including a process evaluation in the evaluation plan to determine if the new vendor is effectively implementing the program.

If any of these criteria is met, it is time to conduct a process evaluation.

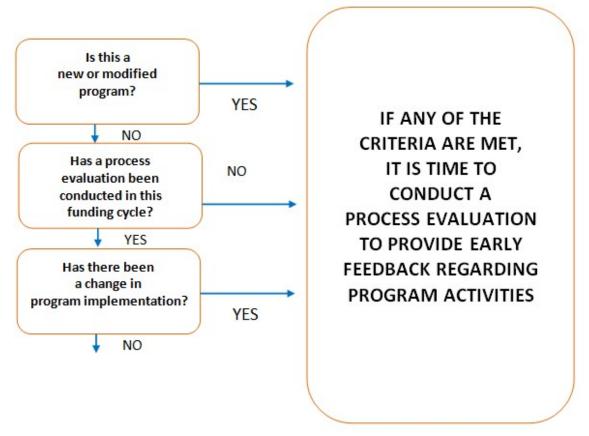
If none of these criteria is met, then the evaluation decision-maker should proceed to Step 2 in the Process Evaluation Decision Map.

PROTOCOL C1: Determining Appropriate Conditions to Conduct a Process Evaluation

Process evaluations may also be needed to diagnose areas where the program is not performing as expected. These conditions may include the following:

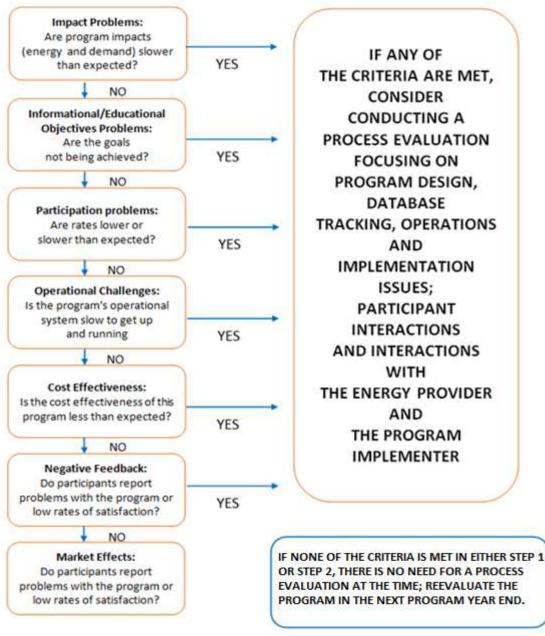
- 1. Impact Problems: Are program impacts lower or slower than expected?
- **2.** Informational/Educational Objectives: Are the educational or informational goals not meeting program goals?
- 3. Participation Problems: Are the participation rates lower or slower than expected?
- 4. **Operational Challenges:** Are the program's operational or management structure slow to get up and running or not meeting program administrative needs?
- 5. Cost-Effectiveness: Is the program's cost-effectiveness less than expected?

6. Negative Feedback: Do participants report problems with the program or low rates of satisfaction?


7. Market Effects: Is the program producing the intended market effects?

If any of the criteria is met, a process evaluation is needed to identify ways to address and correct these operational issues.

If none of these criteria is met in either Step 1 or Step 2, then a process evaluation is not needed at this time.


Re-evaluate the need for a process evaluation at the end of the program year.

IS IT TIME FOR A PROCESS EVALUATION?

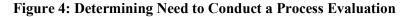

(Source: Johnson & Eisenberg 2011, p. 21)

Figure 3: Determining Timing for a Process Evaluation

IS THE PROGRAM/PORTFOLIO WORKING AS EXPECTED?

(Source: Modified from Johnson & Eisenberg 2011, p. 22)

Additional Guidance for Conducting Limited/Focused Process Evaluations

In all cases, the evaluator should conduct a limited or focused process evaluation consisting of a review of the program database and staff interviews to determine each program's progress throughout the evaluation cycle, which includes evaluations conducted in the first year of a new program cycle. The findings from these activities will serve to:

• Provide a *progress report for each recommendation* for program improvement made in previous evaluations in the same program cycle. For each evaluation recommendation, the report should indicate whether the recommendation has been accepted and implemented, rejected, or is still under consideration. If the recommendation is rejected, an explanation of the reason for rejection should be provided. If a recommendation is still under consideration, then an explanation should be provided for the steps underway to reach an implementation decision for that recommendation.

The evaluators should categorize the status of each recommendation using the following rubric:

- **Completed:** This means the recommendation has been fully implemented.
- Continuing: This means the recommendation has been fully implemented in the previous year. However, due to the nature of the recommendation, this will be an area will be monitored throughout the next program year.
- In Progress: This identifies those recommendations that have been accepted and will be adopted before the next program year.
- Under Consideration: This identifies those recommendations that are still under review by the program staff or implementers and no decision has yet been made.
- Reviewed and Rejected: This identifies those recommendations that have been considered and subsequently rejected. This could also apply to recommendations that are no longer applicable due to changes in program design or operations.

All recommendations should be grouped into one of these five categories as no other category is acceptable.

These groupings should make it easier to document the progress of previous recommendations throughout the program cycle and also minimize confusion by eliminating duplicative and overlapping terms.

No recommendation should be labeled as "Unknown," as this is meaningless.

- Any recommendations should be *strategic* in nature, i.e., designed to enhance overall program operations or efficiency. The evaluators may also provide tactical suggestions on ways to refine specific program elements, such as refining the marketing messaging or increasing contractor training sessions. These tactical suggestions do not need to be reported or tracked over time. Only strategic recommendations that provide actionable guidance for the program staff and/or implementer must be tracked and reported for every evaluation.
- Identify the progress made towards achieving the objectives as described in the Commission Checklist;
- Interview at least one member of the program staff and clearly label these findings for each program; and
- Identify any issues that need to be explored more fully in future program evaluations.

The following examples illustrate "strategic" recommendations:

- Recommendation: *Ensure that all identified errors in the program databases are corrected and aligned with the TRM Version 10.0*. These errors include addressing those in the TRM algorithms and updating the measure savings calculators. Specific examples are provided in each program evaluation.
- Recommendation: *Continue to explore new ways to cross-collaborate with other Arkansas utilities and energy organizations to promote these programs.* Specific suggestions regarding appropriate marketing strategies are included for each program evaluation.

Using this approach, the recommendations focus on making *overall improvements to the program portfolio*. The critical details regarding missing data, revisions to program application forms, and effective marketing tactics are still included within the individual program evaluations. This approach should simplify and reduce the number of overall recommendations by eliminating duplicative, tactical suggestions.

In summary, the evaluators should consider the overall findings across the portfolio and identify portfoliolevel improvements in the recommendations. The tactical suggestions should still be included at the end of each program evaluation to ensure that these program modifications are identified. Still, they do not require ongoing tracking throughout the evaluation cycle.

The evaluators should also review the previous recommendations made by the IEM in Section 4 of each Annual Report. These recommendations are designed to improve the overall quality of the individual EM&V reports, reduce the repetition of findings, and provide comparisons among and between utilities and market sectors. The evaluators should ask the IEM for additional clarity to ensure that all recommendations lead to practical and actionable results.

The evaluators are encouraged to identify new program opportunities beyond programmatic recommendations.

Process Evaluation Guidance for the Consistent Weatherization Approach

Given the importance of monitoring the progress of the Commission-ordered Consistent Weatherization Approach, it is important to note in all process evaluations (i.e., either full or limited) the status of this program as it is currently being implemented by each IOU. Specifically, the process evaluation activity should report, in a separate section, the following information annually in a summary format:

- The program name;
- Description of how the Consistent Weatherization Approach is being implemented by the utility;
- The number of audits conducted during the Program Year;
- The number of participants served during the Program Year;
- The number of projects submitted to program) during the Program Year;
- The conversion rates³ during the Program Year;
- The average number of measures installed per project;
- The average program cost per participant;
- Percentage of pre-approved contractors actively promoting the program (i.e., submitting projects); and
- Additional information that may inform program design or operations.

The evaluators must report the following metrics for the Low Income Program as defined in Act 1102, adopted in November 2017.

- Listing of each kind of H&S measure installed through the low-income pilot program;
- Average spending per participant on Health & Safety (H&S) measures;
- Cross tabulations that indicate the actual or estimated number of customers who participated in the Act 1102 program in the following categories:
- Estimated percentage of participants who are 65 or older; and
- Estimated percentage of participants who meet LIHEAP income-eligibility requirements.

³ The conversion rate is defined as the ratio between the number of unique jobs completed during the Program Year divided by the number of audits completed during the Program Year (jobs/audits). The higher the conversion rate, the more effective the program is as it means the weatherization contractors are able to convince customers to have the measures installed after completing an in-home energy audit.

PROTOCOL C2: Process Evaluation Planning

<u>Protocol Scope</u>: This protocol provides guidance on the key issues that should be addressed in process evaluations. It is especially important to focus on the aspects of program operations to address any deficiencies identified in the Determining the Need For A Process Evaluation Figure 4.

Customer Classes: All except self-directing customers

Program Types: All

Approach: The process evaluation plan should use the following outline to identify the key researchable issues that must be addressed in the process evaluation. This outline applies to process evaluations conducted at the program, portfolio, and state level.

Keywords: "process evaluation planning; EM&V plan process evaluation timing; portfolio level process evaluations; process evaluation structure; process evaluation components; process evaluation scope"

PROTOCOL C2: Recommended Elements of a Process Evaluation Plan

Introduction: Description of the program or portfolio under investigation; specific characteristics of the energy organization providing the program including current marketing, educational or outreach activities and delivery channels

Process Evaluation Methodology: Process evaluation objectives, researchable issues, and a description of how specific evaluation tactics will address the key researchable issues including the proposed sampling methodology for program/third-party staff, key stakeholders, trade allies/vendors, and customers. The sampling methodology should be clearly explained with specific targets of completed surveys or interviews clearly described in the EM&V Plan.

Timeline: Summarized by key tasks identifying the length of the process evaluation and key dates for completion of major milestones

Budget: Costs of conducting the process evaluation by specific tasks and deliverables

(Source: Modified and Expanded from the California Evaluators' Protocols - TecMarket Works 2006).

While Protocol C2 provides a general outline of the key elements that should be included in a process evaluation plan, Protocol C3 provides more detailed information regarding the key areas for investigation that need to be addressed in a process evaluation. Protocol C3 also identifies those areas that are most applicable to new programs or pilot programs, those areas that should be investigated when the program is experiencing specific operational issues or challenges, and those topic areas that should be covered in all process evaluations.

Program Design	Additional Guidance	
Program design and design characteristics, and program design process		
The program mission, vision and goal setting and goal setting process	This area is especially important to address in first- year evaluations and evaluations of pilot programs.	
Assessment or development of program and market operations theories		
Use of new or best practices		
Program Administration	Additional Guidance	
The program management process	This area should be covered in	
Program staffing allocation and requirements	all process evaluations, but it is	
Management and staff skill and training needs	especially important to address	
Program tracking information and information support systems	in those evaluations where	
Reporting and the relationship between effective tracking and management, including operational and financial management	- operational or administrative deficiencies exist.	
Program Implementation and Delivery	Additional Guidance	
Description and assessment of the program implementation and delivery process	This is critical to gathering the information necessary to assess the program's operational flow.	
Program marketing, outreaching, and targeting activities		
Quality control methods or operational issues	These areas should be	
Program management and management's operational practices	 addressed if the program is no meeting its participation goals or under-performing. 	
Program delivery systems, components and implementation practices		
Program targeting, marketing, and outreach efforts	The process evaluator should request copies of all marketing and outreach materials and include an assessment as part o the document review task.	
Program goal attainment and goal-associated implementation processes and results	These areas should be addressed in all process	
Program timing, timelines, and time sensitive accomplishments	evaluations but are especially important if the program is under-performing regarding savings or participation rates.	
Quality control procedures and processes		

Program Implementation and Delivery	Additional Guidance
Documentation of program tracking methods and reporting formats	This is a key element of the review of the program database and the evaluator should request copies of the program records or extracts along with the data dictionary.
Customer interaction and satisfaction (both overall satisfaction and satisfaction with key program components, including satisfaction with key customer- product-provider relationships and support services)	These topics should be investigated in
Customer or participant's energy efficiency or load reduction needs and the ability of the program to deliver on those needs	the customer surveys and should be a priority if the program is experiencing negative feedback or lower than
Market allies' interaction and satisfaction with the program	expected participation rates or energy savings.
Reasons for a low level of market effects and spillover	
Intended or unanticipated market effects	

(Source: Modified and Expanded from the 2006 California Evaluators' Protocols)

The process evaluation report should include the following reporting requirements:

- 1. <u>Detailed Program Description</u>. The process evaluation report should present a detailed operational description of the program that focuses on the program components being evaluated. The use of a program flow model is highly recommended. The report should provide sufficient detail so that readers are able to understand program operations and the likely results of the recommended program changes.
- 2. <u>**Program Theory**</u>. The process evaluation should include a presentation of the program theory. Suppose the program theory is unavailable or cannot be provided in time for the evaluation report's due date. In that case, the evaluator should include a summary program theory built from the evaluation team's program knowledge. It should be complete enough for the reader to understand the context for program recommendations but does not need to be a finely detailed program theory or logic model.
- 3. <u>Support for Recommended Program Changes</u>. All recommendations need to be adequately supported. Each recommendation should be included in the Executive Summary and then presented in the Findings text along with the analysis conducted and the theoretical basis for making the recommendation. The findings section should also describe how the recommendation is expected to help the program, including the expected effect that implementing the change will have on the program's operations.
- 4. **Detailed Presentation of Findings**. A detailed presentation of the findings from the study is essential. The presentation should convey the conditions of the program being evaluated. It should provide enough detail so that any reader can understand the findings and the implications of the overall operations of the program and its cost-effectiveness (Modified from the CA Evaluators' Protocols 2006).

PROTOCOL D: "LEVEL OF EFFORT" PROTOCOLS

Protocol Scope: This section addresses appropriate levels of effort for program evaluation activities based on measure type. This protocol specifies the following: 1) which measures are best suited to relying on deemed savings estimates; 2) which measures are best served through simplified EM&V activities such as on-site inspections or an engineering review; and 3) which measures require full EM&V activities, as defined by the IPMVP. These determinations are based on the measure characteristics, usage patterns, and program types. They are often conducted jointly with a desk review of all related measure-supporting documents, such as invoices, technical studies, and energy audits. In many cases, lower levels of effort are sufficient for estimating measure impact, which may help increase the overall cost-effectiveness of EM&V activities.

Customer Classes: All except self-directing customers

Protocol D1 specifically refers to those measures that have been defined in the Arkansas TRM as "deemed savings measures." Relying upon agreed-upon energy savings using the appropriately updated deemed savings values described in the Arkansas TRM is a valid approach for prescriptive and direct-install measures used in a traditional manner including, but not limited to, water heaters, furnaces, boilers, food service equipment, low-flow showerheads, and faucet aerators. Please consult this document for the most up-to-date listing of applicable measures filed in Deemed Savings Docket 07-152-TF. This document includes the appropriate deemed savings measures for electric and gas measures in the residential, commercial, and industrial (C&I) markets.

Measure Lives and Failure Rates

Measure lives listed in this TRM should be used, unless a reason is given for deviating from a measure life, along with support for the deviation.

- "Failure" is defined as an instance where an implementation contractor reports that a measure has been installed. Still, a subsequent inspection finds that the equipment is non-operational and/or not properly installed, and that difference has not been accounted for elsewhere.
- "Failure rate" is defined as the percent of inspected installation sites where any equipment fails inspection (i.e., the equipment is either not installed or not operating) and that possibility has not been otherwise accounted for.

Note, the definition of failure is intended to not count issues related to persistence or normal measure lives.

PROTOCOL D2: M&V Protocols

The IPMVP and verification (M&V).

- 1. Verification (is installed and operating correctly); and
- 2. Verification that energy savings

An M&V approach should be pursued only if the value of the reduction in uncertainty it yields exceeds its cost. Uncertainty in a savings estimate is partly a function of the variability in the energy use from one application to the next. To address this, IPMVP classifies projects as having high or low energy variation and high or low value. Consult the full IPMVP M&V Plan requirements to ensure that the EM&V activities conform to the specific data collection requirements. The four options presented in the IPMVP for savings estimation are listed next.

(Source: Schiller Consulting 2010 and IPMVP Protocol)

The following set of measure-specific protocols has been adapted and modified from the Northeast Energy Efficiency Partnerships (NEEP) EM&V Protocols (2010), which have combined current "best practices" for determining program estimates with both a recommended approach and an alternative approach consistent with the IPMVP approach. These protocols have been modified to reflect the characteristics of the current Arkansas DSM programs. These protocols are measure-specific but are not meant to be exhaustive or exclusive. Please consult the full list of all deemed measures in the Arkansas TRM for a full listing of appropriate deemed measures.

Option A – Retrofit Isolation: Key Parameter Measurement

Typical Application: Lighting retrofit where power draw is key performance parameter. This is measured on a constant and periodic basis.

Savings Determined by: Estimating lighting operating hours based on building schedules and occupant behavior.

Option B – Retrofit Isolation: All Parameter Measurement

Typical Application: Variable-speed drive flow; there are variable/differing operating characteristics.

Savings Determined by: Spot Metering or collection of interval data. An example is measuring electric power with a kW meter installed on electrical supply to the motor, which reads power at specified intervals. In the baseline period this metering may be in place for a period of time, as appropriate to verify motor loading levels. The meter is in place throughout reporting period to track variations in power use.

Option C – Whole Facility Energy Bill Analysis

Typical Application: Multi-faceted energy management program affecting many systems in a facility.

Savings Determined by: Measuring energy use with the gas and electric utility meters month baseline period and throughout the reporting period.

Option D – Whole Facility Calibrated Simulation

Typical Applications: Multifaceted energy management program affecting many systems in a facility but where no meter existed in the baseline period – such as new construction.

Savings Determined by: Energy use measurements, after installation of gas and electric meter, which are used to calibrate a simulation. Baseline energy use, determined using calibrated simulation, is compared to either a simulation of reporting period energy use or actual meter data.

Residential Measures

Residential measures covered here include:

- Residential Lighting
- Residential Central Air Conditioning
- Residential Comprehensive Multi-Measure Retrofit
- Residential Natural Gas Boilers and Furnaces

RESIDENTIAL LIGHTING Recommended EM&V Methods

This category is limited to single-family residential lighting exclusive of specialty hard-to-reach and multifamily programs. These measures include new construction, retrofit, direct install, and retail lighting programs.

Characteristic	Approach	Additional Comments	
Program Tracking	 Initial gross energy and demand savings, initial net impacts as applicable. Baseline quantity and wattage, installed quantity and wattage, location (as available), hours of use, in-service rate, HVAC interaction. 	Additional parameters useful for quality control and also for evaluation design, e.g. sampling. The tracking needs to conform with the requirements specified in Protocol A.	
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Complete "socket counts" by room and fixture type provide key data for impact evaluations, baseline studies, and hours-of-use studies. Questions on purchasing habits and "shelf" stock inform in-service rate research. Site visits with time-of-use lighting loggers are the most defensible approach to residential lighting programs. Collection of basic heating and cooling system information can be helpful in assessing interactive savings effects.	Time-of-use lighting loggers on a sample of lamps and fixtures, typically by room type.	
Acceptable Alternative M&V Methods	Alternatively, the Verification component can rely upon customer telephone surveys to obtain information such as socket counts, hours of use, and purchasing habits. These findings can be supplemented with literature reviews of other lighting studies to determine best estimates. This type of verification is an acceptable degree for rigor for these types of program installations.	The details regarding the alternative M&V approach must be documented in the Evaluation Plan submitted to the PSC. The EM&V for residential lighting may also address the issue of changing baselines due to the EISA phase out of standard incandescent lamps.	

RESIDENTIAL CENTRAL AIR CONDITIONING	
Summary of Recommended EM&V Methods	

This category is limited to central air conditioning (CAC) installed as a stand-alone measure and excludes CAC installed through comprehensive new construction programs. This category does not include ENERGY STAR room air conditioners or other "space cooling" measures.

Characteristic	Approach	Additional Comments
Program Tracking	Initial gross energy and demand savings, as well as initial net impacts as applicable. Number of installed units, unit capacity, baseline and installed efficiency, and full load cooling hours.	Additional parameters useful for quality control and also for evaluation design as specified in an EM&V plan.
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Site visits with short-term metering offers the most defensible approach to residential CAC programs.	Metering methods may include time-of-use loggers and spot power measurements. Logging load and energy draw data are recommended
	On-site inspections with metering that fully isolates the entire CAC system (Option B) is an acceptable alternative approach.	Metering would be interval kW measurements on both the outdoor compressor and indoor fan units.
Alternative M&V	Billing analysis (Option C) is a reasonable energy evaluation method for residential CAC at lower cost.	Billing analysis alone generally cannot quantify demand impacts.
Methods	Calibrated simulation modeling (Option D) is a viable alternative and can be effective at capturing measure interaction. CAC simulation modeling may be appropriate for evaluating comprehensive cooling measures.	Metering can be used to calibrate the model. Such metering may include whole premise interval kW recorders with some end-use metering.

RESIDENTIAL COMPREHENSIVE MULTI-MEASURE RETROFIT Summary of Recommended EM&V Methods

This category encompasses comprehensive multi-measure retrofit installations in residential homes. Sometimes called "deep retrofits" or "home energy services," these measures are characterized by a whole-home approach that typically involves an audit followed by efficiency recommendations for multiple end-uses and technologies. The comprehensive residential approach tends to be electric-centric but may also span fuel measures such as water heating, boilers, or furnaces.

Characteristic	Approach	Additional Comments
Program Tracking	Initial estimates of gross energy and demand savings, as well as initial net impacts as applicable. Detail on individual measures, such as: air conditioner, heat pump, boiler/furnace, water heater quantities and sizes; baseline and installed equipment efficiencies; home square footage; insulation and weatherization actions.	Additional parameters useful for quality control and for evaluation design, e.g. sampling as specified in the EM&V plan.
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Site visits with visual inspections, quality of installation assessments, interviews, and short-term metering for selected electric measures. Simple engineering models of savings impacts.	Metering is limited to time-of- use loggers on lighting and HVAC equipment supported by spot power measurements.
Alternative M&V Methods	For measures that save both natural gas and electricity, an option is to pair the Option A approach with a billing analysis (Option C) to determine gas impacts. Diagnostic testing of HVAC equipment, blower door, and duct blaster tests adds rigor and reduces uncertainty to savings estimates for envelope measures.	Evaluators should design an evaluation plan to achieve the identified objectives of the EM&V activities.
Miethous	Calibrated simulation modeling (Option D) is a viable alternative and can capture measure interaction. This approach may be most appropriate for comprehensive multi- measures.	Metering can be used to document HVAC system and whole premise interval kW and recorders with some temperature measurements.

RESIDENTIAL NATURAL GAS BOILERS AND FURNACES Summary of Recommended EM&V Methods

This category is limited to residential natural gas boilers and furnaces and excludes: space heating equipment such as portable or room space heaters; electric or oil space heating equipment; and associated controls such as boiler reset controls. This category addresses stand-alone heating equipment and excludes natural gas boilers/furnaces installed through comprehensive new construction programs.

Characteristic	Approach	Additional Comments
Program Tracking	Initial gross energy and demand savings, initial net impacts as applicable. Number of installed units, unit capacity, baseline and installed efficiency and full load heating hours.	Any additional parameters that could be useful for quality control or for evaluation design, such as sampling that are described in the EM&V plan.
Recommended M&V Method	Billing analysis (Option C) supported by telephone surveys or on-site inspections. Telephone surveys supplemented by rebate forms can confirm installation and gather data on household demographics and other operational characteristics to support the billing analysis.	Validity of billing analysis depends on whether the baseline and post- installation operation is similar, and/or appropriate corrections are made.
Alternative M&V Methodsconfidence in househo supports collection of data. Basic short-term A) may be added on el equipment such as fur pumps to refine saving Calibrated simulation a viable approach and	Adding on-site inspections enhances overall confidence in household characteristics and supports collection of equipment nameplate data. Basic short-term measurements (Option A) may be added on electrical support equipment such as furnace fans and boiler pumps to refine savings estimates.	Metering methods would include time-of-use CT Loggers and spot power measurements.
	Calibrated simulation modeling (Option D) is a viable approach and is well suited for evaluating measures in a comprehensive package.	Natural gas sub-meters may be installed to isolate the heating equipment from other end-uses. Collecting both electric and gas usage can be helpful in calibrating and validating building energy models.

Commercial Measures

Commercial measures covered here include:

- C&I Comprehensive Multi-Measure New Construction
- C&I Custom Measures
- C&I Natural Gas Boilers and Furnaces
- C&I HVAC: Prescriptive Chillers
- C&I HVAC: Unitary/Split
- C&I HVAC: Other Measures
- C&I Lighting (New Construction)
- C&I Lighting (Retrofit)
- C&I Motors
- C&I Variable Speed Drives

C&I COMPREHENSIVE MULTI-MEASURE NEW CONSTRUCTION Summary of Recommended EM&V Methods

This category is limited to the installation of commercial and industrial comprehensive multi-measure new construction projects.

Characteristic	Approach	Additional Comments
Program Tracking	 Initial estimates of gross energy and demand savings, initial net impacts as applicable. Savings by measure component; description of individual measures with, as applicable, unit quantities, sizes/capacities, baseline and installed efficiencies, and operating hours. 	Any additional parameters that could be useful for quality control or for evaluation design, such as sampling that are described in the EM&V plan.
Recommended M&V Method	Calibrated simulation modeling (Option D) which is effective at capturing measure interaction. On- site data collection and review of construction documents would gather parameters, specifications, and operational characteristics to inform the model. Data collected from building Energy Management Systems (EMS) can also provide cost-effective information and should be included in EM&V plans if available.	Metering should include whole premise interval kW recorders with some end-use metering.
Alternative M&V Methods	An alternative would be to conduct on-site inspections with metering that encompasses the entire set of measures (Option B). A detailed engineering spreadsheet model can be used to capture the dynamics and interactions hourly. Less rigorous metering (Option A) could be performed but may come at the cost of reduced accuracy and validity.	Metering can be used to calibrate the model. Such metering may include whole premise interval kW recorders with some end-use metering.

C&I CUSTOM MEASURES Summary of Recommended EM&V Methods

This category is limited to the installation of Commercial and Industrial (C&I) custom measures in both retrofit and new construction situations. The custom category includes measures that either do not comply with or benefit from examination beyond a prescriptive calculation approach. In general, these are more complex measures that require site-specific information and detailed calculations to estimate energy and demand savings. In this context, custom measures may entail any end-use or technology.

Characteristic	Approach	Additional Comments
Program Tracking	 Initial gross estimates of energy and demand savings and initial net impacts as applicable. Measure description with, as applicable, unit quantities, sizes/ capacities, baseline and installed efficiencies, and operating hours. 	Any additional parameters that could be useful for quality control or for evaluation design, such as sampling that are described in the EM&V plan.
Recommended M&V Method	On-site inspections with partial (Option A) or complete (Option B) measurements on a census or sample of program participants. Site visits with short-term metering is the most appropriate approach for C&I Custom measures. A detailed engineering spreadsheet model can be used to capture the dynamics and interactions hourly. Data collected from Energy Management Systems (EMS) may also provide cost-effective information and should be included in EM&V plans if available.	Metering methods often include time-of-use loggers, interval kW recorders, and spot power measurements.
Alternative M&V Method	If the Custom measure involves significant HVAC equipment and/or controls, calibrated simulation modeling (Option D) offers a viable alternative for capturing measure dynamics and interaction.	Metering can be used to calibrate the model. Such metering may include whole premise interval kW recorders with some end-use metering.

C&I NATURAL GAS BOILERS AND FURNACES		
Summary of Recommended EM&V Methods		
This category is limited	ed to commercial natural gas boilers and furnaces	·
Characteristic	Approach	Additional Comments
Program Tracking	 Initial gross energy and demand savings and initial net impacts as applicable. Number of installed units, unit capacity, baseline and installed efficiency, and full load heating hours. 	Any additional parameters that could be useful for quality control or for evaluation design, such as sampling that are described in the EM&V plan.
Recommended M&V Method	Billing analysis (Option C) supported by telephone surveys and supplemented by rebate forms and/or on-site inspections. Telephone surveys may be used to confirm installation and gather data on facility size and operating hours to support the billing analysis. Data collected from building Energy Management Systems (EMS) can also provide cost-effective information and should be included in EM&V plans if available.	Billing analysis is only valid when the pre-existing (gas bills from the pre-retrofit period) is the appropriate baseline to be used in impact analysis.
Alternative M&V Methods	Adding on-site inspections to the basic method above improves confidence in building characteristics and supports collection of equipment nameplate data. Basic short-term measurements (Option A) may be added on electrical support equipment such as furnace fans and boiler pumps to refine savings estimates.	Metering methods would include time-of-use CT Loggers and spot power measurements.
	Calibrated simulation modeling (Option D) is a viable alternative that maybe useful if Option C is inadequate or for measures that are part of a comprehensive package.	Natural gas sub-meters can be installed to isolate the heating equipment from other end-uses.

C&I HVAC: PRESCRIPTIVE CHILLERS Summary of Recommended EM&V Methods

This category is limited to air-cooled and water-cooled chiller installations in commercial and industrial facilities as a prescriptive measure. Custom chiller installations are covered under C&I Custom Measures.

Characteristic	Approach	Additional Comments
Program Tracking	 Estimates of initial gross energy and demand savings and initial net impacts as applicable. Number of installed units, chiller capacity, baseline and installed efficiency, and full load cooling hours. 	Any additional parameters that could be useful for quality control or evaluation design, such as sampling that are described in the EM&V plan.
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Site visits with short-term metering offer the most cost-effective approach to prescriptive chiller projects. Data collected from building EMS may also provide cost-effective information and could be included in EM&V plans if available. Other factors that should be examined for cooling towers include the cleanliness of the cooling tower and the water temperature.	Metering methods include interval amp/kW recording or time-of-use loggers coupled with spot power measurements.
Alternative M&V	An enhanced alternative is to conduct on-site inspections with metering that fully captures the entire chiller water system including supporting pumps and tower fans (Option B). Engineers can analyze hourly energy consumption for baseline and installation conditions in a dynamic spreadsheet model using Typical Meteorological Year (TMY) data.	Additional parameters of value include supply, return water temperature, and water flow expressed in gallons/minute.
Methods	Calibrated simulation modeling (Option D) is a viable alternative that is especially effective at capturing measure interaction. Simulation modeling is particularly good at temperature dependent equipment but requires a wealth of building and operational characteristics for an accurate model.	Metering can be used to calibrate the model. Such metering may include whole premise interval kW recorders with some end-use metering.

C&I HVAC: UNITARY/SPLIT Summary of Recommended EM&V Methods

This category is limited to unitary HVAC installations in commercial and industrial facilities as a prescriptive measure. Unitary equipment covers split system AC, packaged systems, air-source heat pumps, and water source heat pumps. Custom unitary air conditioning applications are covered under C&I Custom Measures.

Characteristic	Approach	Additional Comments
Program Tracking	Initial gross energy and demand savings, initial net impacts as applicable. Number of installed units, HVAC unit capacity, baseline and installed efficiency, and full-load cooling <i>and heating</i> hours.	Any additional parameters that could be useful for quality control or evaluation design, such as sampling that are described in the EM&V plan.
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Site visits with short-term metering can offer the most cost-effective approach to prescriptive unitary/split projects. Data collected from building Energy Management Systems (EMS) can also provide cost-effective information and should be included in EM&V plans if available.	Metering methods include interval amp/kW recording or time-of-use loggers coupled with spot power, flow, and temperature measurements.
Alternative	An enhanced alternative is to conduct on-site inspections with metering that fully surround the measurement boundary (Option B). Engineers can analyze hourly energy consumption for baseline and installation conditions in a dynamic spreadsheet model using Typical Meteorological Year (TMY) data.	Interval kW metering on whole-package units or both indoor/outdoor components of a split system.
M&V Methods	Calibrated simulation modeling (Option D) is a viable alternative effective at capturing measure interaction. Simulation modeling is particularly useful for assessing temperature dependent equipment but requires a wealth of building and operational characteristics for an accurate model. This is a viable option for buildings with many HVAC units, zones, or solar coupling effects.	Metering would conform Option D inputs and outputs and may include the whole- premise interval kW with some space temperatures.

C&I HVAC: OTHER MEASURES Summary of Recommended EM&V Methods

This focuses on the Other HVAC category to HVAC control measures such as thermostats, economizers, and dual enthalpy controls. This category is limited to prescriptive installations in commercial and industrial facilities. Custom HVAC applications are covered under C&I Custom Measures.

Characteristic	Approach	Additional Comments
Program Tracking	Initial gross energy and demand savings and initial net impacts as applicable. Number of installed units, unit capacity and efficiency, full load cooling hours, free cooling/setback hours.	Any additional parameters that could be useful for quality control or evaluation design, such as sampling that are described in the EM&V plan.
Recommended M&V Method	On-site inspections with limited measurements on a sample of program participants (Option A). Site visits for HVAC control measures focus upon accurately inspecting and verifying operation of the controls. Data collected from building Energy Management Systems (EMS) can also provide cost-effective information and should be included in EM&V plans if available.	Metering methods may include strategically-placed time-of-use loggers to verify controls.
Alternative	An enhanced alternative would be an on-site inspection with metering that fully captures the impacts of the control (Option B). An hourly impact analysis would isolate the control impacts from the monitored data stream and assess across a Typical Meteorological Year (TMY) dataset.	Metering would be interval kW measurements on the affected HVAC units. Advanced metering can include enthalpy readings and damper position.
M&V Methods	Calibrated simulation modeling (Option D) is a viable alternative that captures measure interaction and controls schema. Simulation modeling requires a wealth of building and operational characteristics for an accurate model. This is a viable option for buildings with many HVAC units and complex controls.	Metering would conform to Option B and include whole premise interval kW recording with some space temperatures.

C&I LIGHTING (NEW CONSTRUCTION) Summary of Recommended EM&V Methods

This category encompasses C&I lighting in new construction programs.		
Characteristic	Approach	Additional Comments
Program Tracking	Initial gross energy and demand savings and initial net impacts as applicable. Installed quantity and wattage, corresponding baseline, fixture location, annual operating hours, in-service rate, HVAC interaction factor.	Any additional parameters that could be useful for quality control or for evaluation design, such as sampling that are described in the EM&V plan. Fixture location is critical for evaluation.
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Complete inspection and count of all installed lighting with spot verification of lamp/ballast type. Characterize cooling/heating zones and equipment for assessment of HVAC interactive effects. Analysis with simple engineering models. Data collected from building Energy Management Systems (EMS) can also provide cost-effective information and should be included in EM&V plans if available.	Time-of-use lighting loggers on a broad sample of fixtures, typically stratified by savings, room type, and or operating schedule.
Alternative M&V Methods	Some C&I Lighting installations warrant very high, in-building sample rates, or advanced interval metering (Option B). Examples include private office spaces with high uncertainty/ diversity, hotel rooms/dormitories, and lighting systems with extensive controls. Interval kW meters are useful for recording lighting loads on circuits with many, individual occupancy sensors or dimming controls. Additional analysis with simple engineering models or 8,760 hour spreadsheets for rigorous assessment of coincident impacts could also be used.	More liberal use of lighting loggers. Alternatively, many commercial buildings isolate lighting systems in 277V power panels that can offer an excellent opportunity for interval metering on large amounts of lighting.

C&I LIGHTING (RETROFIT)
Summary of Recommended EM&V Methods

This category enc	his category encompasses C&I lighting in retrofit programs.							
Characteristic	Approach	Additional Comments						
Program Tracking	Initial gross energy and demand savings estimates and initial net impacts as applicable. Installed quantity and wattage, corresponding Baseline, fixture Location, annual operating hours, in- service rate, HVAC interaction factor.	Any additional parameters useful for quality control such as sampling. Fixture location is critical for evaluation.						
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Complete inspection and count of all installed lighting with spot verification of lamp/ballast type. Characterize cooling/heating zones and equipment for assessment of HVAC interactive effects. Analysis with simple engineering models. Data collected from building EMS may also provide cost-effective information and should be included in EM&V plans if available.	Time-of-use lighting loggers on a broad sample of fixtures, typically stratified by savings, room type, and/or operating schedule.						
Alternative M&V Methods	Some C&I lighting installations warrant very high, in- building sample rates or advanced interval metering (Option B). Examples include private office spaces with high uncertainty/diversity, hotel rooms/dormitories, and lighting systems with extensive controls. Interval kW meters have proven useful for recording load on lighting circuits with many, individual occupancy sensors or dimming controls. Analysis with simple engineering models or 8,760-hour spreadsheets for rigorous assessment of coincident impacts could also be used.	More liberal use of lighting loggers. Alternatively, many commercial buildings isolate lighting systems in 277V power panels that offer a prime opportunity for interval metering on large amounts of lighting.						

C&I MOTORS							
Summary of Recommended EM&V Methods							
This category is lir measure.	This category is limited to the installation of premium efficient motors in C&I facilities as a prescriptive measure.						
Characteristic	Approach	Additional Comments					
Program Tracking	Initial gross energy and demand savings and initial net impacts as applicable. Number of installed units, motor horsepower, ends Use and application (e.g. HVAC supply fan), Location, baseline and installed efficiency, Loading factor, and annual operating hours.	Any additional parameters useful for quality control and also for evaluation design such as sampling. Motor location is critical for evaluation.					
Recommended M&V Method	On-site inspections with partial measurements on a sample of program participants (Option A). Basic site visits with time-of-use metering offers the most defensible and cost-effective approach to constant- speed, prescriptive motors. Data collected from building EMS may also provide cost-effective information and should be included in EM&V plans if available.	Metering methods include time-of-use CT or "magnetic field" loggers and spot power measurements.					
Alternative M&V Methods	An enhanced alternative is to conduct on-site inspections with interval kW metering that track the electrical performance of the motor throughout its load range (Option B). This added rigor captures part-load efficiency effects that tend to be neglected in a Time-of Use (TOU) metered approach with SEMs.	Metering would be interval kW measurements for a reasonable duration to span a variety of motor loading situations.					

	C&I VARIABLE SPEED DRIVES Summary of Recommended EM&V Methods						
This category is limited to Variable Speed Drives (VSD) installations in C&I facilities as a prescriptive measure. Custom VSD applications are covered under C&I Custom Measures.							
Characteristic	Approach	Additional Comments					
Program Tracking	Initial gross energy and demand savings and initial net impacts as applicable. Number of installed units, motor horsepower, end- use and application (e.g. HVAC supply fan), Location, savings factors, and annual operating hours.						
Recommended M&V Method	On-site inspections with interval kW metering that tracks the electrical performance of the motor/VSD combination throughout its load range (Option B). Lesser rigor would not capture the variability intrinsic to a VSD application.	Metering would be interval kW measurements for a reasonable duration to span a variety of loading situations.					
Alternative M&V Methods	Calibrated simulation modeling (Option D) is an alternative that is effective at measure interaction and control schema. Simulation modeling requires a wealth of building and operational characteristics for an accurate model. This is a viable option for facilities with many VSDs on HVAC systems units.	Metering can be used to calibrate and validate the model. Such metering would mirror Option B perhaps with whole premise interval kW recording and some space temperatures.					

PROTOCOL E: PROTOCOLS FOR VERIFICATION AND ONGOING MODIFICATION OF DEEMED SAVINGS VALUES

<u>Protocol Scope</u>: These protocols include the recommended timing for updating deemed savings values, especially for technologies in which significant energy efficiency improvements occur periodically, such as lighting. These protocols also provide sources to consider when reviewing and modifying deemed savings, based on the findings from the literature review.

Customer Classes: All except self-directing customers

PROTOCOL E1: Revising and Updating Deemed Savings Values

- Each deemed measure or measure set in the Arkansas Technical Reference Manual (TRM) is subject to a review to establish a "Sunset Date" at a minimum of every three (3) years or sooner if conditions warrant. High Impact Measures will be reviewed annually. A High Impact Measure (HIM) is an energy efficiency measure that accounts for at least 5% of total portfolio gross kilowatt hour, kilowatt, and/or therm savings in one or more of the utility's energy efficiency programs.
- 2. Upon reviewing a Deemed Measure, the parties participating in the parties working collaboratively process may recommend that the Commission:
 - Extend the "Sunset Date" for the measure with its cost and savings unchanged;
 - Adopt revised cost and savings assumptions for the measure;
 - Reinstate the Deemed Measure, contingent on the outcome of future evaluations, M&V, engineering work, and/or market research;
 - Sunset the Deemed Measure and recommend that
 - A Simplified M&V Protocol will be developed for it;
 - It will be treated as a Custom M&V Measure; or
 - It will be eliminated.

PROTOCOL E2: Implementation of Code Changes

Codes and standards that affect equipment and systems sold and installed in Arkansas may be periodically updated. These codes and standards may include, but are not limited to, those listed below:

- 1. The International Energy Conservation Code, IECC
- 2. ASHRAE 90.1 Energy Standard for Buildings Except Low-Rise Residential Buildings
- 3. Arkansas Energy Code
- 4. The National Appliance Energy Conservation Act (NAECA) The purpose of these code and standard updates is to increase energy efficiency by codifying minimum equipment performance or baselines. This contrasts with DSM programs, which are intended to motivate participants to install systems and equipment that exceed prevailing codes or standards.
- 5. EISA the Energy Independence and Security Act of 2007

These code and standard changes affect and change the baseline efficiency or performance used in calculating savings for; (1) replace on burnout and (2) new construction projects as well as (3) 'outyear' baselines on dual-baseline early retirement projects.

It is recognized that there is a lag between the time when a code or standard comes into force and when the industry has made a substantial transition to the new code or standard. In recognition of this lag time, the TRM provides time to allow for the industry to adjust. Specifically, the TRM adoption date for a code or standard update is the beginning of the following program year if the effective date of the code or standard update is before July 1. For code or standard effective dates on or after July 1, the enforcement date is the beginning of the second program year.

Example 1:

A code has an effective date of May 1, 2022. Since this is before July 1, the code would be enforced in the 2023 TRM.

Example 2:

A code has an effective date of September 1, 2022. Since this is after July 1, the code would be enforced in the 2024 TRM.

If the need for a different implementation date than above is identified and can be supported, a proposed timeline and supporting research may be brought to the PWC for consideration and final decision.

PROTOCOL F: PROTOCOLS FOR THE DETERMINATION OF NET PROGRAM IMPACTS

<u>Protocol Scope</u>: These protocols, commonly used to determine net-to-gross ratio ("NTGR"), isolate free ridership and spillover rates. This protocol is designed to clarify the steps necessary to complete a "true-up" of program savings estimates ex-post to determine the Lost Contribution to Fixed Costs ("LCFC").

Customer Classes: All except self-directing customers

There are five approaches for determining NTGR:

- Self-Reporting Surveys: From participants and non-participants without independent verification;
- Enhanced Self-Reporting Surveys: Self-reporting surveys are combined with interviews and independent documentation review and analysis. They may also include analysis of market-based sales data;
- Econometric Methods: Statistical models are used to compare participant and non-participant energy and demand patterns. These models often include survey inputs and other non-program-related factors such as weather and energy costs (rates);
- Deemed Net-to-Gross evaluation of similar programs; and
- Stipulation of Net-to-Gross is periodically used when the expense of the NTGR analysis and the uncertainty of the results are considered significant barriers (NAPEE 2007). This protocol does not support the usage of stipulated values if they yield results that are uncertain and/or costly; instead, the protocol will support the usage of literature reviews.

Recommended Net-to-Gross

Net-to-Gross (NTG) analysis is an important component of program evaluation because it helps to quantify estimated savings attributable to a program. NTG estimation involves triangulating data from multiple sources and is incorporated into the process and impact evaluation tasks. Relevant data sources include surveys or in-depth interviews with customers, trade allies, and other key program stakeholders; data collection during on-site field inspections; billing records; and demand elasticity modeling using participating retailer sales data. In addition, NTG estimates may be further validated by comparing results from similar energy efficiency programs operating in other jurisdictions or examining a range of market data sources such as surveys, conference proceedings, and market assessments.

Estimating the impacts that are attributable to a program poses many challenges. First, the participants may not be able to accurately answer the necessary hypothetical question: *"What measures would you have installed anyway if you had not participated in the program?"* However, attribution is estimated not only for energy efficiency programs but also for other public policy initiatives/investments. While this is difficult and subject to some judgments and assumptions, NTG analyses can be performed on energy efficiency programs so that reasonable information can be provided to policymakers that will assist them in making good decisions about these programs. While this is not an exact science, the attribution methods proposed herein are meant to achieve that objective (i.e., provide information in context that will inform policymakers and assist in assessing historic and future investments in energy efficiency).

One approach to determine Net-to-Gross and demand elasticity is modeling using participating retailer sales data. In addition, NTG estimates may be further validated through a comparison of results from similar energy efficiency programs operating in other jurisdictions or examining a range of market data sources such as surveys, conference proceedings, and market assessments.

Methodology

This section presents general definitions and methods used as part of a sound NTG analysis. The discussion is purposefully kept at a high-level; additional details regarding the question sets and methods used to conduct the NTG analysis will be provided by the EM&V contractor. The NTG calculation will be applied retrospectively to the gross savings achieved during the program year being evaluated.

Derivation and Definition of Attribution

The methodology for assessing the energy savings attributable to a program is based on a NTGR that has two main components: free ridership and spillover.

Free ridership refers to program participants who received an incentive but would have installed the same efficiency measure on their own had the program not been offered. This includes partial free riders or customers who would have installed the measure anyway, but the program persuaded them to install more efficient equipment and/or more equipment. For the purposes of EM&V activities, participants who would have installed the equipment within one year will be considered full free riders; participants who would have installed the equipment later than one year will not be free riders (thus no partial free riders will be allowed) or customers who would have installed the measure anyway, but the program persuaded them to install more efficient equipment and/or more equipment.

Free ridership is the share of gross program savings that is the savings accounted for in program records and then adjusted for the naturally occurring adoption; the free ridership rate is based on actions participants "would have taken anyway" (i.e., actions that were not induced by the program). Each energy efficiency program covers a range of energy efficiency measures and is designed to move the overall market for energy efficiency forward. However, it is likely that some participants would have wanted to install some highefficiency measures (a subset of those installed under the program) even if they had not participated in the program or been influenced by the program in any way.

Spillover refers to energy savings that are due to the influence of a program but are not counted in program records. For example, a customer installs a set of efficiency measures in one of his/her buildings. These measures were promoted (and incented) under a DSM program. The customer then decides to install the same measures at another site, where there is no program incentive. In this case, the program influenced the market beyond the energy savings in this customer's first building. Spillover can be broken out into three categories:

- Participant Internal Spillover represents energy savings from additional measures implemented by participants at participating sites not included in the program but directly attributable to the influence of the program.
- Participant External Spillover represents energy savings from measures taken by participants at non-participating sites not included in the program but directly attributable to the influence of the program.
- Non-Participant Spillover represents energy savings from measures that were taken by non-participating customers but are directly attributable to the influence of the program.

Spillover adds to a program's measured savings by incorporating indirect (i.e., not incented) savings and effects that the program has had on the market above and beyond the directly incented or directly induced program measures.

Total spillover is a combination of several factors that may influence non-reported actions to be taken at the project site itself (inside spillover) or at other sites by the participating customer (outside spillover). Each type of spillover is meant to capture a different aspect of the energy savings caused by the program but not included in program records. Because a primary goal of most DSM programs is to transform markets through various strategies – including education, promotion, and increasing awareness of the benefits of energy efficiency – one would expect spillover to occur in the market.

The overall NTGR is meant to account for both the net savings at participating projects and spillover savings that result from the program (but are not included in program records). When the gross program savings multiplies the NTG ratio, the result is an estimate of energy savings that are attributable to the program (i.e., savings that would not have occurred without the program). The basic equation is:

NTG = 1 – *Free ridership* + *Spillover*

The underlying concept inherent in the application of the NTG formula is that only savings caused by the program should be included in the final net program savings estimate, but this estimate should include all savings caused by the program (i.e., the net program savings should account for free ridership and include spillover).

Estimating Free Ridership: Survey Techniques

Data to assess free ridership should be gathered through a series of survey questions from end-use customers and trade allies who participated in the program. Free ridership can be evaluated by asking direct questions, aimed at obtaining respondent estimates of the appropriate free ridership rate that should be applied to them, and by supporting, or influencing questions used to verify whether the direct responses are consistent with participants' views of the program's influence.

The direct free ridership questions ask respondents to estimate the share of measures that would have been incorporated at high efficiency if not for the program's technical and financial assistance. The questions also ask respondents to estimate the likelihood that they would have incorporated measures "of the same high level of efficiency" if not for the technical and financial assistance of the program. This flexibility in how respondents conceptualize and convey their views on free ridership will allow respondents to provide their most informed response, thus improving the accuracy of the free-ridership estimates.

The "program influence" questions clarify the role that program interventions (e.g., financial incentives and technical assistance) played in decision-making and provide supporting information on free ridership. Responses to these questions are analyzed for each respondent and used to identify whether the direct responses on free ridership are consistent with how each respondent rated the "influence" of the program.

These results will then be compared to free ridership estimates based on on-site inspections/audits and/or estimates derived from similar surveys completed in other jurisdictions.

Estimating Spillover: Survey Techniques

The basic method for assessing participant (inside and outside) spillover employs a three-step approach to determine the following:

- 1. Whether spillover exists at all. These are yes/no questions that ask, for example, whether the respondent incorporated energy efficiency measures or designs that were not recorded in program records. Questions relate to extra measures installed at the project site (inside spillover) and to measures installed in non-program projects (outside spillover).
- 2. The extent of the spillover. These questions request information about the number or share of projects/jobs/facilities into which additional measures or technologies are installed (these questions are not asked for inside spillover because the value is simply the one project on which the interviewee focuses).
- 3. The amount of savings per spillover project. These questions ask respondents to estimate the energy savings associated with the non-recorded measures relative to the savings from the participating project.

The outcome of these inquiries is an estimate of the share of those non-recorded savings attributed to the program's influence.

Timing of Data Collection for Free Ridership vs. Spillover

The evaluation team should, where possible, use a staggered data collection approach to collect information in support of the NTG analysis. The rationale for this approach is that free ridership and spillover data are best collected at different points in time. Free ridership data are most accurate when collected as closely as possible to the point in time when the participation decision is made. Doing so helps to ensure accurate participant recall of motivating factors and relative program influence while also producing other benefits, including near-term feedback for program staff regarding program influence effects. Conversely, spillover data are considered most accurate when collected sometime after the participating project has been completed. Allowing a reasonable amount of time to pass before asking participants about spillover effects ensures that participants have sufficient time to a) install the incented equipment, b) experience its operating parameters and costs, and c) then decide whether or not to install additional energy efficiency measures at the project site or some other location independent of any program support or financial incentive (Johnson et al., 2010).

Hierarchical Approaches for Determining When to Update NTG Values

One of the primary goals of this protocol is to provide a common framework with respect to the updating of NTG. It is critical that all utilities and their evaluators adopt this protocol to ensure a more thorough and consistent approach to net savings estimation and application, plus to direct evaluation resources to the areas of highest uncertainty. Note that the intent of this protocol is *not* to dictate the specifics (e.g., survey batteries or algorithms, market-based approaches, etc.) with which NTG is estimated but rather to help determine when an updated NTG estimate is needed and to ensure the evaluators provide a clear rationale for determining which NTG approach was used in their reporting.

A several-step decision tree should be used to help steer the timing for updating attribution analysis, which in the future should help evaluators determine when to collect current primary data and when prior research or Arkansas-specific secondary data might be reliable, with the final option being to rely on literature reviews. The framework is straightforward, whereby the updating of net savings follows the hierarchical approach (presented visually in Figure 5).

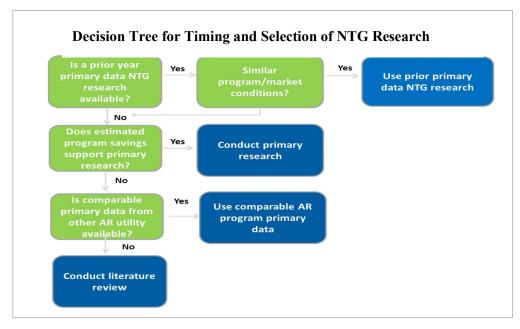
- 1. Has NTG research been conducted on the same program in a prior year? The first step to determining whether primary NTG research should be conducted in a given program year is to assess whether primary data collected for the same program are available from a prior year.4 If prior data are available, the evaluation contractor should determine whether the prior values are applicable in the current year. There are at least two overarching components of this decision, both of which could have significant impacts on the NTG ratio.5
 - a. First, determine if the current program is similar to the program in which the primary data was collected: Is the mix of measures the same? Is the contribution to savings for each measure similar? Are the incentive levels comparable? Is (are) the delivery method(s) similar?

⁴ The prior data do not necessarily need to be from the prior year, nor do they need to necessarily be from a single year (e.g., two years of data may also be used if both years are determined to meet these criteria and it is believed the additional data would provide more robust results).

⁵ The questions presented here are examples of questions to ask to assess comparability but are not meant to be exhaustive of the types of questions that should be addressed.

b. Second, determine if the market conditions are similar to the time period in which the prior data were collected. Has there been a substantial change in incremental cost for the efficient measures? Has there been a substantial change in the supply or availability of the efficient measures? Has there been a substantial change in the market share of efficient measures (i.e., the ratio of efficient measures sold to total comparable standard and efficiency measures)? Are the local or federal codes and standards the same as when the prior NTG values were estimated?

If the program and market conditions are comparable to the time period(s) in which the prior primary NTG research was conducted, these prior values can be considered applicable to the current program year.


- 2. If prior year primary data are not available or are determined not to be applicable due to changes to either program or market conditions. The evaluator should then determine whether or not the estimated savings from the program support primary research. In general, programs that represent at least 5-10 percent of the portfolio estimated savings in any given year should use NTG ratios that are estimated via primary data research for that specific program.⁶
- 3. If prior year data for the program are not available or applicable, and the program savings does not support primary data collection. The evaluation should then consider if NTG values derived from Arkansas-based comparable programs are available. A comparable program is defined as one that is similar in terms of program maturity, incentive levels, delivery mechanism, and measure types. Ideally, NTG values derived in the same program year would be used, but values from prior years may also be used if the comparability conditions are met.
- 4. For existing and new programs that do not meet any of the above specifications, then a literature review may be undertaken to locate a similar program (or programs) that has (or have) an established NTG value(s). This approach requires that the research be well documented, *and the selected NTG value be reviewed and agreed to as reasonable by the IEM*. A program may be identified as similar if it meets the following conditions:
 - a. **Program Similarity:** maturity, incentive levels, delivery mechanism, and measure types are similar and
 - b. **Market Similarity:** demographic, household, and business characteristics are similar (or as similar as possible) to Arkansas.

The IEM believes this hierarchical approach maximizes the use of valuable evaluation resources for programs that could most benefit from primary research and thus avoids unnecessarily repeating NTG research every year for the same programs. However, to prevent NTG values from being repeated for too many years and becoming potentially "stale," NTG values for programs that meet the contribution to savings threshold (#2 above) should be updated at least via primary research at least once during every three-year program cycle.

⁶ The IEM understands that smaller portfolios have limited budgets to support any primary research, these thresholds are estimates and may vary based on the overall portfolio budget. As discussed, final decisions regarding the use of primary vs. secondary data for NTG research should be made in consultation with the IEM as part of the evaluation planning process.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446

The IEM also understands that these decisions are open to some amount of interpretation and subjectivity (e.g., determining exactly what constitutes a substantial change in incremental cost, availability, or market share), so the steps along this decision tree should be presented and discussed as part of the annual evaluation plans. Thus decision can be made in consultation with the IEM. The EM&V planning process typically occurs in the summer months of the current program year. The IEM, however, is also available to discuss and agree upon final evaluation NTG approaches earlier in each program year.

Figure 5: Decision Tree for Timing and Selection of NTG Research Reporting Requirements

As noted above, while the intent of this protocol is *not* to dictate the specifics of all aspects of updating NTG estimates, the IEM believes this protocol can benefit evaluators and stakeholders alike by offering guidance to ensure the annual EM&V reports include robust reporting related to NTG research, methods, and findings. The goal is to ensure a degree of consistency and transparency in reporting. To help ensure consistency and transparency in reporting, the TRM recommends evaluators use the following minimum reporting protocol in their annual EM&V reports:

- 1. **Provide a summary of each program's NTG source:** A simple table will suffice to allow readers to clearly understand which programs received updated research versus those that relied on previous values, deemed values, or secondary research.
- 2. **Provide a clear rationale for using a previous estimate or literature review:** EM&V Reports should cite evidence that the delivery, incentives, measures, and program design were unchanged.
- 3. If unique NTG values are assigned to distinct program components, each component should be reported with gross and net savings contributions. Where different program components (e.g., measures) have different NTG values, evaluators should include each program component savings and the respective NTG values in the EM&V reports.
- 4. **Provide sampling confidence/precision.** Where statistical samples are drawn to estimate NTG, the sampling confidence and precision should be provided.
- 5. **Percentage of savings represented by the sample.** Where sampling is conducted based on contribution to savings (e.g., stratifying customer samples for custom programs or sampling for trade allies) the percentage of claimed program savings that the sample represents should be reported.

To avoid redundancy in reporting while providing sufficient methodological details, this protocol also recommends evaluators follow a general approach to NTG methods in their reports, including:

- 6. **Provide a high-level approach in the methods section.** A methods section should detail the overarching NTG approach across programs, especially if the same algorithms and logic are used across multiple programs. The goal of this is to avoid redundancy and duplicate reporting across the individual program sections.
- 7. **Provide program-specific logic in each section.** If individual program NTG research includes customized logic that is distinct from the overall approach included in the methods section, then the differences in approach should be reported within each individual program section.
- 8. Extensive detailed logic (questions, full battery of survey question) should be included in an appendix. Complete survey battery logic, flow-charts, and comprehensive details of the program NTG approach should be included in an appendix.

Application of Trade Ally Input

As noted in the PY2013 IEM Report, the PY2013 evaluations included a number of NTG estimates that – according to the program evaluation plan – were going to leverage trade ally input yet did not include trade ally responses or values (IEM PY2013 Annual Report, pg. xiii). In addition, many programs used trade ally input, yet the research provided limited evidence that the responses were representative of the programs for which the values were used.

It is imperative that the evaluations adhere to the approved work plans, and where they diverge, note the reasons for doing so and provide a strong argument as to why they were not followed (e.g., inadequate sample, poor response rates, etc.). This is particularly true for NTG methods, which can provide widely different estimates depending on the method and the respondent type.

Evaluators should include specific details regarding their planned integration of trade ally responses with customer survey responses for overall program attribution within their work plans. Evaluations using trade ally responses should be collected for programs where the trade allies play a key role in the installation decision,⁷ and the work plans should present a discussion of the representation from the trade ally respondents. This protocol does not require evaluators to follow a specific algorithm to integrate trade ally responses. Still, the viability and consistency of approaches will be addressed by the IEM during the work plan review.

⁷ The importance of the trade ally on the decision to install an energy efficient measure can be assessed through participant surveys.

PROTOCOL G: PROVISIONS FOR LARGE CUSTOMERS

Protocol Scope: This protocol provides more detailed information regarding projects installed by industrial and commercial customers, as well as the challenges associated with establishing a streamlined process for measurement and verification. These protocols rely on the established "best practices" for ensuring that large custom-project directors will maintain the necessary building records and measure data to provide robust EM&V activities and accurate measurement of energy savings. Often, these projects involve highly technical, on-site engineering analysis and verification, which should be performed efficiently and cost-effectively, with as little impact on the customer site as possible. It is important to note that these types of EM&V protocols address custom measures for which deemed savings values do not exist and for prescriptive/direct-install measures that are being used in a non-traditional manner.

For specific guidance on the Opt-Out/Self-Direct Option, please consult Section 11 of Conservation & Energy Efficiency (C&EE) Rules filed in Docket 10-101-R.

Customer Classes: Large C&I customers, except self-directing customers

The objectives of measure installation verification are to confirm that the:

- Measures were actually installed;
- Installation meets reasonable quality standards; and
- Measures are operating correctly and have the potential to generate the predicted savings.

The M&V should also verify and quantify actual savings at the site.

Installation verification should be conducted at all sites claiming energy or peak demand impacts where M&V is conducted. Installation verification activities may also be specified by the process or market effects protocols. Data collected from the building's EMS may provide cost-effective information and should be included in EM&V plans if available.

M&V projects conducted under this protocol shall adhere to the International Performance Measurement and Verification Protocol (IPMVP).

Development of Site-Specific M&V Plan: This protocol requires submitting an M&V plan for each field measurement project that documents the project procedures and rationale so that the results can be audited for accuracy and repeatability. Within the guidelines established by the IPMVP and these protocols, there is considerable latitude for the practitioner in developing a site-specific M&V plan and implementing the plan in the field. The M&V contractor shall evaluate the uncertainty in the desired data product and develop a site-specific M&V plan that manages the uncertainty most cost-effectively.

Initial estimates of engineering parameter uncertainties should be used to provide an estimate of the overall uncertainty in the savings calculations. Assumptions used to create initial estimates of parameter uncertainty values should be documented. The contribution of specific engineering parameters to the overall uncertainty in the savings calculations should be identified and used to guide the development of the M&V plan. The components of the M&V plan should:

- 1. **Identify Goals and Objectives.** The goals and objectives of the M&V project should be stated explicitly in the M&V plan.
- 2. Specify Site Characteristics. Site characteristics should be documented in the plan to help future users of the data understand the context of the monitored data. Depending on the nature of the measure, the site characteristics description should include:
 - a. General building configuration and envelope characteristics, such as building floor area, conditioned floor area, number of building floors, opaque wall area and U-value, window area, U-value and solar heat gain coefficient;
 - b. Building occupant information, such as number of occupants, occupancy schedule, building activities;
 - c. Internal loads, such as lighting power density, appliances, plug, and process loads;
 - d. Type and quantity and nominal efficiency of heating and cooling systems;
 - e. Important HVAC system control set points;
 - f. Changes in building occupancy or operation during the monitoring period may affect results; and
 - g. Description of the energy conservation measures at the site and their respective projected savings.
- **3.** Specify Data Products and Project Output. The planned output and results of the M&V activity should be specified. These data products should be referenced to the project's goals and include a specification of the data formats and engineering units.
- 4. Specify an M&V Option. The M&V option chosen for the project should be specified according to the IPMVP, consistent with the M&V protocol.
- 5. Specify Data Analysis Procedures and Algorithms. Engineering equations and stipulated values, as applicable, shall be identified and referenced within the M&V plan. Documentation supporting baseline assumptions shall be provided.
- 6. Specify Field Monitoring Data Points. The actual field measurements planned should be specified, including the sensor type, location, and engineering units.
- 7. Estimate Data Product Accuracy. All measurement systems have error, expressed in terms of the accuracy of the sensor and the recording device. The combined errors should be estimated using a propagation of error analysis, and the final data product should be accurately described.
- 8. Specify Verification and Quality Assurance Procedures. Data analysis procedures to identify invalid data and treatment of missing data and/or outliers must be provided.
- 9. Specify Recording and Data Exchange Formats. Data formats that are compliant with the data reporting protocol should be described.

(Modified and Expanded from CA Evaluators' Protocols 2006).

Additional Guidance for the IPMVP Protocols for Custom Projects

- 1. Measure existence should be verified through on-site inspections of facilities; measure make, and model number data shall be collected and compared to participant program records as applicable. Sampling may be employed at large facilities with numerous measures installed. As-built construction documents may be used to verify measures such as wall insulation where access is difficult or impossible. Spot measurements may be used to supplement visual inspections, such as solar transmission measurements and low-e coating detection instruments to verify the optical properties of windows and glazing systems.
- 2. Quality of Installations: Measure installation inspections shall note the quality of measure installation, including the level of workmanship employed by the installing contractor toward the measure installation and repairs to existing infrastructure affected by measure installation, and physical appearance and attractiveness of the measure in its installed condition. Installation quality guidelines developed by the program implementer shall be used to assess installation quality. If such guidelines are not available, then the guidelines shall be developed by the M&V contractor and approved by the Commission prior to conducting any verification activities. Installation quality shall be determined from the perspective of the customer.

(Source: Modified from CA Evaluators' Protocols 2006)

PROTOCOL H: TECHNICAL REFERENCE MANUAL (TRM)

Protocol Scope: To provide a clear and effective method for updating the Arkansas TRM

The Arkansas TRM is designed to be a dynamic document that will benefit from periodic updates developed by the PWC through an objective and thoughtful process. Defining a process that coordinates with the needs of users, evaluators, and the APSC is critical. It is critical to maintain a current TRM and consider any necessary updates to the document at least annually while recognizing the need for the users of the TRM and others to have some degree of certainty as to the TRM values upon which they can rely. Accordingly, this protocol describes the process for updating the TRM and coordinating this process with other critical activities. The annual update process set forth herein is the preferred course of action for updating the TRM.

TRM Update Process

The PWC should work cooperatively to identify any necessary revisions and to present any revisions to the Commission by August 31 each year. Examples of events that may precipitate the need to consider changes to the TRM may include but are not limited to:

- New measure additions. As new technologies become cost-effective, they will need to be characterized and evaluated for addition to the manual. In addition, a new program delivery design may result in new measure characterization.
- Existing measure updates. Updates may be required for a number of reasons. Examples include: the federal standard for efficiency of a measure has changed; the qualification criteria are altered; the measure cost falls; or a new evaluation provides a better value of an assumption for a variable. In addition, as programs mature, characterizations need to be updated, where changes in the market support changes in calculation assumptions. In such cases, these changes must be identified and appropriate changes to the TRM evaluated.
- **Retiring existing measures.** When the economics of a measure become such that it is no longer cost-effective, or the free rider rate is so high that it is not worth supporting the measure, or if the market has changed, then the measure should be evaluated for retirement.
- **High Impact Measure (HIM) reprioritization.** The prioritization of measures in terms of the HIM Tier classification is subject to change over time depending on the relative magnitude of reported energy savings resulting from actual program measure installations.

The flowchart in Figure 6 outlines the steps for regular TRM updates. The PWC will work cooperatively to identify any necessary revisions to the TRM. To ensure there is a clear differentiation between policy and technical matters, the PWC should establish regular meetings devoted to policy issues and resolving technical issues in which the PWC can discuss these matters and determine the any necessary revisions to the TRM for recommendations to the Commission for approval.

The process outlined in Figure 6 requires different roles to ensure effectiveness, sufficient review, and independence. The following is a list of key roles and responsibilities for this process. The list of roles and responsibilities is not comprehensive.

- Arkansas Public Service Commission (PSC or Commission)
 - Approves or denies any changes to the TRM, as well as this TRM process.
- Independent Evaluation Monitor (IEM)
 - Assures compliance with national Evaluation, Measurement, and Verification ("EM&V") "best practices," and Commission-approved protocols and the Arkansas TRM.
 - Manages timely updates and/or expansion of deemed savings and the TRM are pursued.
 - Oversees and coordinates the activities of the TRM Technical Manager.
 - Gives feedback on draft measure characterizations from other parties.
 - Coordinates with Staff on recommendation for TRM revision to the Commission.
 - Manages and updates TRM manuals (after Commission approval of changes).
 - Ensures proper use of TRM in the annual savings verification process.

• Program Administrators / Utilities / Program Implementers

- Identify need for new or revised measure characterization (usually due to program changes or program/market feedback).
- Communicates the need for new or revised measures to IEM.
- Give feedback on draft measure characterizations from other parties.
- Participate in formal discussions and dispute resolution.

• TRM Technical Manager

- Identifies the need for revised measure characterization (usually based on knowledge of local or other relevant evaluation studies).
- Reviews, research, and/or develops draft measure characterizations identified either by itself, EM&V Contractor, Utility, IEM or other party.
- Incorporates revisions to draft and final TRM documents.

• EM&V Contractors

- Identify the need for revised measure characterization (usually based on local evaluation studies it has conducted or managed).
- Research and/or prepare draft measure characterization for PWC consideration.
- Provide input/feedback on draft measure characterizations developed by other parties.
- Perform program evaluation, which includes statewide market assessment and baseline studies, savings impact studies (to measure the change in energy and /or demand use attributed to energy efficiency), and other energy efficiency program evaluation activities.
- Verify annual energy and capacity savings claims of each program and portfolio.
- Staff
 - Works with the PWC and IEM to identify any necessary changes to TRM.
 - Annually, by August 31, submits recommended revisions to the TRM to the Commission for its approval.
 - Provides supporting testimony for any recommended revisions.

• Other Parties to the Docket/ Interveners

- Identify the need for new or revised measure characterization (usually based on knowledge of local or other relevant evaluation studies).
- Give feedback on draft measure characterizations from other parties.
- Provide input and assist in identifying necessary revisions to the TRM.
- Provide testimony as needed addressing recommended revisions to the TRM.

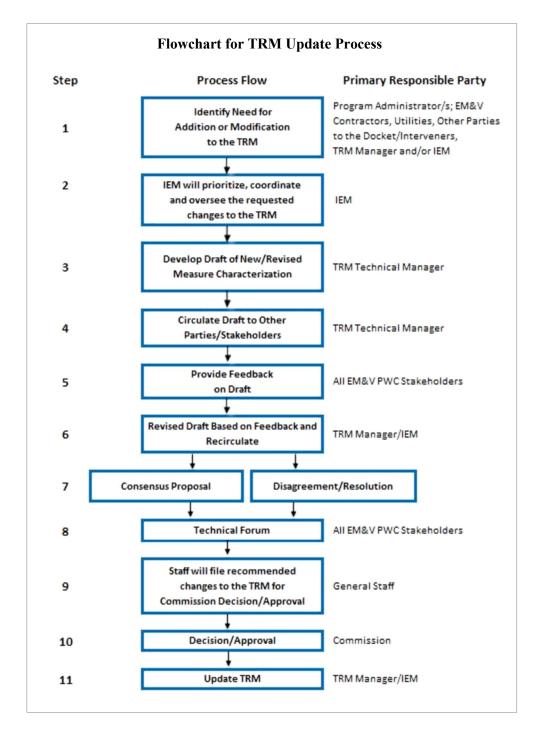


Figure 6: Flowchart for TRM Update Process

This process includes several potential stages of discussion and feedback on draft modifications to the TRM. The IEM will convene a Technical Forum for the PWC and other key stakeholders. This forum will identify the changes made to the TRM update and highlight the findings in the TRM update. It will also provide an opportunity for the Parties to ask questions and provide more detailed information regarding the scope of these changes.

Items included in the Technical Forum include:

- Present what changes were made to the TRM, and the reasons for the changes including a detailed discussion of the assumptions made and the basis for these findings;
- Review the timing for incorporating the changes;
- Discuss the implications of the changes on current and future programs;
- Identify other potential energy efficient technologies that should be considered for future TRM updates, based on our experiences in other jurisdictions; and
- Attempted resolution of any disagreements.

The Technical Forum may take the form of a one-day workshop and will include presentations from the EM&V contractors and the PWC in addition to the appropriate members of the IEM team.

Table 7 provides a recommended timeline for a coordinated process in line with the Commission deadlines.

Table 7: Verification and TRM Update Timeline

	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec	
Utility/Third Party Administrators	20-3 T	are Utility ncy Annua	5 m m m m m m m m m m m m m m m m m m m	mea character	v/updated asure ization and EM/TRM for	Participate in discussions of TRM Update; Review							
EM&V Contractors				and the second s	d Comment	00000000000000000000000000000000000000	ded changes	Review	Savings Verification/ EM&V Activities; Identify potential changs for				
		0	Review	EM&V Repor	ts and TRM	and the second sec	fts prepared	Final					
IEM/TRM Manager				Update Suggestions; Priortize (i.e., Frontier) Participate TRM consideration in future TR						/ Updates			
		5		commendatic ideration by 1		in Technica	I Forum for						
			Cons	ideration by t		TRM Udpates;							
General Staff/Other			-			-				1	1	1	
Parties to the Docket			-				ľ						
Commission	Approve TRM Changes				S								
	Jan	Feb	Mar	April	May	June	July	Aug	Sept	Oct	Nov	Dec	

Develop	 TRM Manager develops TRM section and forwards to IEM for review Other parties develop TRM section and forwards to IEM for review To maintain the schedule, the developer needs to forward draft to IEM as soon as it is ready for review
IEM Review	 IEM Reviews If okay, IEM forward to PWC for its review within three business days If not okay, IEM returns to TRM Manager or other parties, suggesting modifications and cycle restarts
PWC Review	 PWC provides a review and comments for each measure within three business days IEM compiles comments into a single document and forwards to TRM Manager for incorporation
Incorporate Measure	 Based on compiled comments on each measure or section, TRM Manager makes final edits to the measure or section and incorporates into live working TRM document TRM Manager maintains live TRM document and concordance document
Compile TRM	 TRM Manager compiles final TRM document and sends to IEM for review If IEM review is satisfactory, the IEM forwards TRM to PWC for review
PWC, IEM and TRM Manager meet at Technical Forum to go over TRM and discuss outstanding issues	• List of final action items compiled and assigned.
Finalize	 TRM Manager completes TRM and submits final draft to IEM If IEM approves, final draft is forwarded to PWC Staff completed final review and submits filing Commission makes a decision regarding TRM Version

Figure 7: Detailed Process for Updating TRM

PROTOCOL I: ROLE AND RESPONSIBILITIES OF THE INDEPENDENT EM&V MONITOR

The Commission's Order, dated December 10, 2010, establishing the Parties Working Collaboratively (PWC) to develop an EM&V protocol required that Staff file with the Commission, on or before June 1, 2011, suggested EM&V rule changes requiring the implementation of EM&V in accordance with National Action Plan for Energy Efficiency (NAPEE) "best practices." Commission-ordered Task (2)(i) on page 16 calls for the "establishment of an ongoing, annual process for a single, Independent EM&V Monitor (IEM) jointly funded by EE utilities, to report to the Commission regarding the validity of utility EM&V programs and annual filings and to suggest ongoing improvements to EM&V activities."

Staff, after reviewing input from the utilities and other stakeholders, will be responsible for the selection of the IEM. The Commission may resolve any disputes regarding the selection and retention of the IEM. The IEM's fees and expenses shall be paid by the utilities, and these costs will be included in EM&V budgets and cost-effectiveness calculations and recovered through each utility's EECR rider. Each utility shall pay its share of the costs based on a ratio of its number of customers to the total of customers for all utilities combined.

The fundamental role of the IEM is to be advisory in nature. In this role, the IEM is tasked with providing technical consultation services to participating Arkansas utilities, staff and interveners regarding strategies that will result in program compliance with EM&V rules or protocols approved by the Commission. In the interest of regulatory economy, the IEM will work with staff, utilities and other parties to each utility's EE docket to ensure that any EM&V advisory input reflects the informed consideration of all parties.

To ensure fully independent evaluations, the IEM will be engaged throughout the ongoing process of prioritizing evaluation activities and budgets, defining evaluation objectives and methodologies, reviewing evaluation results, and a range of other continuing and related EM&V activities. At the conclusion of such an annual process, the IEM will have the responsibility of issuing a report to the Commission regarding the integrity of utility EM&V programs and activities, and to suggest ongoing improvements to EM&V activities. After issuing the report and a reasonable comment period, the Commission may use the report as a basis to issue orders to the utilities.

The IEM will provide advisory assistance to the utilities, staff, and interveners in the following broad categories. This list is intended to be illustrative.

- Assure of compliance with national EM&V "best practices," Commission-approved protocols and the TRM;
- Verify credentials, performance, and independence of EM&V contractors and vendors;
- Assure adequacy of individual utility EM&V program budgets and the timing and prioritization of evaluation projects;
- Review utility energy efficiency program evaluation projects and EM&V methodologies, including PWC administered multi-utility evaluations;
- Recommend improvements to EM&V processes and procedures, including those related to custom program projects;
- Recommend improvements to the overall EM&V decision-making process and each utility's program design(s) and program implementation as it relates to EM&V;
- Assure timely updates and/or expansion of deemed savings and the TRM;
- Recommend updates to DSM potential and baseline studies, as well as recommend appropriate multi-utility PWC EM&V efforts; and
- Recommend additional financial (or other) resources that may be necessary for the effective functioning of the IEM or EM&V stakeholder process.

PROTOCOL J: RESIDENTIAL BEHAVIOR-BASED PROGRAM EVALUATION

This protocol was developed to reflect the evolving nature of energy efficiency programs now offered by utilities and third-party administrators in Arkansas. This protocol specifically addresses the prescribed approach to conducting evaluations for residential behavior-based programs. It was developed based upon the recommended best practices described in the State and Local Energy Efficiency (SEE) Action Network (published by Lawrence Berkeley National Laboratory (LBNL) report, "*Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based Energy Efficiency Programs: Issues and Recommendations*"⁸ and updated guidance from The Uniform Methods Project (UMP): Residential Behavior Protocol, 2017.⁹ This protocol cites the sections in which these specifications are referenced.

Behavior-based energy efficiency programs use strategies intended to affect consumer energy use behaviors to achieve energy and/or peak demand savings. Program types typically include real-time or delayed feedback about their energy use; supplying energy efficiency education and tips; rewarding households for reducing their energy use; comparing households to their peers; and establishing games, tournaments, and competitions (UMP, 2017). Such programs may rely on changes to consumers' *habitual* behaviors (e.g., turning off lights) or *one-time* behaviors (e.g., changing thermostat settings). In addition, these programs may target purchasing behaviors (e.g., purchases of energy-efficient products or services), often in combination with other programs (e.g., rebate programs or direct install programs) and often target multiple end-uses. Savings from behavior programs usually result in a small percentage of energy use, typically less than five percent (UMP, 2017).

Key Definitions

Conducting evaluations of these programs first requires defining the following key terms. These definitions are cited from the SEE Action/LBNL Report 2012:

- Treatment Group: the group of households that are assigned to receive the treatment;
- Control Group: the group of households that are assigned not to receive the program;
- **Experimental Design:** a method of controlling the way that a program is designed and evaluated to observe outcomes and infer whether the outcomes are caused by the program;
- **Randomized Controlled Trial (RCT):** a type of experimental design; a method of program evaluation in which households in a given population are randomly assigned into two groups a treatment group and a control group and the outcomes for these two groups are compared, resulting in unbiased program savings estimates; and
- Quasi-Experimental Design: a method of program evaluation in which a treatment group and a control group are defined, but households are not randomly assigned to these two groups, resulting in program savings estimates that may be biased (LBNL Report 2012, p. 14).

The protocol begins with a detailed discussion regarding the recommended evaluation design, then continues with a discussion regarding model specification, and concludes with other evaluation issues. The protocol also includes models that are appropriate for evaluators to use when determining the likely effects of pre- and post-activity of behavior-based programs.

⁸ State and Local Energy Efficiency Action Network. 2012. *Evaluation, Measurement, and Verification (EM&V) of Residential Behavior-Based Energy Efficiency Programs: Issues and Recommendations*. Prepared by A. Todd, E. Stuart, S. Schiller, and C. Goldman, Lawrence Berkeley National Laboratory. <u>http://behavioranalytics.lbl.gov</u>.

⁹ Department of Energy, Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures. Chapter 17: Residential Behavior Protocol. September, 2017. https://energy.gov/eere/about-us/ump-protocols

Evaluation Design

Since behavior-based programs may not always specify or track particular actions that result in energy savings, the recommended approach to determine the effects of behavior-based efficiency programs is a randomized controlled trial (RCT), which will result in the most robust, unbiased program savings impact estimates. As an alternative, the protocols also allow for two quasi-experimental designs.

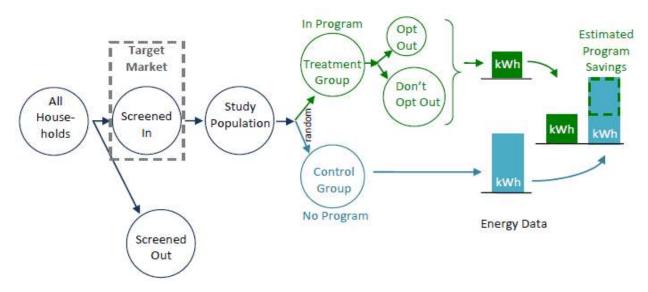
The Randomized Controlled Trial (RCT) Method

In an RCT, first, a study population is defined, and then the study population is *randomly assigned* to either the treatment or control group. Energy use data must be collected for all households in the treatment and control group in order to estimate energy savings. The estimate of energy savings is then calculated by comparing the difference between the measured energy usage of the treatment households relative to the energy usage of the control households. Measured energy use typically comes from utility meter data, often in monthly increments from either the treatment or control group.

Random assignment means that each household in the study population is randomly assigned to either the control group or the treatment group based on a random probability, as opposed to being assigned to one group or the other based on some characteristic of the household (e.g., location, energy use, or willingness to sign up for the program).

Randomization eliminates pre-existing differences that are both observable differences (e.g., energy use or floor area of households) and differences that are typically unobservable (e.g., attitudes regarding energy conservation, number of occupants, expected future energy use, and occupant age) unless surveyed. Thus, because of this random assignment, an RCT control group is an ideal comparison group: it is statistically identical to the treatment group in that there are no pre-existing differences between the two groups, which means that selection bias is eliminated (LBNL Report, p. 24).

RCTs also eliminate the free rider concern during the study period because the treatment and control groups each contain the same number of free riders through the process of random assignment to the treatment or control groups. When the two groups are compared, the energy savings from the free riders in the control group cancel out the energy savings from the free riders in the treatment group. Furthermore, *participant spillover* is also automatically captured by an RCT design for energy use that is measured within a household. The resulting estimate of program energy savings, therefore, is an unbiased estimate of the net savings caused by the program (the true program savings) (LBNL Report, p. 24).


There are three basic program enrollment options for behavior-based programs: opt-out of *any* design, which does not restrict or withhold participation in the program to any household. Program designs with *any* of these enrollment options may use RCTs for evaluation, and thus, each enrollment option can yield unbiased savings estimates. With any of the enrollment options, the random assignment of households into treatment and control groups is the crucial step. All data from the randomization point forward should be analyzed to ensure internal validity.

When implementing RCTs with any of these three enrollment options, the first step is to define the target market and the eligible households that are included in the study population (i.e., the screening criteria). Often, this screening process restricts the study population to specific geographies (zip codes or service areas), specific demographics (hard-to-reach, medical needs, elderly), specific customer characteristics (high energy users, dual fuel use, length of customer bill history), and specific data requirements (one year of historical energy data available, census information is available, smart meter installed). Another way to reduce the study population is to randomly select households from a larger population to form a smaller subset of households (LBNL Report 2012, p. 26).

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:09 AM: Recvd 8/30/2024 9:50:37,AM: Docket 13-002-U-Doc. 747 Arkansas TRM Version 10.0 Vol. 1

Randomized Controlled Trials with Opt-Out Enrollment

In some cases, program administrators may want to enroll households using an opt-out method (see Figure 8). For this type of program, an RCT with an opt-out or *screened out*; the remaining households are placed in the study population and are randomly assigned to either the control group or the treatment group. The treatment group receives the program (but are allowed to opt-out), and the control group does not receive the program (and are not allowed to opt-in). Energy use data must be collected for all of the households in the control and treatment group, whether they opt-out, in order to estimate energy savings without bias.

Figure 8: Randomized Controlled Trials with Opt-Out Enrollment¹⁰

Randomized Controlled Trials with Opt-In Enrollment

For some types of behavior-based efficiency programs, an opt-in to the program is desirable. The households that opt-in define the group of households in the study population, which are then randomly assigned to either the control group or the treatment group. It is important that a randomly selected group of opt-in households is placed in the control group in order to have unbiased results: if households that opt-in are compared with a control group of households that did not opt-in, then these two groups contain very different types of households, which can result in selection bias and potentially invalid results.

There are two methods for randomizing the opt-in households into a treatment and control group: *recruit-and-delay* and *recruit-and-deny*. In the *recruit-and-delay* (also called *waitlist*) *design*, households that opt-in are told that the program is currently oversubscribed, and some households may randomly be placed on a waitlist for a short time. In a *recruit-and-deny design*, households that opt-in are told that the program is oversubscribed and so some households will be randomly chosen to participate. Energy use data must be collected for all households in the treatment and control group to estimate energy savings.

¹⁰ SEE/LBNL, page 14.

Randomized Controlled Trials with Encouragement Design

Often, program implementers want to allow households to opt-in and do not want to deny or delay enrollment in the program. In this case, an *RCT with encouragement design* (sometimes called RED) yields an unbiased estimate and does not exclude *anyone* from participating in the program. However, a RED design typically involves a much larger sample size requirement to produce robust estimates of savings which is an encouragement into the program while others may not. Households in the control group are not encouraged to participate. However, because the program is open to anyone, some of these households may learn of the program and decide to opt-in. In order to have an unbiased estimate of energy savings, energy use data must be collected for all households in the treatment and control group for both the households that opted into the program as well as those that did not.

Quasi-Experimental Methods

As discussed in the SEE/LBNL report, most quasi-experimental methods introduce potential bias into the savings estimates. For this reason, the Arkansas Behavior-Based Evaluation Protocol strongly recommends using one of the RCT approaches wherever possible.

There are situations, however, where the use of an RCT can be extremely difficult. Thus, as a secondary approach, these protocols do allow the use of quasi-experimental methods if necessary. The recommended approaches are identified in the SEE/LBNL report as the Regression Discontinuity Method and the Variation in Adoption (With a Test of Assumptions) methods. Rather than *recruit-and-delay* or *recruit-and-delay*, which can be difficult to implement, both methods allow customers to opt-in at the time of interest.

Regression Discontinuity Method

Among the quasi-experimental methods, regression requires knowledge of econometric models and often requires field conditions that allow the evaluator to utilize this analytic technique and is therefore not always practical. This method works if the eligibility requirement for households to participate in a program is a cutoff value of a characteristic that varies within the population. For example, households at or above a cutoff energy consumption value of 900 kWh per month might be eligible to participate in a behavior-based efficiency program. In comparison, those below 900 kWh are ineligible. In this case, households that are just below 900 kWh per month are probably very similar to households that are just above 900 kWh per month. Thus, the idea is to use a group of households right below the usage cutoff level as the control group. This method assumes that the program impact is constant over all ranges of the eligibility requirement variable that are used in the estimation (e.g., that the impact is the same for households at all levels of energy usage). However, there are more complex methods that can be used if this assumption is not true. In addition, regression discontinuity relies on the eligibility requirement being strictly enforced.

Variation in Adoption (With a Test of Assumptions)

Under the Variation in Adoption method, also commonly referred to as a "rolling" control group design, the control group is made up of participants who sign up towards the end (or even following) the post-treatment period of interest.¹¹ The assumption is that the customers in the control group are similar to those in the treatment group, the primary difference being that they signed up at a slightly later period than the treatment group, thus their pre-participation period represents participant post-period usage in absence of the program (i.e., they serve as a control group up until the point that they enter the program, at which point they would be dropped from the treatment group).

¹¹ This approach has been used by evaluators for many years for identifying a control group for opt-in programs such as low-income or residential audit programs.

For example, assume that the year of interest for analysis is 2011, examining savings for all customers who signed up for the program (opted in) in 2011. The analysis would then need billing data for 2010-2012 to ensure that every participant has at least 12 months pre- and post- billing data. The control group, however, would comprise customers who signed up in late 2012 (e.g., the last quarter) and early 2013 (e.g., the first and possibly second quarters). Any pre-program months for 2010-2012 for the control group can then be used in the billing analysis to represent the potential change from pre- to post-treatment of the participant group.

To implement this approach, the evaluation also needs to test the assumption that the only difference is the timing of enrollment rather than any observable household characteristics. This assumption can be tested through a duration analysis or propensity score matching, as discussed in the SEE/LBNL document.

Recommended Approach for Analysis Model Specification

This section presents several important issues regarding the model specification.

Length of Study and Baseline Period

Relatively longer treatment periods and pre-treatment data periods are likely to lead to greater precision of the estimated program impact. Although savings can be estimated using energy use data from the treatment period (UMP, 2017), it is important to collect at least one full year of historical energy use data in order to have baseline data for each month and season since patterns of household energy use often vary by season. Thus, it is strongly advised that at least one full year (the twelve continuous months immediately prior to the program start date) of historical energy use data be available for each customer — both for those in the treatment group and in the control group — so that the baseline energy use reflects seasonal effects. Energy use measurements should be collected directly from the utility, not from the program implementer (UMP 2017).

Model Specification

Panel vs. aggregated data. Analysis models can either use energy data that are aggregated across time for both the pre- and post-program periods (e.g., average energy use for the period prior to and during the program year) or panel data (also called time series of cross-sectional data), which typically are data from multiple time points for pre- and post-program periods (e.g., monthly energy use for each month of the pre- and post-program periods). While the protocols allow for both, the panel data models are preferred because they result in a more precise estimate of energy savings, including seasonal variation of savings.

Comparison of energy usage vs. change in energy usage. Analysis models can be specified to estimate program savings by either comparing the energy saved by the treatment group (i.e., the change in energy use prior to and during the program) to the energy saved by the control group or comparing the energy use of the treatment group to the control group during the program. The protocols recommend the difference between the change (i.e., the "difference of the differences") because it will typically be more precise because the amount that the change in energy usage between households often varies less than the amount that energy usage differs between households.

Equivalency Check

Because the degree to which a savings estimate is unbiased depends upon how similar the control group is to the treatment group, an important part of the analysis validates that the two groups are equivalent. The correct procedure is to determine if the households in the treatment group have characteristics that are statistically similar to those in the control group. At a minimum, the evaluators should compare the monthly or yearly pre-program energy use and the distribution of pre-program energy use between the treatment and control group. Other possible covariates, which may or may not be available, include geographic location, dwelling characteristics (e.g., square footage), demographic characteristics (e.g., age, income), and psychographic characteristics (e.g., opinions) and any other baseline covariates for which data is available. This should be done whether the program is designed as an RCT or a quasi-experiment.

Statistical Significance and Sample Sizes

Evaluations of behavioral programs in Arkansas should follow the SEE/LBNL report recommendation that a null hypothesis (i.e., a required threshold such as the level or percentage of energy savings needed for the benefits of the program to be considered cost-effective) should be established. The program savings estimate should be considered acceptable (and the null hypothesis should be rejected) if the estimate is statistically significant at the 5% level or lower. This threshold, which is greater (more precise) than that typically used by energy program evaluation (which is usually a confidence/precision level of 90/10), is the acceptable standard in behavioral sciences research.

Consistent with Uniform Methods Project (UMP) 2017, the analysis sample should be large enough to detect the minimum hypothesized program effect with desired probability. UMP recommends using a statistical power analysis to determine the minimum number of subjects required and the number of subjects to be assigned to the treatment and control groups.¹²

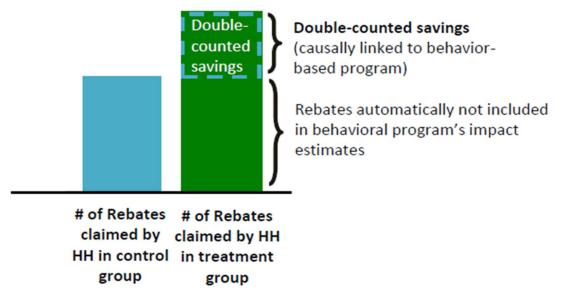
Note that evaluations of programs with smaller sample sizes (e.g., only hundreds of participants) should also attempt to assess savings at this significance level by using additional control variables as needed but may report and claim savings at 90% significance.

Treatment of Households that Opt-Out or Close Accounts

Households that opt-out should never be excluded from the dataset; they should be included as part of the treatment group to avoid selection bias. In order to calculate an unbiased estimate of the program's effect on those who did not opt-out, the program impact should be estimated by including the opt-out households as part of the treatment group.

Households that close their accounts — including any changes in tenants at the same site — should be dropped entirely from the evaluation dataset (i.e., every data point for these households should be deleted) for both the control and treatment groups. However, there may be situations in which dropping households that closed accounts leads to biased estimates (e.g., younger and more mobile populations may be more responsive to behavior-based programs and may also be more likely to close accounts). In this case, if the analysis is done correctly with an indication that a specific sub-group of the population closed accounts, it may be better to include households that closed accounts.

Additional Evaluation Issues


Controlling for Double Counting

For programs where efficiency measures can be tracked to a specific household (e.g., installation of insulation by a contractor), and sample sizes between the treatment and control group are equal, doublecounted savings (as shown in Figure 9 and in LBNL Report 2012, p.44). For cases where the sample sizes between the treatment and control group are not equal, the double counting should be quantified based on the difference in per-participant savings from non-behavior programs.

Because the program and evaluation design of the behavior-based program utilizes a treatment and control group, we can infer that the double-counted savings were caused by the behavior-based program. While the SEE/LBNL report stops short of recommending how to handle the assignment of savings to the program, the report does suggest that it is reasonable to assign at least half of the double-counted savings to the behavior-based efficiency program. The protocols agree with this assessment and approve of assigning half of the double-counted savings to each program. Note, however, that this also means appropriately dividing the program costs and adjusting the lifetime savings for the measures assigned to the behavioral program (i.e., greater than one year). Due to the potential complexity of dividing the incremental double-counted

¹² See UMP Section 4.2 for more explanation.

savings, however, the protocols also approve assigning all the incremental double-counted savings to the other (non-behavioral) program, as has been the standard evaluation practice at the time of development of these protocols.

Figure 9: Example of Double-Counted Savings

Persistence of Program Savings

A control group should be maintained for every year in which program impacts are estimated, and the program is evaluated *ex post* every year initially and every few years after the program has been running for several years. UMP includes recommended methods to estimate savings after the behavioral program ends in order to understand whether the savings persist and for how long, as well as the rate of savings decay.

Applying Savings to a New Population of Participants in Future Years

The protocols do not allow for directly applying program savings impact estimates from an initial program to an expanded program with a new population in a future year. Consistent with the SEE/LBNL report, the IEM recommends creating and maintaining a new control and treatment group and evaluating the expanded program using the similar methods described in those protocols.

Reporting Requirements

Consistent with UMP, evaluation reports should carefully document the research design, data collection and processing steps, analysis methods, and plan for calculating savings estimates. The evaluation reports of behavioral programs shall contain, at a minimum, the following:

- The program implementation and the hypothesized effects of the behavioral intervention;
- The experimental design, including the procedures for randomly assigning subjects to the treatment or control group;
- The sample design and sampling process, including relevant sample sizes of the treatment and control groups, and number of months (or alternative time periods) pre/post treatment period that were included;
- Results of the equivalency check between the treatment and control groups;
- Processes for data collection and preparation for analysis, including all data cleaning steps;

- Analysis methods, including the application of statistical or econometric models and key assumptions used to identify savings, including tests of those key identification assumptions. Model specification should be identified, including the name of the model consistent with UMP or SEE Action/LBNL (per section below);
- Results of savings estimate, including point estimates of savings, standard errors, and full results of regressions used to estimate savings, including:
 - A 95% confidence interval for the monthly or annual savings
 - For each parameter, the estimated coefficient and standard error
 - Adjusted R2
 - Tests of joint significance of the model (e.g., F Test)
 - Regression diagnostics (e.g., tests for multicollinearity, heteroscedasticity)
- Assessment of quantity and treatment of overlap with other rebate programs (i.e., double counting); and
- Any surveys or other primary data collection that were conducted to assess how the savings were achieved.

Every detail does not have to be included in the body of the report; many of the data collection and savings estimation details can be provided in a technical appendix.

Summary of Acceptable Model Specifications for Behavior-Based Programs

In the past several years, substantial evolution in model specification for residential behavior-based programs has occurred and this learning has been synthesized into the 2017 update of the residential behavioral UMP. Therefore, evaluators should review the section on Analysis Methods in detail and use a model consistent with UMP.

Generally, for RCT designs, UMP recommends using panel regression analysis to calculate savings, with the dependent variable as the energy use of the subject per unit of time. The primary independent variable is an indicator of whether the subject was in the treatment or control group and may be interacting with other independent variables. Fixed effects for subject characteristics or time may also be included. The models included in UMP are:

- A) Simple Differences Regression Model of Energy Use. This model employs only data for the treatment period and includes an independent variable indicating whether the subject received treatment.
- B) Simple Differences Regression Estimate of Heterogeneous Savings Impacts. This model expands on Model A and obtains an estimate of savings from the treatment as a function of exogenous variables such as preprogram energy use, temperature, home floor space, or pretreatment efficiency program participation.
- C) Simple Differences Regression Estimate of Savings During Each Time Period. This model also expands on Model A and obtains an estimate of savings from the treatment during each period by interacting the treatment indicator with indicator variables for the time periods.
- D) Simple Differences Regression Model with Pre-Treatment Energy Consumption. This model builds on Model A but is conditional on a subject average pre-treatment energy consumption and uses time-period fixed effects. This is often referred to as "post-only," as it includes pre-treatment energy consumption as an independent variable in the regression to account for differences between subjects in their post-treatment consumption. Variations on this model include indicator variables for each period, additional pre-treatment consumption control variables and other control variables.
- E) Difference-in-Differences Regression Model of Energy Use. This model employs pre-treatment data in the regression model and uses indicators for whether the time period is during treatment period and includes subject fixed effects.
- F) D-in-D Estimate of Savings for Each Time Period. This is similar to Model D, but it includes timeperiod fixed effects.

Please see UMP (2017) for models that may be used for RED and persistence designs. For quasi-experimental designs, please see Action/LBNL Report 2012.

PROTOCOL K: LEAKAGE

Definition of Leakage

Cross-territory sales, or "leakage," occurs when program-incented efficient products are installed outside of the funding utility's service territory. When this occurs, the energy and demand savings from the incentivized product are not being realized within the territory that paid for, and is claiming savings for, the unit. Upstream programs are particularly vulnerable to leakage as the rebate recipient is unknown and sales are not restricted based on utility.

While variations of leakage may occur in other forms (e.g., utility customers purchasing and installing a rebated product in a vacation home that sits outside the sponsoring service territory), these protocols are intended for upstream programs where the purchaser of the product is unknown. While the predominant upstream program is currently for efficient lighting, future upstream programs should also rely on these protocols. Other program types should handle cross-service territory installations through other means, such as telephone or on-site verification.

Program administrators should make concerted efforts to mitigate leakage. The most common effort is to limit participation of retail storefronts that are on the perimeter of the service territory.

Protocol K provides a brief synopsis regarding the Commission Orders regarding leakage and focuses on the methodologies for determining leakage, as required by the Commission Orders in Docket No. 07-082-TF, Order No. 63, and Docket No. 07-085-TF, Order No. 85.¹³

Policy Regarding Leakage

The Commission determined that leaked energy efficiency measures do not generate Lost Contribution to Fixed Costs (LCFC), therefore limits LCFC collection to proven lost fixed costs.

The Commission, therefore, determined that energy efficiency program leakage should be incorporated into LCFC calculations as determined by the Orders, based upon a leakage calculation methodology that was approved in the 2013 TRM update process after further refinement by the PWC, and implemented through the 2014 annual EECR adjustment.

With regard to net benefits and utility energy efficiency performance incentives, the Commission determined that the state, and ratepayers as a whole, benefit from energy saved and reduced demand. Sponsoring utility ratepayers have an interest in the continuation and refinement of a program to speed up the implementation of emerging technologies, such as LED lighting.

Based on aggregate ratepayer and statewide benefits, the need to address emerging lighting and other technologies, the need to promote efficient program administration, and the orderly implementation of Commission guidance, the Commission determined that leakage should not be subtracted from energy efficiency goal achievement and net benefits calculations or, absent a change in circumstances and further proceedings, for future years.

¹³ For more information on the policy implications of leakage see Arkansas Public Service Commission Docket No. 07-082-TF, Order No. 63, and Docket No. 07-085-TF, Order No. 85.

Research Recommendations to Address Leakage

Since retailers perceive customer contact information and sales data as highly confidential, estimating leakage is an inherently difficult task. Protocol K acknowledges this difficulty, with the understanding that any research approach will have at least some threats to validity. Protocol K therefore recommends three research approaches, and further encourages evaluators to attempt as many of these as possible so as to minimize bias that may be introduced from any individual approach.¹⁴

However, if all three methods are not possible due to budget limitations, a retailer refuses to participate, or other possible reasons, the methods are presented in order of preference from what is believed to be lowest to highest threats to validity. Combinations of approaches may also be used. For example, intercepts might be used only at the high-volume stores to determine leakage, and geo-mapping could be used for the lower-volume retailers where conducting intercepts might be cost-prohibitive.

Research Method 1: Customer Intercept Surveys

Intercept surveys are the preferred data collection approach, as they gather primary data on specifically which customers purchase products at participating stores. Customer intercept surveys rely on in-store interviews with customers purchasing efficient products at participating stores. Likely leakage is then estimated by the number of products purchased for use outside of the service territory, divided by the total number of purchased products.

If using this approach, the evaluator needs to survey a geographically representative sample of participant retailers and focus on retailers selling high volumes of incented bulbs. This ensures that the findings can be applied to the entirety of stores and distributed bulbs.

In recent years, retailers have been increasingly hesitant to allow evaluators to survey customers inside their stores. Many have restricted these types of activities entirely. Residential program implementers and utilities can add significant value by gaining permission for these surveys and should actively encourage participant retailers to permit third-party evaluators in their stores.

Potential bias from intercepts can occur in a number of ways. For example, retailer permission may be inconsistent; retailers may limit intercepts to certain days (e.g., during promotions); weekend vs. weekday customer traffic may differ. Protocol K therefore recommends that evaluators minimize this bias by attempting to include as many participating retailers as possible, not limiting the days of the intercepts to in-store promotions and including a mix of weekend and weekdays.

One acknowledged challenge of intercepts is to include a mix of all retailer types, particularly for retailers that sell few program products, as it may not be cost-effective to have an in-store surveyor on-site conducting the interviews. Protocol K recommends two potential strategies to deal with potential retailer/distribution channel bias:

• Include sales of efficient and standard efficiency products. The evaluator may expand the survey to include a mix of efficient vs. standard efficiency products. For example, intercept surveys can include purchasers of program-incented products (e.g., CFLs), non-program high-efficiency products, and standard efficiency products (e.g., incandescent or Energy Independence and Security Act (EISA) compliant halogen bulbs). All survey participants can be asked about the intended location of the production installation, which can be used to derive the leakage estimate. This assumes that the leakage of non-program efficient products and standard efficiency products

¹⁴ The IEM acknowledges that the approaches presented here do not represent an exhaustive list of all options. Alternative methods, or modifications to these methods, are allowed under Protocol K with prior approval from the IEM team.

matches that of program-incented products. Because of this assumption, this method is only recommended for retailers where the purchase of inefficient products is so limited as to make the intercept approach cost prohibitive.

• *Weighting results to the population of retailers.* Another approach, consistent with the recommendation from the UMP, is to weight the results from the sample population to the universe of participating retailers. ^(M) For those distribution channels that have not received intercept surveys, the evaluator should assess how the leakage might differ and then apply extrapolated values.

As an example, if intercepts are only conducted at retailers that represent 75 percent of all program sales, the determined leakage rate should reflect 75 percent of sales. For the remaining 25 percent of sales, the leakage rate can be adjusted based on factors such as proximity to the service territory border, distribution channel (e.g., groceries might have lower leakage rates than large home improvement stores), geo-mapping (as described below), and any other factors that can be determined from the actual in-store intercepts that were conducted.

Finally, in-store intercepts offer another important advantage because they can be used to determine the percentage of incented products that have been sold to commercial customers. Commercial customers typically use lighting products for more hours per day than residential customers and typically have higher peak coincidence factors, thus leading to higher savings. Savings from incented products sold to the sponsoring program administrator's commercial customers can be claimed towards both program goals and cost-recovery.

Research Method 2: Geo-Mapping and General Population Surveys

The evaluations of the PY2012 upstream lighting programs relied on an approach of "geo-mapping," whereby each program storefront is assigned a leakage score based on the percentage of the sponsoring utilities customers (vs. other utility customers) that lie within a 60-minute drive time from that store. The 60-minute drive time radius, however, was adjusted for stores where an alternative storefront in the same distribution channel existed (i.e., with the assumption that customers will drive to the closest grocery, large home improvement, discount store, or any other store type within the same distribution channel).

The primary strength of this approach is that each storefront is assigned its own leakage score, and the overall estimate of leakage represents a weighted average of program storefronts. The primary limitation of this approach, however, is that the drive time/shopping estimates will all be based on evaluator judgment in the absence of any actual primary data collection.

Protocol K specifies that the geo-mapping approach will be supplemented with telephone surveys to test the assumptions regarding drive time. The specific steps would include:

- 1. *Overlay utility service areas and population data from the U.S. Census Bureau*. This step matches the utility to all population points within its service area based on the census data in the highest publicly available resolution.
- 2. Estimate the customer base for each retail store by calculating store territory based on drive time to the nearest store. In this step, territories for each program storefront are developed, looking at various increments of drive time. The drive times between adjacent storefront distribution channels are split in the middle between the two stores. So, if two grocery stores are located 30 minutes apart, the analysis should assume that customers drive to the closest grocery store (i.e., no more than 15 minutes for those customers that sit in between the two stores).
- 3. *Conduct a telephone survey to identify customer-shopping patterns for incented products*. A randomized survey of residential customers in the sponsoring utility service territory, as well as the neighboring utility service territories, should be conducted to test the drive-time assumptions in the leakage model. For example, the survey can identify customers that purchased an energy efficient product in the last year (program or non-program), and where they purchased the product from, as well as where they normally shop for the product. A survey such as this can leverage a general

population survey for the sponsoring utility customers, supplementing the sample with a Random Digit Dial (RDD) sample of neighboring utility customers.

- 4. Allocate subsidies for each store to the population within the store territory using actual sales data. Each store would then be assigned a leakage score, with some percentage of the incented product assigned to the sponsoring utility customers and some percentage assumed to have been sold to neighboring utility customers.
- 5. Calculate leakage by summarizing the subsidies received by the population in and out of the utility service areas for each store territory. Combine all the stores to determine an overall leakage rate for the sponsoring utility. This leakage rate should also include error bounds that account for potential errors in the mapping of the census data to the service territory.

Research Method 3: Opt-In Surveys

Using "opt-in" surveys is also an option to determine leakage. This approach offers several advantages: it can reach all participating storefronts and all customers purchasing incented products, it can be relatively inexpensive to implement, it can provide cross-customer class (commercial) sales, and it will provide a leakage estimate based on actual customer data. The limitation of this approach, however, is that as "opt-in" survey response rates are typically extremely low, and thus may lead to significant non-response bias.

Should this method be implemented, Protocol K specifies:

- *The evaluation should try to include all incented products from all program storefronts*. Ideally, each product would have a label/note about how to participate in the study.
- *Customers should receive an incentive for their participation in the study.* This may include a combination of individual incentives (e.g., a \$10 gift card for the next time they shop at that participating retailer) as well as entry into a drawing for a larger, higher profile prize.
- *The survey provides a multimodal approach.* These can include sending in a reply card, taking the survey on-line, or sending customer contact information via other means, such as texting (allowing a call back from the research firm).
- **Derive stratified leakage rates that are then weighted to the population.** Similar to the intercept and geo-mapping methods, the leakage estimate should attempt to differentiate leakage rates by distribution channel or storefront, then weighting the findings up to the total population.

Reporting Leakage

As a way to provide additional transparency for calculating leakage, the evaluator should include a leakage rate for each participant storefront, along with the method for determining the leakage rate. In addition, details regarding the assumptions should be included (e.g., if the geo-mapping method is used, the average drive time should be included).

Relationship of Leakage with Net-to-Gross

Each method presented here is specific to estimating leakage (i.e., the percentage of incented product sold to non-sponsoring utility customers). The survey questions, particularly in the intercept and opt-in surveys approaches, should be brief and focus on customer name, contact information, and expected location of installation (address, self-reported utility, customer sector, and – if applicable – business type). These questions are completely distinct from net-to-gross (NTG) analysis, where the survey questions are likely to examine customer intentions, price-elasticity, and other potential parameters to estimate the likelihood that the customer would have purchased the incented product in the absence of the program rebate. The estimated leakage values and NTG values, therefore, should be incorporated as two separate adjustments to the savings estimates as required by the relevant Commission Orders.

The IEM does acknowledge, however, that NTG approaches may provide an NTG estimate that includes sales to customers outside the sponsoring utility service territory. This is appropriate for the calculation of energy savings for the assessment of energy efficiency goal achievement and net benefits calculations, as

leakage is not deducted from these estimates, and therefore, the net savings should be based on utility and non-utility customers.

For purposes of the LCFC, however, leakage is incorporated, and thus the NTG ratio should be based on sponsoring-utility customers. This would require calculating two separate NTG ratios, one for sponsoring utility customers and one for non-sponsoring utility customers. While this is worthy of consideration, the calculation of dual NTG ratios will introduce additional uncertainty and thus should be subject to budget and timeline considerations, as well as prior approval from the IEM Team. In absence of a sponsoring utility specific NTG ratio, the overall NTG ratio (i.e., that which incorporates all purchasers) should be used for both the energy efficiency goal achievement and the LCFC calculations.

PROTOCOL L: NON-ENERGY BENEFITS

After reviewing the guidance from the Parties Working Collaboratively, the Arkansas Public Service Commission (Commission) issued Order No. 30 on December 10, 2015, which provides further direction and guidance regarding the inclusion of Non-Energy Benefits ("NEBs") in the Technical Reference Forum (p. 21 of 21):

"The Commission therefore directs that the IEM be requested to recommend an approach for quantification of deferred equipment replacement NEBs in individual instances when they are material and quantifiable. Approval of deferred customer equipment NEBs, however, is conditioned as follows: The Commission directs that each recommended approach for customer deferred equipment replacement NEB quantification shall be included within the annual TRM update filing, and that its reasonableness shall be addressed in testimony by the IEM and/or Staff, and may be addressed by other parties, so that the Commission may approve or disapprove such proposed NEB quantifications.

The Commission therefore orders and directs that the following three categories of NEBs be consistently and transparently accounted for in all applications of the TRC test as it is applied to measures, programs, and portfolios:

- benefits of electricity, natural gas, and liquid propane energy savings (i.e., other fuels);
- benefits of public water and wastewater savings; and
- benefits of avoided and deferred equipment replacement costs as conditioned herein."

Therefore, this protocol describes the recommended approach to quantify the NEBs in these three categories. This recommended approach has been developed jointly by the IEM and the PWC for each category as directed by the Commission.

PROTOCOL L1: Non-Energy Benefits for Electricity, Natural Gas, and Liquid Propane ("Other fuels")

With many energy efficiency measures installed under Arkansas DSM programs, energy savings are often achieved for more than one fuel type. For example, installing duct sealing or insulation in a building not only reduces natural gas or propane consumption but also reduces electricity consumption through either reduced fan use or – for homes with air-conditioning – reduced cooling load. Similarly, low-flow showerheads and faucet aerators provided to customers through gas energy efficiency programs will provide electric savings for homes that use electric water heating.

The benefits of these "other fuel" savings may not be fully captured in current utility cost-effectiveness tests. Protocol L1 describes a consistent methodology for utilities to quantify and document the benefits resulting from reduced energy use of the other fuel-type they do not provide in their program service territory, specifically when this benefit is not already being claimed by another investor-owned utility.¹⁵

¹⁵ For example, in joint programs the dual fuel benefits would normally be claimed by both utilities, but in programs run by a single fuel utility that led to secondary fuel savings these additional benefits can be claimed as NEBs.

The other fuel NEB is calculated using the following equation:

Benefit = Energy savings X Avoided other fuel costs

Where:

Benefit = avoided economic costs per unit of energy savings of the other fuel savings over the lifetime of the measure, expressed in current dollars

Energy savings = annual number of other fuel kWh, therms, or gallons of propane saved per measure installed 16

Avoided costs = present value of the avoided cost per unit energy savings, which is a function of the measure specifications (including measure life) and the avoided cost data provided by other utilities for regulated fuels (e.g., electricity and natural gas) or the market price of unregulated fuels (e.g., liquid propane)

Where applicable, the most current Arkansas TRM should be used as the basis for calculating the secondary fuel electric and natural gas energy savings. Applicable TRM algorithms should also be used to calculate liquid propane savings, with appropriate adjustments for the efficiency of energy conversion at the end-use. When this information is not included in the TRM, other fuel savings should be calculated through the use of EM&V. In addition, EM&V should be used to determine the number of applicable homes or business facilities that qualify for other fuel benefits (e.g., the number of homes with electric water heat that have been provided water-saving devices by a gas utility), and the quantity should be adjusted by any applicable in-service rates, net-to-gross ratios, or other adjustments applied to the primary fuel savings.

The avoided costs for other fuel electric, and gas benefits should be calculated as follows:

- When available, avoided cost forecasts should be collected from the associated electric or gas utility (i.e., the utility providing the other fuel benefit) where the participating home or businesses are located.¹⁷ The avoided costs calculated for the other fuel benefit should be identical to the avoided costs being utilized by those same utilities for their own DSM benefit-cost calculations for each program year.
- For municipal utilities or cooperatives, where avoided cost data may be more difficult to collect, the program administrator can use the avoided cost forecasts from the nearest investor-owned utility.
- The discount rates used to calculate the NPV of the avoided cost benefits should be the same as those used for the corresponding cost-effectiveness tests (e.g., when calculating the TRC test, the

(1)

¹⁶ Note that for simplicity this Protocol focuses on other fuel energy savings, rather than demand savings. To the extent a measure also produces secondary demand savings (e.g., insulation could lead to summer peak cooling load reductions), these benefits can also be quantified and claimed through the avoided cost assumptions. Similarly, some avoided costs are calculated using different load shapes, so the associated measure avoided cost – which may be higher for certain measures that also lead to peak demand reductions – can alternatively be used.

¹⁷ Where not available, avoided cost forecasts from another Arkansas utility should be used as a proxy (e.g., if EAI avoided cost forecasts are not publicly-available, SWEPCO avoided costs can be used). As discussed at the June 7, 2016 PWC meeting, however, many of the program administrator utilities have been able to access avoided cost data from the associated investor-owned utility in which the other fuel benefits are occurring.

NPV of the other fuel benefits should be discounted at the same rate as the primary fuel avoided cost benefits).

For propane systems, savings should be calculated per TRM Version 9.2 Volume 2, as if the equipment were natural gas fueled. To convert natural gas savings to propane savings, use the following conversion factor:

Propane savings (gallons) = Therm savings X 1.1

(2)

This protocol establishes the base price of propane at \$2.28/gallon in 2019, based on inflation adjusted 2018 weekly data of retail propane rates in Arkansas from the U.S. Energy Information Administration (EIA).^{18,19} When a measure saves propane, both electric and gas utilities shall use the deemed avoided cost of \$2.28 per gallon in 2019 and escalate it per annum (using a common assumption for the rate of inflation) for the lifetime of the installed measure. This base value and rate of escalation should be updated at the beginning of each three-year program cycle, using the latest EIA data available at the time of the update.

PROTOCOL L2: Non-Energy Benefits for Water Savings

Many measures that utilities install to reduce energy consumption also reduce water consumption. In Order 30, the PSC directed the IEM to develop an algorithm for calculating the value of avoided water and wastewater consumption due to measures installed under electric and gas utility efficiency programs (p. 20 of 21).

The actual quantities of avoided water consumption (in gallons) associated with specific measures are provided in Volume 2 of this TRM for each relevant measure. Protocol L.2 uses the marginal retail water rates and average water sewage rates (both on per-gallon basis) to residential and commercial consumers to calculate a statewide, average proxy value for all avoided water usage benefits to be considered under Order No. 30.²⁰

Marginal retail water rates charged to end-use customers vary considerably across regions of Arkansas, across water utilities, and across customer classes. For example, many water utilities sell water to their customers in price tiers based on individual usage (e.g., the first 1,000 gallons are sold at one rate, and then the next 1,000 gallons are sold at another rate, sometimes the price charged for the second 1,000 gallons is higher than the first 1,000 gallons, and sometimes lower). Residential customers are also charged different rates than commercial, industrial, and agricultural (irrigation) customers, and in many jurisdictions, customers located inside city limits are charged differently than customers outside city limits. Finally, these rates vary from utility to utility.

¹⁸ From U.S. Energy Information Agency,

https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=W EPLLPA PRS SAR DPG&f=W

¹⁹ Based on a forecasted inflation rate for 2019 of 2.44%, as estimated by Statista, <u>https://www.statista.com/statistics/244983/projected-inflation-rate-in-the-united-states/</u> (accessed on August 6, 2018).

²⁰ These marginal water rates ideally should account for the avoided electricity costs of water treatment, pumping, and other uses of electricity to supply potable water and dispose of wastewater.

To calculate the marginal cost of water, the IEM collected water and sewage rates from six jurisdictions around the state in 2022, the inflation adjusted averages of which are shown in the table below.^{21,22}

Customer Class	Marginal Water Rates (per 1,000 gallons)	Marginal Sewage Rates (per 1,000 gallons)	Total Combined Marginal Water Rates (per 1,000 gallons)
Residential	\$3.97	\$5.59	\$9.57
Commercial	\$3.61	\$5.70	\$9.31
Average Cost \$/Gallon	\$3.79	\$5.65	\$9.44

Table 8: Avoided Water Costs in Arkansas for use in PY2023

(Source: Based on primary research conducted by the IEM of six Arkansas water districts)

Table 9: Avoided	d Water Costs in	Arkansas for	use in PY2024
------------------	------------------	--------------	---------------

Customer Class	Marginal Water Rates (per 1,000 gallons)	Marginal Sewage Rates (per 1,000 gallons)	Total Combined Marginal Water Rates (per 1,000 gallons)
Residential	\$4.09	\$5.75	\$9.84
Commercial	\$3.71	\$5.86	\$9.57
Average Cost \$/Gallon	\$3.90	\$5.81	\$9.71

Protocol L.2 takes the marginal cost per gallon of both potable water and sewage and adds them together to estimate the base cost. Utilities shall use the marginal rate of \$0.00957/gallon for programs that serve the residential sector, \$0.00931/gallon for programs that serve the commercial or industrial sector, and \$0.00944/gallon for programs where the sector is unknown as the base cost per gallon of water in 2023, and in 2024 shall use \$0.00984/gallon for programs that serve the residential sector, \$0.00957/gallon for programs that serve the commercial or industrial sector, \$0.00957/gallon for programs that serve the commercial or programs where the sector is unknown as the base cost per gallon of water. If the real discount rate is used for the cost-effectiveness analysis, then the water rates shown above can be held constant over the lifetime of the measure. Water savings allowed in this protocol only includes direct savings from measures as calculated in the TRM, or as a custom measure that is subject to EM&V.

²¹ Bentonville, Rogers, Jonesboro, Central Arkansas, Searcy, and Springdale.

²² Based on forecasted inflation rates for 2022 and 2023 of 7.68% and 2.86%, respectively, as estimated by Statista <u>https://www.statista.com/statistics/244983/projected-inflation-rate-in-the-united-states/</u> (accessed on July 18, 2022).

The avoided cost resulting from the water savings is calculated as follows:

Benefit = Water savings X Avoided water costs

Where:

Benefit = avoided cost of water and waste-water savings (per gallon) over the lifetime of the measure, in current dollars

Water savings = annual number of gallons saved, per measure

Avoided water costs = present value of the avoided costs resulting from the savings, which is a function of the measure life and prevailing water rates

The discount rates to calculate the net present value of the avoided water cost benefits should be the same as those used for the corresponding cost-effectiveness tests (e.g., when calculating the TRC test, the NPV of the water benefits should be discounted at the same rate as the primary fuel avoided cost benefits). In addition, as with the other fuel savings, the quantity of measures for which water savings are claimed should be adjusted by any applicable in-service rates, NTG ratios, or other adjustments applied to the primary fuel savings.

PROTOCOL L3: Non-Energy Benefits of Avoided and Deferred Equipment Replacement Costs

New energy efficient technologies offered through Arkansas investor-owned utility efficiency programs may also have longer estimated useful lives ("EULs") than the technologies they are replacing, meaning they will require fewer replacements over the efficient equipment lifetime (i.e., avoiding purchase of baseline efficiency equipment, and thus being referred to as avoided replacement costs). In addition, some measures may qualify for early replacement ("ER"), and thus have replacement costs that differ from a replace-on-burnout ("ROB") scenario since they shift the replacement cycle by accelerating the purchase of new equipment (i.e., deferring the replacement of baseline equipment, thus being referred to as deferred replacement costs).

Order No. 30 directs the utilities to calculate the benefits of avoided and deferred equipment replacement to the customer over time, and to include these costs in utility program cost-effectiveness tests.²³ The avoided and deferred equipment costs are derived from the material and installation labor costs required to provide continued end-use service beyond the Baseline EUL (or RUL in the case of ER measures) through the end of the EUL of the efficient measure. This component of the Baseline Cost is often not accounted for in the TRC calculation of incremental measure cost. It is therefore classified as a "Non-Energy Benefit" (NEB) because its inclusion has the effect of decreasing the incremental measure cost, thereby increasing the TRC net benefit of the program or measure.

Note that all inputs for the NEBs calculations, where applicable, should be identical to the utility assumptions. This would include the incremental costs (i.e., the first cost of the efficient and standard measures), as well as assumptions regarding discount and inflation rates.

(3)

²³ The scope of this discussion is limited to the incremental installed (capital plus labor) cost of energy efficiency program measures, considering the assumed cost of baseline equipment replacements that would occur if the measure were not installed. Other categories of NEBs, such as avoided operation and maintenance (O&M) expenditures, avoided repair costs, and avoided equipment refurbishment are not included here due to the challenge in quantifying these factors, and the directive from the PSC that the NEBs should be limited to the three NEB categories listed above.

The avoided and deferred replacement costs, summarized hereafter as the Deferred Replacement Cost, can be summarized mathematically as:

$$Deferred Baseline Replacement Cost = NPV(RDR,ML,RLCC_t)$$

(4)

$$NPV = Net Present Value function \sum_{t=1}^{ML} \frac{RLCC_t}{(1+RDR)^t}$$

(5)

Where:

RDR = Real Discount Rate = (NDR-ER)/(ER+1)

NDR = nominal discount rate

ER = baseline installed cost annual escalation rate

ML = Program Measure Life (EUL)

 $RLCC_t$ = Real Levelized Carrying Charge in year t (annualized baseline installed cost at RDR)²⁴

The general formula allows for the baseline installed cost to vary over the life of the program measure, so that each future replacement could be a different product or technology. These adjustments to the cost assumptions (i.e., incorporating the avoided and deferred replacement costs) make the avoided costs consistent with the TRM energy savings calculations.

Reporting Requirements

The evaluation reports shall contain, at a minimum, the following:

- 1. Information on the underlying calculations and inputs, similar to the reporting of primary fuel savings. These details may be provided in an appendix or in separate spreadsheets.
- 2. Table 10 represents the information, formatted as a checklist, which is required to be included in the annual report narrative describing how the NEBs were calculated and included in the costbenefit analysis for each program and each measure. A separate measure category (rows) by NEB category (columns) table shall be included for each program. As illustrated, reports should separate avoided and deferred replacement costs. Each measure would only appear one time per program table (e.g., if a program had 3,000 participants but only 100 qualified for propane savings, the measure would show up once in the table and the column for propane would be checked).
- 3. As an option, the annual reports and/or evaluation reports may provide the NEBs units (e.g., kWh, therms, gallons) and monetized benefits at the program and measure level, using the format in Table 10 (which is the same format as the NEBs tab in the SARP workbook, but provided at the measure level). As with the required check box table, each measure would only appear one time per program table.

²⁴ In ER applications, the RLCC is equal to zero before the time of normal replacement of the existing equipment.

Program	Electricity Savings*	Gas Savings**	Propane Savings	Water Reduction	Avoided Replacement Cost	Deferred Replacement Cost
Measure 1	\checkmark		~	\checkmark	\checkmark	
Measure 2					\checkmark	
Measure 3	\checkmark		\checkmark			\checkmark
*For gas utili **For electric	ties c utilities	1	1	1	1	1

Table 10: Required Reporting Table for NEBs

 Table 11: Optional Reporting Table for NEBs

Measure	TRM Measure	Project Type	Program	Electric Savings	NPV ES	Natural Gas Savings	NPV NGS	LPG Savings	NPV LPGS	Water/ WW Savings	NPV Water/ WWS	NPV ARP	NPV DRP	Total NPV
Name	Numb er	(NR/ ER/ RF)		(Annu al kWh)	(\$)	(Annua l Therm)	(\$)	(Annu al gallons)	(\$)	(Annual gallons)	(\$)	(\$)	(\$)	(\$)
														\$ -
														\$ -
														\$ -
														\$ -
			Portfol io Total	0	\$ -	0	\$ -	0	\$ -	0	\$ -	\$ -	\$ -	\$ -

References

- Barnes, H., Jordan, G. 2006. *EERE Guide for Managing General Program Evaluation Studies*, prepared for the Office of Energy Efficiency and Renewable Energy (EERE), Office of Planning, Budget and Analysis for Lockheed Martin Aspen Lead Contractor with Sandia National Laboratories, February.
- *Energy Efficiency Program Evaluation: A Guide to the Guides*, 2007. National Action Plan for Energy Efficiency and the Department of Energy's Office of Energy Efficiency & Renewable Energy, Washington D.C.
- International Performance Measurement & Verification Protocol: Concepts and Options for Determining Energy and Water Savings, 2010 Volume I, prepared by the International Performance Measurement& Verification Protocol Committee, <u>www.evo-world.org</u>.
- Johnson, K., Cook. G. 2009. Program Evaluation for Missouri Gas Energy's Water Heater Evaluation, Missouri Gas Energy, Kansas City, MO. January.
 - _____, Cook, G., Merurice, J. 2010. *Calculating Net-to-Gross* Maryland Program Evaluation, Navigant, Chicago, IL. April. EmPOWER Maryland Program Evaluation, Navigant, Chicago, IL. April. EmPOWER Maryland Program Evaluation, Navigant, Chicago, IL. April.
 - ______, Cook, G., Cooney, K. 2011. *Process Evaluation for the Partners in Energy Savings (PIES) Program Collaborative, Volumes 1&2,* Atmos Energy, Colorado Natural Gas, Eastern Colorado Utilities & SourceGas, Lakewood, CO. March.
 - , & Eisenberg, G. 2011. New York State Process Evaluation Protocols: A Supplement to the New York State Guidelines Update 2011, New York State Evaluation Advisory Group, New York. November pp. 21-22.
- National Action Plan for Energy Efficiency (NAPEE) Action Plan and Resource Guides for Process, Impact Evaluations and Understanding Cost-Effectiveness of Energy Efficiency Programs, 2007. DOE/EPA, Washington, D.C. November.
- Northeast Energy Efficiency Partnerships, 2010. Regional EM&V Methods and Savings Assumptions Guidelines, the Regional Evaluation, Measurement & Verification Forum, May.
- Reynolds, D., Johnson, K., & Cullen, G. 2009 *Best practices for developing cost-effective evaluation, measurement, and verification plans: lessons learned from 12 northern California municipal utilities,* European Council for an Energy Efficient Europe (ECEEE), France
- Research Into Action, 2010. Research Supporting an Update of BPA's Measurement and Verification Protocols, prepared for Bonneville Power Administration, April.
- Schiller, S. 2007. Model Energy Efficiency Program Impact Evaluation Guide, National Action Plan for Energy Efficiency,

_____, 2010. Energy Efficiency Evaluation, Measurement & Verification: Issues & Opportunities, Presentation to the Regulatory Assistance Project Training Advocates' Training,

TechMarket Works Team, 2006. California Energy Efficiency Evaluation Protocols: Technical, Methodological, and Reporting Requirements for Evaluation Professionals, prepared for the California Public Utilities Commission. April.

Glossary

This glossary is drawn from three evaluation-related reference documents:

- 2007 IPMVP
- 2004 California Evaluation Framework
- 2006 DOE EERE Guide for Managing General Program Evaluation Studies

Additionality: A criterion that says avoided emissions should only be recognized for project activities or programs that would not have "happened anyway." While there is general agreement that additionality is important, its meaning and application remain subject to interpretation.

Adjustments: For M&V analyses, factors that modify baseline energy or demand values account for independent variable values (conditions) in the reporting period. For M&V analyses, factors that modify baseline energy or demand values account for independent variable values (conditions) in the reporting period.

Allowances: Allowances represent the amount of a pollutant that a source is permitted to emit during a specified time in the future under a cap-and-trade program. Allowances are often confused with credits earned in the context of project-based or offset programs, in which sources trade with other facilities to attain compliance with a conventional regulatory requirement. Cap- and-trade program basics are discussed on the following EPA website: https://www.epa.gov/emissions-trading-resources/clearing-air-facts-about-capping-and-trading-emissions

Analysis of covariance (ANCOVA): A type of regression model also referred to as a "fixed effects" model. A type of regression model also referred to as a "fixed effects" model.

Assessment Boundary: The boundary within which all the primary effects and significant secondary effects associated with a project are evaluated. The boundary within which all the primary effects and significant secondary effects associated with a project are evaluated.

Baseline: Conditions, including energy consumption and related emissions, which would have occurred without implementation of the subject project or program. Baseline conditions are sometimes referred to as "business-as-usual" conditions. Baselines are defined as either project-specific baselines or performance standard baselines.

Baseline period: The period of time selected as representative of facility operations before the energy efficiency activity takes place.

Bias: The extent to which a measurement, sampling, or analytic method systematically underestimates or overestimates a value.

California Measurement Advisory Council (CALMAC): An informal committee made up of representatives from the California utilities, state agencies, and other interested parties. CALMAC provides a forum for the development, implementation, presentation, discussion, and review of regional and statewide market assessment and evaluation studies for California energy efficiency programs conducted by member organizations.

Coincident Demand: The metered demand of a device, circuit, or building that occurs at the same time as the peak demand of a utility's system load or at the same time as some other peak of interest, such as building or facility peak demand. This should be expressed in a way that indicates the peak of interest (e.g., "demand coincident with the utility system peak"). Diversity factor is defined as the ratio of the sum of the demands of a group of users to their coincident maximum demand. Therefore, diversity factors are always equal to one or greater.

Comparison Group: A group of consumers who did not participate in the evaluated program during the program year and who share as many characteristics as possible with the participant group.

Confidence: An indication of how close a value is to the true value of the quantity in question. Confidence is the likelihood that the evaluation has captured the true impacts of the program within a certain range of values (i.e., precision). An indication of how close a value is to the true value of the quantity in question.

Cost-effectiveness: An indicator of the relative performance or economic attractiveness of any energy efficiency investment or practice. The present value of the estimated benefits produced by an energy efficiency program is compared to the estimated total costs to determine if the proposed investment or measure is desirable from a variety of perspectives (e.g., whether the estimated benefits exceed the estimated costs from a societal perspective).

Database for Energy-Efficient Resources (DEER): The California database designed to provide welldocumented estimates of energy and peak demand savings values, measure costs, and effective useful life.

Deemed Savings: An estimate of an energy savings or energy demand savings outcome (gross savings) for a single unit of an installed energy efficiency measure. This estimate (a) has been developed from data sources and analytical methods that are widely accepted for the measure and purpose and (b) is applicable to the situation being evaluated.

Demand: The time rate of energy flow. Demand usually refers to electric power measured in kW (equals kWh/h) but can also refer to natural gas, usually as Btu/hr., kBtu/hr., therms/day, etc.

Dependent Variable: One that changes and is affected by the independent variables. Examples include weather, energy usage, housing type or location.

Direct Emissions: Direct emissions are changes in emissions at the site (controlled by the project sponsor or owner) where the project takes place. Direct emissions are the source of avoided emissions for thermal energy efficiency measures (e.g., avoided emissions from burning natural gas in a water heater).

Effective Useful Life (EUL): An estimate of the median number of years that the efficiency measures installed under a program are still in place and operable.

Energy Efficiency Measures: Installation of equipment, subsystems or systems, or modification of equipment, subsystems, systems, or operations on the customer side of the meter, for the purpose of reducing energy and/or demand (and, hence, energy and/or demand costs) at a comparable level of service. "Energy conservation" is a term that has also been used, but it has the connotation of doing without a service in order to save energy rather than using less energy to perform the same function.

Engineering Model: Engineering equations used to calculate energy usage and savings. These models are usually based on a quantitative description of physical processes that transform delivered energy into useful work such as heat, lighting, or motor drive. In practice, these models may be reduced to simple equations in spreadsheets that calculate energy usage or savings as a function of measurable attributes of customers, facilities, or equipment (e.g., lighting use = watts × hours of use). (e.g., lighting use = watts × hours of use). (e.g., lighting use = watts × hours of use).

Error: Deviation of measurements from the true value.

Evaluation Effectiveness: The performance of studies and activities aimed at determining the effects of a program; any of a wide range of assessment activities associated with understanding or documenting program performance, assessing program or program-related markets and market operations; any of a wide range of evaluative efforts including assessing program-induced changes in energy efficiency markets, levels of demand or energy savings, and program cost-effectiveness.

Ex ante Savings Estimate: Forecasted savings used for program and portfolio planning purposes (from the Latin for "beforehand").

Ex post Evaluation Estimated Savings: Savings estimates reported by an evaluator after the energy impact evaluation has been completed (from the Latin for "from something done afterward").

Free Driver: A non-participant who has adopted a particular efficiency measure or practice as a result of the evaluated program.

Free Rider: One who *would have* implemented the program measure or practice in the absence of the program. Free riders can be total, partial, or deferred.

Gross Savings: The change in energy consumption and/or demand that results directly from programrelated actions taken by participants in an efficiency program, regardless of why they participated.

Impact Evaluation: An evaluation of the program-specific, directly induced changes (e.g., energy and/or demand usage) attributable to an energy efficiency program.

Independent Variables: The stand-alone factors that affect energy use and demand, but cannot be controlled (e.g., weather, occupancy, age, gender). Regression analysis tries to determine the relationship between dependent and independent variables.

Indirect Emissions: Changes in emissions that occur at the emissions source (e.g., the power plant). Indirect emissions are the source of avoided emissions for electric energy efficiency measures.

In-Service Rate: The percentage of units rebated that are installed.

Interactive Factors: Applicable to IPMVP Options A and B; changes in energy use or demand occurring beyond the measurement boundary of the M&V analysis. A and B; changes in energy use or demand occurring beyond the measurement boundary of the M&V analysis.

Leakage: Cross-territory sales that occur when program-incented efficient products are installed outside of the funding utility's service territory.

Load Shapes: Representations such as graphs, tables, and databases that describe energy consumption rates as a function of another variable, such as time or outdoor air temperature.

Market Effect Evaluation: An evaluation of the change in the structure or functioning of a market, or the behavior of participants in a market, which results from one or more program efforts. Typically, the resultant market or behavior change leads to an increase in the adoption of energy efficient products, services, or practices.

Market Transformation: A reduction in market barriers resulting from a market intervention, as evidenced by a set of market effects, that lasts after the intervention has been withdrawn, reduced, or changed.

Measurement: A procedure for assigning a number to an observed object or event.

Measurement and verification (M&V): Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual sites or projects. M&V can be a subset of program impact evaluation.

Measurement Boundary: The boundary of the analysis for determining direct energy and/or demand savings.

Metering: The collection of energy-consumption data over time through the use of meters. These meters may collect information with respect to an end-use, a circuit, a piece of equipment, or a whole building (or facility). Short-term metering generally refers to data collection for no more than a few weeks. End-use metering refers specifically to separate data collection for one or more end-uses in a facility, such as lighting, air conditioning or refrigeration. Spot metering is an instantaneous measurement (rather than over time) to determine an energy-consumption rate.

Monitoring: The gathering of relevant measurement data, including but not limited to energy-consumption data, over time to evaluate equipment or system performance. Examples include chiller electric demand, inlet evaporator temperature and flow, outlet evaporator temperature, condenser inlet temperature, and

ambient dry-bulb temperature and relative humidity or wet-bulb temperature, for use in developing a chiller performance map (e.g., kW/ton vs. cooling load and vs. condenser inlet temperature).

Non-Energy Benefit (NEB): As defined by Arkansas Public Service Commission (Commission) in Order No. 30:

- "The benefits of electricity, natural gas, and liquid propane energy savings (i.e., other fuels);
- benefits of public water and wastewater savings;
- benefits of avoided and deferred equipment replacement costs as conditioned herein."

Net Savings: The total change in load that is attributable to an energy efficiency program. This change in load may include, implicitly or explicitly, the effects of free drivers, free riders, energy efficiency standards, changes in the level of energy service, and other causes of changes in energy consumption or demand.

Net-to-Gross Ratio: A factor representing net program savings divided by gross program savings that is applied to gross program impacts, converting them into net program load impacts after adjustments for free ridership and spillover.

Non-participant: Any consumer who was eligible did not participate in the subject efficiency program in a given program year. Each evaluation plan should provide a definition of a non-participant as it applies to a specific evaluation.

Normalized Annual Consumption (NAC) analysis: A regression-based method that analyzes monthly energy consumption data.

Participant: A consumer who received a service offered through the subject efficiency program in a given program year. The term "service" is used in this definition to suggest that the service can be a wide variety of services, including financial rebates, technical assistance, product installations, training, energy efficiency information or other services, items, or conditions. Each evaluation plan should define "participant" as it applies to the specific evaluation.

Peak Demand: The maximum level of metered demand during a specified period, such as a billing month or a peak demand period. The maximum level of metered demand during a specified period, such as a billing month or a peak demand period.

Persistence Study: A study to assess changes in program impacts over time (including retention and degradation).

Portfolio: Either (a) a collection of similar programs addressing the same market (e.g., a portfolio of residential programs), technology (e.g., motor-efficiency programs), or mechanisms (e.g., loan programs) or (b) the set of all programs conducted by one organization, such as a utility (and which could include programs that cover multiple markets, technologies, etc.).

Potential Studies: Studies conducted to assess market baselines and savings potential for different technologies and customer markets. Potential is typically defined in terms of technical potential, market potential, and economic potential.

Precision: The indication of the closeness of agreement among repeated measurements of the same physical quantity.

Primary Effects: Effects that the project or program are intended to achieve. For efficiency programs, this is primarily a reduction in energy use per unit of output.

Process Evaluation: A systematic assessment of an energy efficiency program for the purposes of documenting program operations at the time of the examination and identifying and recommending improvements to increase the program's efficiency or effectiveness for acquiring energy resources while maintaining high levels of participant satisfaction.

Program: A group of projects, with similar characteristics and installed in similar applications. Examples could include a utility program to install energy-efficient lighting in commercial buildings, a developer's

program to build a subdivision of homes that have photovoltaic systems, or a state residential energy efficiency code program.

Project: An activity or course of action involving one or multiple energy efficiency measures, at a single facility or site.

Rebound Effect: A change in energy-using behavior that yields an increased level of service and occurs as a result of taking an energy efficiency action.

Regression Analysis: Equation analysis of the relationship between a dependent variable (response variable) to specified independent variables (explanatory variables). The mathematical model of their relationship is the regression equation.

Reliability: Refers to the likelihood that the observations can be replicated.

Reporting Period: The time following implementation of an energy efficiency activity during which savings are to be determined.

Resource Acquisition Program: Programs designed to directly achieve energy and/or demand savings, and possibly avoided emissions, through the installation of new equipment.

Retrofit Isolation: The savings measurement approach defined in IPMVP Options A and B, and ASHRAE Guideline 14, that determines energy or demand savings through the use of meters to isolate the energy flows for the system(s) under consideration.

Rigor: The level of expected confidence and precision. The higher the level of rigor, the more confident one is that the results of the evaluation are both accurate and precise.

Secondary Effects: Unintended impacts of the project or program such as rebound effect (e.g., increasing energy use as it becomes more efficient and less costly to use), activity shifting (e.g., movement of generation resources to another location), and market leakage (e.g., emission changes due to changes in supply or demand of commercial markets). These secondary effects can be positive or negative.

Simple Engineering Modeling (SEM): A basic calibrated engineering model used to determine energy impacts in a low-cost way.

Snapback (aka "take-back" or "rebound"): The increase in overall energy consumption after the installation of the efficiency measure, due to increased usage.

Spillover: Reductions in energy consumption and/or demand caused by the presence of the energy efficiency program that exceed the program-related gross savings of the participants. There can be participant and/or non-participant spillover rates depending on the rate at which participants (and non-participants) adopt energy efficiency measures or take other types of efficiency actions on their own (i.e., without an incentive being offered).

Stipulated Values: See "deemed savings."

Takeback Effect: See "rebound effect." See "rebound effect."

Uncertainty: The range or interval of doubt surrounding a measured or calculated value within which the true value is expected to fall with some degree of confidence.

Uniform Methods Project (UMP): The Department of Energy (DOE) is developing a set of protocols for determining savings from energy efficiency measures and programs called the Uniform Methods Project. The protocols provide a straightforward method for evaluating gross energy savings for residential, commercial, and industrial measures commonly offered in ratepayer-funded programs in the United States. The measure protocols are based on specific International Performance Verification and Measurement Protocol (IPMVP) option but provide a more detailed approach to implementing that option.

Index

activities, 2, 5, 7, 14 Additionality. See Glossary Adjustments. See Glossary aerators, 30 Allowances. See Glossary ANCOVA. See Glossary annual, 18 Assessment Boundary. See Glossary Attribution, 49 audit, 14 audits, 30 barriers, 6, 21 baseline, 6, 8, 9, 31 **Baseline**. See Glossary baseline adjustment, 6 best practices, 6 boilers, 30 boundary, 6 budget, 6 building characteristics, 6 C&I. 30 calibrate, 31 categories, 18 change, 6 characteristics, 15, 30 code, 17 Coincident Demand. See Glossary coincident peak demand, 18 commercial, 30 Commercial measures, 36 Comparison Group. See Glossary Confidence. See Glossary consumption, 9, 18 contractor, 17 control. See control group control group, 67 Control Group, 64 controls, 31 cooling, 18 cost savings, 14 cost-effective. See cost effectiveness cost-effectiveness, 30 Cost-effectiveness. See Glossary costs, 7 custom measures, 37 Customer Classes, 15, 18, 30, 46, 48, 55 data, 2, 6, 7, 18 Data Collection, 7, 9, 17, 51

database, 15 Database for Energy-Efficient Resources, 87 deemed savings, 30 Deemed Savings. See Glossary DEER. See Glossary definition, 8 demand, 6, 18 Demand. See Glossary **Dependent Variable. See Glossary** diagnostic process evaluations. See Protocol A Direct Emissions:. See Glossary Double Counting, 69 double-counted savings. See Double Counting education, 6 EERE 2006, 5 Effective Useful Life. See Glossary effectiveness, 6 efficiency, 5 effort, 30 EM&V, 1, 30 encouragement, 65, 67 End-use, 19 **Energy Efficiency. See Glossary** engineering, 30 Engineering Model. See Glossary enrollment, 65 Error. See Glossary evaluation, 5, 7 **Evaluation. See Glossary** Ex ante Savings Estimate. See Glossary Ex post Evaluation Estimated Savings. See Glossary Experimental Design, 64 facility, 31 factors, 5, 19 faucet. 30 food service, 30 forecasting, 19 Free Driver. See Glossary free rider. 49 Free Rider. See Glossary frequency, 2 furnaces, 30 goals, 6 granularity, 8 gross, 6 Gross Savings. See Glossary heating, 18

impact, 6, 18 **Impact Evaluation. See Glossary** impact evaluations, 8 implementation, 5, 7 Implementation Date, 47 implementers, 8 Independent Variables. See Glossary Indirect Emissions. See Glossary industrial. 30 Interactive Factors:. See Glossary International Performance Measurement and Verification Protocol. See IPMVP interviews. 6 IPMVP, 11, 18, 30 **LCFC**, 48 Leakage. See Glossary levels of effort. See effort life cycle, 8 lighting, 31 load shapes, 19 Load Shapes. See Glossary M&V. See Glossary Market Effect Evaluation. See Glossary Market Transformation. See Glossary marketing, 16 measure, 5, 6, 16, 30 Measure Characteristics. See characteristics Measurement. See Glossary Measurement Boundary. See Glossary Metering. See Glossary meters, 31 methodologies, 3 metrics, 2 Monitoring. See Glossary motor, 31 NAC. See Normalized Annual Consumption Model, See Glossary NAPEE, 63 NAPEE 2007, 4, 6 net. 6 Net Savings. See Glossary net-to-gross, 19 Net-to-Gross, 48, 75, 85, 89 Net-to-Gross Ratio. See Glossary Non-participant. See Glossary non-participants, 5, 19 Normalized Annual Consumption, 18, See Glossary **NTG**, 51 NTG ratio, 50 NTGR, 19, 48 objectives, 5

on-site inspections, 30 operations, 6, 21 opt-in, 65, 66 opt-out, 65, 66 outcome, 5 outreach, 6, 16 Participant. See Glossary participants, 5, 19 Peak Demand. See Glossary performance, 5 performance standard, 9 persistence, 8 Persistence. See Glossary, See Glossary pilot, 6 portfolio, 13 Portfolio. See Glossary portfolio level evaluations. See Protocols A, B, C, D, E post-implementation, 18 post-program, 18 post-retrofit, 18 Potential. See Glossary Precision. See Glossary premise, 19 Premise Characteristics. See characteristics pre-program, 18 pre-retrofit, 18 Primary Effects. See Glossary process, 6 Process Evaluation. See Glossary process evaluation structure. See Protocols A&B program, 6, 16 **Program. See Glossary** program administrator, 13 program evaluation, 8 Program type, 21, 27 program types, 30 programs not meeting targets. See Protocol A, O Project. See Glossary project-specific, 9 protocol, 2, 15, 18 Protocol A, 21 **PROTOCOL A: Program Tracking and Database** Development, 15 PROTOCOL B: Protocols for the Post-Implementation Verification of Energy Efficiency Program Measure Installations and Estimation of Energy and Demand Savings, 18 PROTOCOL B2: Recommended Protocols for Gross Demand Evaluation, 19 PROTOCOL B3 Recommended Protocols for Participant Net Impact Evaluation, 19

- PROTOCOL B4: Sampling and Uncertainty Protocol, 19
- PROTOCOL B5: Savings for projects spanning two program years, 20
- PROTOCOL C: Process Evaluation Guidance, 21
- Protocol C1 Conditions, 22
- Protocol C2, 27
- PROTOCOL D: "Level of Effort" Protocols, 30
- PROTOCOL D2: M&V Protocols, 30
- PROTOCOL E:, 46
- PROTOCOL E: Protocols for Verification and Ongoing Modification of Deemed Savings Values, 46
- PROTOCOL E2: Implementation of Code Changes, 47
- PROTOCOL F: Protocols for the Determination of Net Program Impacts, 48
- PROTOCOL G: Provisions for Large Customers, 55
- PROTOCOL H: Technical Reference Manual (TRM), 58
- PROTOCOL I: Role and Responsibilities of the Independent EM&V Monitor, 63
- PROTOCOL J: Behavior Based Program Evaluation Protocol, 64
- PROTOCOL K: Leakage, 72
- Protocol L: Non-Energy Benefits, 77
- protocol 11: non-energy benefits for electricity, natural gas, and liquid propane ("other fuels"), 77
- Protocol L2: Non-Energy Benefits for Water Savings, 79
- Protocol L3: Non-Energy Benefits of Avoided and Deferred Equipment Replacement Costs, 81
- pump, 31
- quasi-experimental, 67
- Randomized Controlled Trial (RCT)", 64
- rebate, 15, 16
- Rebound Effect. See Glossary
- records, 6
- regression, 67
- Regression Analysis. See Glossary
- regression-based, 19
- Reliability. See Glossary
- reporting, 2

Reporting Period. See Glossary

reports, 70, 82 residential, 14, 30, 32

Residential measures, 32 Resource Acquisition Program. See Glossary resources. 6 retrofit, 31 Retrofit Isolation. See Glossary review, 30 Rigor. See Glossary risk, 6 role. 4 sample size, 13 sampling, 8, 19 savings, 5 scale, 6 scope, 21 secondary data, 19 Secondary Effects. See Glossary segmentation, 6 showerheads, 30 Simple Engineering Model, 18 Simple Engineering Modeling. See Glossary **Snapback. See Glossary** Spillover, 49, See Glossary spot metering, 31 statistical, 19 Statistical Significance, 69 Stipulated Values. See Glossary surveys, 6 Takeback Effect. See Glossary Technical Forum, 61 Technical Reference Manual, 15 time frame, 6 timing, 7, 8, 21, See Protocol A, See Protocol A tracking, 6, 15 treatment group, 67, 69 Treatment Group, 64 TRM, 15, 30, See Arkansas Technical Reference Manual Vol. 2 types, 2, 18 uncertainty, 13 **Uncertainty. See Glossary** under-performing programs. See Protocol A usage, 6, 30 Variable-speed drive, 31 Variation in Adoption, 67 vendor, 16 verification. 6. 18 water heaters, 30 weatherization, 14

DEEMED SAVINGS, INSTALLATION & EFFICIENCY STANDARDS

TRM Version 10.0 Volume 2: Deemed Savings

Applicable Beginning January 1, 2025

Submitted to: Arkansas Public Service Commission

Approved in Docket 10-100-R

Prepared by: The Independent Evaluation Monitor

on behalf of the

Parties Working Collaboratively

FINAL

August 28, 2024

Table of Contents

1.	Deemee	d Savings Overview	
	1.1 Inte	RODUCTION	1
	1.2 WEA	ATHER	5
	1.3 Der	IVATION OF ELECTRIC AND GAS PEAK SAVINGS	7
	1.3.1	Peak Demand for Electricity	8
	1.3.2	Peak Demand for Gas	
	1.4 GEN	IERAL INSTALLATION STANDARDS	24
	1.5 Eff	ECTIVE DATES FOR MEASURE CALCULATIONS	
	1.6 Orc	GANIZATION OF THIS VOLUME	
	1.7 Ear	LY RETIREMENT	
	1.7.1	Derivation of RUL	
	1.7.2	Annual and Lifetime Savings	
	1.7.3	Early Retirement Savings Examples	
2.	Resider	ntial Deemed Savings Measures	
	2.1 Hea	TING, VENTILATION & AIR CONDITIONING (HVAC) MEASURES	
	2.1.1	Direct Vent Heaters	
	2.1.2	Duct Insulation	
	2.1.3	Gas Furnace Replacement	
	2.1.4	Gas Furnace Tune-Up	
	2.1.5	Central Air Conditioner and Heat Pump Tune-Up	
	2.1.6	Central Air Conditioner Replacement	
	2.1.7	Ground Source Heat Pumps	
	2.1.8	Heat Pump Replacement	
	2.1.9	Hydronic Heating	
	2.1.10	Window Air Conditioner Replacement	
	2.1.11	Duct Sealing	
	2.1.12	Smart Thermostats	
	2.1.13	Ventilation Fans	
	2.2 Env	ELOPE MEASURES	
	2.2.1	Attic Knee Wall Insulation	
	2.2.2	Ceiling Insulation	
	2.2.3	Wall Insulation	
	2.2.4	Floor Insulation	
	2.2.5	Roof Deck Insulation	
	2.2.6	Radiant Barriers	
	2.2.7	Windows	

APSC 247 10.0 Vol. 2

C FILED Time: 11/14/2024 1				
APSC FILED Time: 8/3	0/2024 9:55:24 AM: Re	ecvd 8/30/2024 9:50:3	37 AM: Docket 10-1	00-r-Doc. 2
			Arkansas TRM	Version.
Window Film				

2.2.8	Window Film	
2.2.9	Air Infiltration	
2.2.10	Low-Emissivity (Low-E) Storm Windows	
2.3 Dom	MESTIC HOT WATER MEASURES	
2.3.1	Water Heater Replacement	
2.3.2	Water Heater Jackets	
2.3.3	Water Heater Pipe Insulation	
2.3.4	Faucet Aerators	
2.3.5	Low-Flow Showerheads	
2.3.6	Showerhead Thermostatic Restrictor Valve	
2.3.7	Tub Spout and Showerhead Thermostatic Restrictor Valve	
2.3.8	Drain Water Heat Recovery	
2.4 App	LIANCES	
2.4.1	Clothes Washers	
2.4.2	Dishwashers	
2.4.3	Refrigerators	
2.4.4	Dehumidifier	
2.4.5	Room Air Purifier/Cleaner	
2.4.6	Clothes Dryer	
2.4.7	Electric Cooktops	
2.5 Ligi	HTING	
2.5.1	Specialty LEDs	
2.5.2	Omni-Directional LEDs	
2.5.3	Indoor/Outdoor Linear Fluorescents	
2.6 Oth	IER	
2.6.1	Advanced Power Strips	
2.6.2	Pool Pumps	
2.6.3	Electric Vehicle Charging Systems (EV Chargers)	
3. Commo	ercial & Industrial Deemed Savings Measures	
3.1 Hea	TING, VENTILATION & AIR CONDITIONING (HVAC) MEASURES	
3.1.1	Boiler Cut-Out Controls	
3.1.2	Boiler or Furnace Vent Dampers	
3.1.3	Boiler Reset Controls	
3.1.4	Boiler Tune-Up	
3.1.5	Burner Replacement for Commercial Boilers	
3.1.6	Central Air Conditioner and Heat Pump Tune-Up	
3.1.7	Commercial and Industrial Boilers	
3.1.8	Commercial Furnaces	

2024 9:50:37 AM: Dock	tet 10-1	00-r-Doc.	247		
Arkansas	TRM	Version	10.0	Vol.	2

3.1.9	Direct Vent Heaters (Small Commercial and Converted Residences)	
3.1.10	Duct Efficiency Improvements	
3.1.11	Duct Insulation (Converted Residences)	
3.1.12	Duct Insulation (Small Commercial)	
3.1.13	Occupancy-Based PTAC/PTHP Controls	
3.1.14	Packaged Terminal AC/HP (PTAC/PTHP) Equipment	
3.1.15	Steam Trap Replacement or Repair	
3.1.16	Unitary and Split System AC/HP Equipment	
3.1.17	Air or Water Cooled Chilling Equipment (Chillers)	
3.2 Env	ELOPE MEASURES	
3.2.1	Ceiling Insulation (Converted Residences)	
3.2.2	Ceiling Insulation (Small Commercial)	
3.2.3	Cool Roofs	
3.2.4	Air Infiltration (Converted Residences)	
3.2.5	Roof Deck Insulation (Small Commercial)	
3.2.6	Wall Insulation (Converted Residences)	
3.2.7	Window Awnings (Small Commercial)	
3.2.8	Window Film (Converted Residences)	
3.2.9	Window Film (Small Commercial)	
3.2.10	Commercial Door Air Infiltration	
3.3 Dom	IESTIC HOT WATER	
3.3.1	Water Heater Replacement	
3.3.2	Faucet Aerators	
3.3.3	Water Heater Jackets	
3.3.4	Water Heater Pipe Insulation	
3.3.5	Low-Flow Showerheads	
3.4 Mot	ORS	
3.4.1	Electronically Commutated Motors for Refrigeration and HVAC Applications	
3.4.2	Premium Efficiency Motors	
3.4.3	Variable Frequency Drives for HVAC Fans and Pumps	
3.5 Refi	RIGERATION AND REFRIGERATION CONTROLS	
3.5.1	Solid-Door Refrigerators and Freezers	
3.5.2	Commercial Ice Makers	
3.5.3	Beverage and Snack Machine Controls	
3.5.4	Door Heater Controls for Refrigerated Display Cases (Retrofit Only)	
3.5.5	Refrigerated Case Night Covers	
3.5.6	Strip Curtains for Walk-in Coolers and Freezers	
3.5.7	Door Gaskets for Walk-in and Reach-in Coolers and Freezers	

		sus 1101 v erston 10.0 v ot. 2
3.5.8	Zero Energy Doors	
3.5.9	Evaporator Fan Controls	
3.6 Ligi	HTING	
3.6.1	Light Emitting Diode (LED) Traffic Signals	
3.6.2	Lighting Controls	
3.6.3	Lighting Efficiency	
3.6.4	Indoor Horticultural Lighting	
3.7 Foo	d Service Equipment	
3.7.1	Commercial Griddles	
3.7.2	Convection Ovens	
3.7.3	Commercial Conveyor Ovens	
3.7.4	Rack Ovens	
3.7.5	Combination Ovens	
3.7.6	Commercial Fryers	
3.7.7	Commercial Steam Cookers	
3.7.8	Commercial Underfired Broilers	
3.7.9	Commercial Conveyor Broilers	
3.7.10	Commercial Kitchen Demand Ventilation Controls	
3.7.11	Commercial Dishwashers	
3.7.12	Low-Flow Pre-Rinse Spray Valves	
3.8 Com	IPRESSED AIR MEASURES	
3.8.1	Compressor Replacement	
3.8.2	No Loss Condensate Drains	
3.8.3	Engineered Nozzles	
3.8.4	System Pressure Reduction	
3.9 Oth	IER	
3.9.1	Plug Load Occupancy Sensors	
3.9.2	Advanced Power Strips	
3.9.3	Computer Power Management	
3.9.4	Pool Pumps	
3.9.5	High Speed Doors for Cold Storage Facilities	
3.9.6	High Efficiency Battery Chargers	
3.9.7	Electric Vehicle Charging Systems (EV Chargers)	
. Genera	l Reference Information	
4.1 Acr	ONYMS & ABBREVIATIONS	585
	NCIDENCE FACTORS FOR HVAC	
	TVALENT FULL LOAD HOURS	
	IMERCIAL MEASURE REFERENCES	
000		

List of Figures

FIGURE 1: ARKANSAS WEATHER ZONES (DERIVED FROM IECC 2003)	6
FIGURE 2: EXAMPLE SURVIVAL FUNCTION FOR ENERGY STAR® REFRIGERATORS	
FIGURE 3: SURVIVAL FUNCTION FOR RESIDENTIAL DIRECT VENT HEATERS	
FIGURE 4: SURVIVAL FUNCTION FOR RESIDENTIAL GAS FURNACES	
FIGURE 5: SURVIVAL FUNCTION FOR CENTRAL AIR CONDITIONERS	
FIGURE 6: SURVIVAL FUNCTION FOR DUCTED AND DUCTLESS HEAT PUMPS	
FIGURE 7: ENERGY STAR® WINDOW PROGRAM REQUIREMENTS – CLIMATE MAP	
FIGURE 8: SURVIVAL FUNCTION FOR ENERGY STAR® REFRIGERATORS	
FIGURE 9: SURVIVAL FUNCTION FOR COMMERCIAL BOILERS	
FIGURE 9: SURVIVAL FUNCTION FOR COMMERCIAL BOILERS FIGURE 10: SURVIVAL FUNCTION FOR COMMERCIAL PTAC/PTHP SYSTEMS [,]	
FIGURE 10: SURVIVAL FUNCTION FOR COMMERCIAL PTAC/PTHP SYSTEMS [,]	
FIGURE 10: SURVIVAL FUNCTION FOR COMMERCIAL PTAC/PTHP SYSTEMS [,] FIGURE 11: SURVIVAL FUNCTION FOR COMMERCIAL UNITARY HVAC SYSTEMS	

List of Tables

TABLE 1: EXAMPLES OF PROPER USE OF PRIMARY DATA 2
TABLE 2: ARKANSAS WEATHER ZONES AND DESIGN WEATHER DATA 5
TABLE 3: CASE 1 MEASURE LIST 9
TABLE 4: CASE 2 MEASURE LIST 10
TABLE 5: CASE 3A MEASURE LIST 11
TABLE 6: CASE 3B MEASURE LIST 11
TABLE 7: CASE 3C MEASURE LIST 12
TABLE 8: CASE 3D MEASURE LIST 12
TABLE 9: CASE 3E MEASURE LIST
TABLE 10: CASE 3F MEASURE LIST
TABLE 11: CASE 3G MEASURE LIST 14
TABLE 12: CASE 3H MEASURE LIST 14
TABLE 13: CASE 3I MEASURE LIST 15
TABLE 14: CASE 4 MEASURE LIST16
TABLE 15: CASE 5A MEASURE LIST 16
TABLE 16: CASE 5B MEASURE LIST 16
TABLE 17: CASE 5C MEASURE LIST 17
TABLE 18: CASE 6 MEASURE LIST 17
TABLE 19: CASE 7 MEASURE LIST 19
TABLE 20: CASE 8 MEASURE LIST
TABLE 21: CASE 9A MEASURE LIST 20

TABLE 22: CASE 9B MEASURE LIST	21
TABLE 23: CASE 9C MEASURE LIST	
TABLE 24: CASE 9D MEASURE LIST	
TABLE 25: CASE 9E MEASURE LIST	
TABLE 26: CASE 10 MEASURE LIST	
TABLE 27: CASE 11A MEASURE LIST	
TABLE 28: CASE 12 MEASURE LIST	
TABLE 29: EARLY RETIREMENT SAVINGS TIERS	
TABLE 30: INVENTORY OF REFRIGERATOR AGE FOR EXAMPLE PROJECT	
TABLE 31: RUL OF REPLACED REFRIGERATOR	
TABLE 32: EARLY RETIREMENT SAVINGS TIERS	
TABLE 33: DIRECT-VENT HEATERS – BASELINE AND EFFICIENCY STANDARDS	
TABLE 34: REMAINING USEFUL LIFE (RUL) OF DIRECT VENT HEATERS	
TABLE 35: DIRECT VENT HEATING LOAD	41
TABLE 36: DIRECT VENT HEATERS PEAK HEATING RATIO	41
TABLE 37: DISTRIBUTION EFFICIENCY (%)	
TABLE 38: EQUIVALENT FULL LOAD HOURS FOR HEATING AND COOLING	
TABLE 39: GAS FURNACE REPLACEMENT – BASELINE AND EFFICIENCY LEVELS	
TABLE 40: REMAINING USEFUL LIFE (RUL) OF GAS FURNACES	
TABLE 41: ANNUAL FURNACE HEATING LOAD [,]	
TABLE 42: GAS FURNACE PEAK HEATING RATIO	
TABLE 43: HEATING EQUIVALENT FULL LOAD OPERATING HOURS	
TABLE 44: PEAK DAY TO ANNUAL THERMS RATIO (GAS MULTIPLIER)	
TABLE 45: EFFICIENCY LOSS PERCENTAGE BY REFRIGERANT CHARGE LEVEL (FIXED ORIFICE)	
TABLE 46: EFFICIENCY LOSS PERCENTAGE BY REFRIGERANT CHARGE LEVEL (TXV)	
TABLE 47: EQUIVALENT FULL-LOAD COOLING/HEATING HOURS	60
TABLE 48: CONVERSION MULTIPLIER	
TABLE 49: CENTRAL AIR CONDITIONER REPLACEMENT – BASELINES FOR SEER/SEER2 AND EER/EER2	
TABLE 50: CENTRAL AC REPLACEMENT – EQUIVALENT FULL-LOAD COOLING HOURS	
TABLE 51: REMAINING USEFUL LIFE (RUL) OF REPLACED SYSTEMS	
TABLE 52: GROUND SOURCE HEAT PUMP – BASELINE AND EFFICIENCY STANDARDS	68
TABLE 53: GROUND SOURCE HEAT PUMP – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	69
TABLE 54: GROUND SOURCE HEAT PUMP – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL	
TABLE 55: GROUND SOURCE HEAT PUMP – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	
TABLE 56: GROUND SOURCE HEAT PUMP – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	
TABLE 57 - CONVERSION MULTIPLIERS	71
TABLE 58: HEAT PUMP REPLACEMENT – BASELINE STANDARDS	
TABLE 59: HP REPLACEMENT – EQUIVALENT FULL-LOAD COOLING/HEATING HOURS	75

TABLE 60: REMAINING USEFUL LIFE (RUL) OF REPLACED DUCTED HEAT PUMPS	
TABLE 61: HYDRONIC HEATING – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	79
TABLE 62: HYDRONIC HEATING – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION	80
TABLE 63: HYDRONIC HEATING – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	80
TABLE 64: HYDRONIC HEATING – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	80
TABLE 65: WINDOW AC REPLACEMENT – BASELINE AND EFFICIENCY STANDARDS	81
TABLE 66: ROOM AC REPLACEMENT – EQUIVALENT FULL-LOAD COOLING HOURS	82
TABLE 67: RAF DERIVATION	83
TABLE 68: ENTHALPY AT DESIGN CONDITIONS	86
TABLE 69: EQUIVALENT FULL LOAD HOURS FOR HEATING AND COOLING	90
TABLE 70: SMART THERMOSTATS – DEEMED SAVINGS VALUES PER SQUARE FOOT OF CONDITIONED SPACE	92
TABLE 71: EVALUATION RESULTS AND CALCULATION SUMMARY FOR SMART THERMOSTATS, ELECTRIC, ANNUAL .	93
TABLE 72: EVALUATION RESULTS AND CALCULATION SUMMARY FOR SMART THERMOSTATS, NATURAL GAS, ANN	
TABLE 73: BASELINE RESIDENTIAL BATHROOM VENTILATING FAN EFFICACY	95
TABLE 74: ENERGY STAR® QUALIFIED RESIDENTIAL VENTILATING FANS - MINIMUM EFFICACY LEVELS	95
TABLE 75: ENERGY STAR® QUALIFIED RESIDENTIAL VENTILATING FANS - MAXIMUM SOUND LEVELS	95
TABLE 76: ATTIC KNEE WALL INSULATION – BASELINE AND EFFICIENCY STANDARDS	97
TABLE 77: KNEE WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	98
TABLE 78: KNEE WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION.	98
TABLE 79: KNEE WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	98
TABLE 80: KNEE WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	98
TABLE 81: CEILING INSULATION – BASELINE AND EFFICIENCY STANDARDS	99
TABLE 82: CEILING INSULATION (R-38) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	101
TABLE 83: CEILING INSULATION (R-38) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REC	
TABLE 84: CEILING INSULATION (R-38) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	102
TABLE 85: CEILING INSULATION (R-38) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	102
TABLE 86: CEILING INSULATION (R-49) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	103
TABLE 87: CEILING INSULATION (R-49) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REC	
TABLE 88: CEILING INSULATION (R-49) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	103
TABLE 89: CEILING INSULATION (R-49) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	104
TABLE 90: WALL INSULATION – BASELINE AND EFFICIENCY STANDARDS	105
TABLE 91: WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	106
TABLE 92: WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION	106
TABLE 93: WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	106
TABLE 94: WALL INSULATION – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	107
TABLE 95: FLOOR INSULATION – BASELINE AND EFFICIENCY STANDARDS	.108

TABLE 96: R-19 FLOOR INSULATION – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	109
TABLE 97: R-19 FLOOR INSULATION – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION.	109
TABLE 98: R-19 FLOOR INSULATION – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	110
TABLE 99: R-19 FLOOR IN3SULATION – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	110
TABLE 100: CRAWLSPACE ENCAPSULATION – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	110
TABLE 101: CRAWLSPACE ENCAPSULATION – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENT REGION	
TABLE 102: CRAWLSPACE ENCAPSULATION – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	111
TABLE 103: CRAWLSPACE ENCAPSULATION – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	111
TABLE 104: CEILING INSULATION – BASELINE AND EFFICIENCY STANDARDS	112
TABLE 105: ROOF DECK INSULATION (R19) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	114
Table 106: Roof Deck Insulation (R19) – Deemed Savings Values - Zone 8 Northeast/North Cent Region	
TABLE 107: ROOF DECK INSULATION (R19) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	115
TABLE 108: ROOF DECK INSULATION (R19) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	115
TABLE 109: ROOF DECK INSULATION (R38) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	116
TABLE 110: ROOF DECK INSULATION (R38) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENT REGION	
TABLE 111: ROOF DECK INSULATION (R38) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	117
TABLE 112: ROOF DECK INSULATION (R38) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	117
TABLE 113: RADIANT BARRIERS – REQUIRED SUBSTANTIATION	118
TABLE 114: RADIANT BARRIERS – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	119
TABLE 115: RADIANT BARRIERS – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION	120
TABLE 116: RADIANT BARRIERS – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	120
TABLE 117: RADIANT BARRIERS – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	120
TABLE 118: ENERGY STAR® WINDOWS – WEATHER ZONES	122
TABLE 119: ENERGY STAR® REPLACEMENT FOR SINGLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON Northern Region	
TABLE 120: ENERGY STAR® REPLACEMENT FOR SINGLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON Northeast/North Central Region	
TABLE 121: ENERGY STAR® REPLACEMENT FOR SINGLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON CENTRAL REGION	
TABLE 122: ENERGY STAR® REPLACEMENT FOR SINGLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON SOUTH REGION	
TABLE 123: ENERGY STAR® REPLACEMENT FOR DOUBLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON NORTHERN REGION	
TABLE 124: ENERGY STAR® REPLACEMENT FOR DOUBLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON Northeast/North Central Region	
TABLE 125: ENERGY STAR® REPLACEMENT FOR DOUBLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON CENTRAL REGION	
TABLE 126: ENERGY STAR® REPLACEMENT FOR DOUBLE-PANE WINDOW – DEEMED SAVINGS VALUES - ZON SOUTH REGION	

TABLE 127: WINDOW FILM – BASELINE AND EFFICIENCY STANDARDS	125
TABLE 128: WINDOW FILM – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	125
TABLE 129: WINDOW FILM – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION	126
TABLE 130: WINDOW FILM – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	126
TABLE 131: WINDOW FILM – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	126
TABLE 132: AIR INFILTRATION – N FACTOR	128
TABLE 133: PRE-RETROFIT INFILTRATION CAP (CFM50/FT2)	128
TABLE 134: AIR INFILTRATION REDUCTION – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	129
TABLE 135: AIR INFILTRATION REDUCTION – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH C REGION	
TABLE 136: AIR INFILTRATION REDUCTION – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	130
TABLE 137: AIR INFILTRATION REDUCTION – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	130
TABLE 138: ENERGY STAR® Low-E Storm Window Criteria	131
TABLE 139: SQUARE FOOT OF GAS HEATING SAVINGS (SFGASHEAT) PER ZONE, MBTU PER SQUARE FOOT	132
TABLE 140: SQUARE FOOT OF COOLING SAVINGS (SFCOOL) PER ZONE, KWH PER SQUARE FOOT	132
TABLE 141: SQUARE FOOT OF ELECTRIC HEATING SAVINGS (SFELECHEAT) PER ZONE, KWH PER SQUARE FOOT	133
TABLE 142 - EFFECTIVE FULL LOAD COOLING HOURS, EFLH_COOL	134
TABLE 143: TITLE 10: 430.32 (D) WATER HEATER STANDARDS	135
TABLE 144: TANK WATER HEATER DRAW PATTERN	137
TABLE 145: INSTANTANEOUS WATER HEATER DRAW PATTERN	
TABLE 146: HEAT PUMP WATER HEATER DRAW PATTERN	
TABLE 147: ESTIMATED ANNUAL HOT WATER USE (GAL)	
TABLE 148: AVERAGE WATER MAIN TEMPERATURE	
TABLE 149: AVERAGE AMBIENT TEMPERATURES BY INSTALLATION LOCATION	
Table 150: HPWH Adjustment	144
TABLE 151: ANNUAL AVERAGE DAILY TOTAL INSOLATION	148
TABLE 152: AR WEATHER ZONE LOCALIZATION FACTOR (LF) FOR SUEF	148
TABLE 153: WATER HEATER JACKETS – BASELINE AND EFFICIENCY STANDARDS	150
TABLE 154: WATER HEATER JACKETS – ELECTRIC HEATING DEEMED SAVINGS VALUES	150
TABLE 155: WATER HEATER JACKETS – GAS HEATING DEEMED SAVINGS VALUES	151
TABLE 156: WATER HEATER PIPE INSULATION – BASELINE AND EFFICIENCY STANDARDS	152
TABLE 157: AVERAGE AMBIENT TEMPERATURE BY WEATHER ZONE	153
TABLE 158: MAXIMUM AND MINIMUM TEMPERATURES PER WEATHER ZONE	154
TABLE 159: FAUCET AERATORS – BASELINE AND EFFICIENCY STANDARDS	156
TABLE 160: AVERAGE WATER MAIN TEMPERATURE BY WEATHER ZONE	157
TABLE 161: ESTIMATED AERATOR HOT WATER USAGE REDUCTION	
TABLE 162: MIXED WATER TEMPERATURE CALCULATION	159
TABLE 163: EXAMPLE, REPLACING 2.2 GPM WITH 1.5 GPM FAUCET AERATOR - DEEMED ENERGY AND DEMAND S	

TABLE 164: LOW-FLOW SHOWERHEAD – BASELINE AND EFFICIENCY STANDARDS	162
TABLE 165: AVERAGE WATER MAIN TEMPERATURE BY WEATHER ZONE	163
TABLE 166: ESTIMATED SHOWERHEAD HOT WATER USAGE REDUCTION	164
TABLE 167: MIXED WATER TEMPERATURE CALCULATION	165
TABLE 168: EXAMPLE, 2.0, 1.75, AND 1.5 GPM SHOWERHEAD RETROFIT DEEMED ENERGY SAVINGS	167
TABLE 169: AVERAGE WATER MAIN TEMPERATURE BY WEATHER ZONE	169
TABLE 170: ESTIMATED SHOWERHEAD WITH TRV HOT WATER USAGE REDUCTION	170
TABLE 171: EXAMPLE, 2.0, 1.75, AND 1.5 GPM SHOWERHEAD TRV DEEMED ENERGY SAVINGS	173
TABLE 172: AVERAGE WATER MAIN TEMPERATURE BY WEATHER ZONE	
TABLE 173: ESTIMATED TUB SPOUT/SHOWERHEAD SYSTEM WITH TRV HOT WATER USAGE REDUCTION	178
TABLE 174: EXAMPLE, 2.5 GPM SHOWERHEAD AND 5.0 GPM TUB SPOUT TRV DEEMED ENERGY SAVINGS	180
TABLE 175: DRAIN WATER HEAT RECOVERY – ELECTRIC DEEMED SAVINGS VALUES PER HEAT RECOVERY UNIT .	181
TABLE 176: DRAIN WATER HEAT RECOVERY – NATURAL GAS DEEMED SAVINGS VALUES PER HEAT RECOVERY	
TABLE 177: MIXED WATER TEMPERATURE CALCULATION	182
TABLE 178: TYPICAL SHOWER WATER USE	182
TABLE 179: WATER HEATER RECOVERY EFFICIENCY (RE _t)	183
TABLE 180: ENERGY STAR® CLOTHES WASHER – BASELINE AND EFFICIENCY LEVELS	184
TABLE 181: ENERGY STAR® CLOTHES WASHER – DEEMED SAVINGS	185
TABLE 182: ENERGY STAR® MOST EFFICIENT CLOTHES WASHER – DEEMED SAVINGS	185
TABLE 183: RESIDENTIAL DISHWASHER – FEDERAL STANDARD EFFICIENCY	189
TABLE 184: ENERGY STAR® CRITERIA FOR DISHWASHERS (EFFECTIVE JULY 6, 2023)	
TABLE 185: ENERGY STAR® DISHWASHERS – DEEMED SAVINGS VALUES	190
TABLE 186: FORMULAS TO CALCULATE THE MAXIMUM ANNUAL ENERGY CONSUMPTION (AEC) FOR EACH CONSURPTION PRODUCT CATEGORY BY ADJUSTED VOLUME (EFFECTIVE SEPTEMBER 15, 2014)	194
TABLE 187: REMAINING USEFUL LIFE (RUL) OF REPLACED REFRIGERATOR	199
TABLE 188: FEDERAL STANDARD AND ENERGY STAR® STANDARD FOR PORTABLE DEHUMIDIFIERS	
TABLE 189: FEDERAL STANDARD AND ENERGY STAR® STANDARD FOR WHOLE-HOME DEHUMIDIFIERS	201
TABLE 190: ANNUAL ENERGY SAVINGS BY CAPACITY RANGE	202
TABLE 191: SUMMER PEAK COINCIDENT DEMAND SAVINGS	203
TABLE 192: FEDERAL STANDARD AND ENERGY STAR CRITERIA FOR AIR CLEANERS	204
TABLE 193: ANNUAL ENERGY SAVINGS BY CAPACITY RANGE	207
TABLE 194: BASELINE, EFFICIENT AND MOST EFFICIENT CEF VALUES FOR CLOTHES DRYERS	208
TABLE 195: %ELECTRIC AND %GAS VALUES BASED ON CLOTHES DRYER FUEL TYPE	209
TABLE 196: ANNUAL ENERGY SAVINGS BY CLOTHES DRYER TYPE	210
TABLE 197: ENERGY STAR® ELECTRIC COOKING PRODUCTS – BASELINE AND EFFICIENCY LEVELS	211
TABLE 198: ENERGY STAR® ELECTRIC COOKING TOPS – DEEMED SAVINGS	212
TABLE 199: ENERGY STAR® DIRECTIONAL LEDS – DEFAULT BASELINE WATTAGE FOR REFLECTOR LAMPS	216
TABLE 200: ENERGY STAR® DIRECTIONAL LEDS – DEFAULT BASELINE WATTAGE FOR SPECIALTY, EISA T	ter 1

EXEMPT LAMPS FOR REPLACEMENTS PRIOR TO JULY 1, 2023	217
TABLE 201: ENERGY STAR® DIRECTIONAL LEDS – REFLECTOR AND DECORATIVE LAMPS AVERAGE HOURS OF PER YEAR	
TABLE 202: ENERGY STAR® DIRECTIONAL LEDS – REFLECTOR AND DECORATIVE LAMPS IN-SERVICE RATES	218
TABLE 203: ENERGY STAR® DIRECTIONAL LEDS – REFLECTOR AND DECORATIVE LAMPS INTERACTIVE EFFECT COOLING ENERGY SAVINGS AND HEATING ENERGY PENALTIES.	
TABLE 204: ENERGY STAR® DIRECTIONAL LEDS – REFLECTOR AND DECORATIVE LAMPS SUMMER COINCIDENCE FACTOR	
TABLE 205: ENERGY STAR® DIRECTIONAL LEDS – REFLECTOR AND DECORATIVE LAMPS INTERACTIVE EFF FACTOR FOR COOLING DEMAND SAVINGS	
TABLE 206: ENERGY STAR® DIRECTIONAL LEDS – REFLECTOR AND DECORATIVE LAMPS INTERACTIVE EFF FACTOR FOR GAS HEATING	
TABLE 207: ENERGY STAR® OMNI-DIRECTIONAL LEDS – EISA BASELINES	222
TABLE 208: ENERGY STAR® OMNI-DIRECTIONAL LEDS – AVERAGE HOURS OF USE PER YEAR	222
TABLE 209: ENERGY STAR® OMNI-DIRECTIONAL LEDS – IN-SERVICE RATES	222
TABLE 210: ENERGY STAR® OMNI-DIRECTIONAL LEDS – INTERACTIVE EFFECTS FACTOR FOR COOLING EN SAVINGS AND HEATING ENERGY PENALTIES	
TABLE 211: ENERGY STAR® OMNI-DIRECTIONAL LEDS – SUMMER PEAK COINCIDENCE FACTOR	223
TABLE 212: ENERGY STAR® OMNI-DIRECTIONAL LEDS – INTERACTIVE EFFECTS FOR COOLING DEMAND SAV AND HEATING DEMAND PENALTIES	
TABLE 213: ENERGY STAR® OMNI-DIRECTIONAL LEDS – INTERACTIVE EFFECTS FOR GAS HEATING PENALTIES	5.224
TABLE 214: RESIDENTIAL LIGHTING EFFICIENCY – LINEAR FLUORESCENTS AVERAGE HOURS OF USE PER YEAR	226
TABLE 215: RESIDENTIAL LIGHTING EFFICIENCY – LINEAR FLUORESCENTS INTERACTIVE EFFECTS FOR COC ENERGY SAVINGS AND HEATING ENERGY PENALTIES	
TABLE 216: RESIDENTIAL LIGHTING EFFICIENCY – LINEAR FLUORESCENTS SUMMER PEAK COINCIDENCE FACTOR	227
TABLE 217: RESIDENTIAL LIGHTING EFFICIENCY – LINEAR FLUORESCENTS INTERACTIVE EFFECTS FACTOR COOLING DEMAND SAVINGS	
TABLE 218: RESIDENTIAL LIGHTING EFFICIENCY – LINEAR FLUORESCENTS INTERACTIVE EFFECTS FOR GAS HEA PENALTIES	
TABLE 219: PERIPHERAL WATT CONSUMPTION BREAKDOWN	230
TABLE 220: APS TIER 1 IN SERVICE RATES BY DELIVERY TYPE	234
TABLE 221: DEEMED SAVINGS FOR TIER 1 RESIDENTIAL APS	237
TABLE 222: DEEMED SAVINGS FOR TIER 2 RESIDENTIAL APS	
TABLE 223: BASELINE AND EFFICIENT CRITERIA FOR POOL PUMPS	241
TABLE 224: ENERGY STAR® SELF PRIMING POOL PUMPS – DEEMED SAVINGS VALUES	242
TABLE 225: ENERGY STAR® Non-Self Priming Pool Pumps – Deemed Savings Values	242
TABLE 226: RESIDENTIAL POOL PUMPS CALCULATION PARAMETERS	244
TABLE 227: SELF-PRIMING CONVENTIONAL, DUAL-SPEED AND VARIABLE-SPEED POOL PUMPS ASSUMPTIONS	245
TABLE 228: NON-SELF PRIMING CONVENTIONAL, DUAL-SPEED AND VARIABLE-SPEED POOL PUMPS ASSUMPTIONS	5 245
TABLE 229: EV CHARGERS – BASELINE EFFICIENCY REQUIREMENTS	247
TABLE 230: LEVEL 2 VEHICLE CHARGER - DEEMED SAVINGS VALUES PER CHARGER PORT	247
TABLE 231: VARIABLES FOR DEEMED SAVINGS CALCULATIONS, PER CHARGER PORT	249

TABLE 232: BOILER CUT-OUT CONTROL – REVIEW OF CUT-OUT INFORMATION	250
TABLE 233: BOILER OR FURNACE VENT DAMPER – REVIEW OF BOILER VENT DAMPER INFORMATION	253
TABLE 234: BOILER RESET CONTROLS – REVIEW OF BOILER RESET CONTROL INFORMATION	255
TABLE 235: BOILER TUNE-UP – REVIEW OF BOILER TUNE-UP INFORMATION	258
TABLE 236: BOILER REPLACEMENT FOR COMMERCIAL BOILERS – REVIEW OF BURNER INFORMATION	260
TABLE 237: EFFICIENCY LOSS PERCENTAGE BY REFRIGERANT CHARGE LEVEL (FIXED ORIFICE)	266
TABLE 238: EFFICIENCY LOSS PERCENTAGE BY REFRIGERANT CHARGE LEVEL (TXV)	266
TABLE 239: DEFAULT AIR CONDITIONER EER PER SIZE CATEGORY	266
TABLE 240: DEFAULT HEAT PUMP EER PER SIZE CATEGORY	
TABLE 241: DEFAULT HEAT PUMP HSPF PER SIZE CATEGORY	268
TABLE 242: COMMERCIAL AND INDUSTRIAL BOILERS – BASELINE EFFICIENCIES	269
TABLE 243: COMMERCIAL AND INDUSTRIAL BOILERS – REVIEW OF HIGH-EFFICIENCY BOILER INFORMATION	270
TABLE 244: COMMERCIAL BOILERS – EFFICIENCY DEFINITIONS	272
TABLE 245: COMMERCIAL BOILERS REMAINING USEFUL LIFE (RUL) OF REPLACED SYSTEMS	273
TABLE 246: COMMERCIAL FURNACES – BASELINE EFFICIENCIES REQUIREMENT	275
TABLE 247: DIRECT VENT HEATERS – BASELINE AND EFFICIENCY STANDARDS	277
TABLE 248: DIRECT VENT HEATERS – DEEMED SAVINGS VALUES	278
TABLE 249: DUCT LEAKAGE CLASSIFICATIONS	281
TABLE 250: DUCT EFFICIENCY IMPROVEMENTS (SC) – ZONE 9 NORTHERN	281
TABLE 251: DUCT EFFICIENCY IMPROVEMENTS (SC) – ZONE 8 NORTHEAST/NORTH	282
TABLE 252: DUCT EFFICIENCY IMPROVEMENTS (SC) – ZONE 7 CENTRAL REGION	282
TABLE 253: DUCT EFFICIENCY IMPROVEMENTS (SC) – ZONE 6 SOUTH REGION	283
TABLE 254: CONDITIONED VS. UNCONDITIONED AREAS	
TABLE 255: DUCT INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN	286
TABLE 256: DUCT INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGIO	on 286
TABLE 257: DUCT INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	287
TABLE 258: DUCT INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	287
TABLE 259: CONDITIONED VS. UNCONDITIONED AREAS	289
TABLE 260: DUCT INSULATION (SC) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	290
TABLE 261: DUCT INSULATION (SC) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGIO	N.290
TABLE 262: DUCT INSULATION (SC) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	291
TABLE 263: DUCT INSULATION (SC) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	291
TABLE 264: PTAC/PTHP ENERGY SAVINGS PER SQUARE FOOT FOR HOTELS (KWH/FT ²)	293
TABLE 265: PTAC/PTHP DEMAND SAVINGS PER SQUARE FOOT FOR HOTELS (KW/FT ²)	293
TABLE 266: PTAC/PTHP ENERGY SAVINGS PER SQUARE FOOT FOR MOTELS (KWH/FT ²)	293
TABLE 267: PTAC/PTHP DEMAND SAVINGS PER SQUARE FOOT FOR MOTELS (KW/FT ²)	293
TABLE 268: PTAC/PTHP EQUIPMENT – BASELINE EFFICIENCY LEVELS.	296
TABLE 269: PTAC/PTHP EQUIPMENT – EARLY RETIREMENT BASELINE EFFICIENCIES	296

TABLE 270: REMAINING USEFUL LIFE (RUL) OF REPLACED SYSTEMS	301
TABLE 271: STEAM TRAP REPLACEMENT AND REPAIR – LEAKING STEAM TRAP DISCHARGE RATE - STEAM (LBS./HR.)	Loss 304
TABLE 272: STEAM TRAP REPLACEMENT AND REPAIR – REVIEW OF STEAM TRAP INFORMATION	305
TABLE 273: UNITARY AC/HP EQUIPMENT – BASELINE EFFICIENCY LEVELS	307
TABLE 274: BASELINE FULL-LOAD EFFICIENCY OF AIR CONDITIONERS (ACS) REPLACED VIA EARLY RETIREMENT.	312
TABLE 275: BASELINE PART-LOAD EFFICIENCY OF AIR CONDITIONERS (ACS) REPLACED VIA EARLY RETIREMENT	.313
TABLE 276: BASELINE FULL-LOAD EFFICIENCY OF HEAT PUMPS (HPS) REPLACED VIA EARLY RETIREMENT	314
TABLE 277: BASELINE PART-LOAD EFFICIENCY OF HEAT PUMPS (HPS) REPLACED VIA EARLY RETIREMENT	
TABLE 278: REMAINING USEFUL LIFE (RUL) OF REPLACED SYSTEMS	321
TABLE 279: CHILLERS – BASELINE EFFICIENCY LEVELS FOR CHILLED WATER PACKAGES	324
TABLE 280: BASELINE FULL-LOAD EFFICIENCY FOR AIR-COOLED CHILLERS REPLACED VIA EARLY RETIREMENT	325
TABLE 281: BASELINE PART-LOAD EFFICIENCY FOR AIR-COOLED CHILLERS REPLACED VIA EARLY RETIREMENT	326
TABLE 282: BASELINE FULL-LOAD EFFICIENCY FOR CENTRIFUGAL WATER-COOLED CHILLERS REPLACED VIA E. RETIREMENT	
TABLE 283: BASELINE PART-LOAD EFFICIENCY FOR CENTRIFUGAL WATER-COOLED CHILLERS REPLACED VIA EA RETIREMENT	
TABLE 284: BASELINE FULL-LOAD EFFICIENCY FOR SCREW, SCROLL, AND RECIPROCATING WATER-COOLED CHIL REPLACED VIA EARLY RETIREMENT	
TABLE 285: BASELINE PART-LOAD EFFICIENCY FOR SCREW, SCROLL, AND RECIPROCATING WATER-COOLED CHIL REPLACED VIA EARLY RETIREMENT	
TABLE 286: REMAINING USEFUL LIFE (RUL) OF REPLACED SYSTEMS	335
TABLE 287: CEILING INSULATION – BASELINE AND EFFICIENCY STANDARDS	338
TABLE 288: CEILING INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	339
TABLE 289: CEILING INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL RE	
TABLE 290: CEILING INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	340
TABLE 291: CEILING INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	340
TABLE 292: CEILING INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE - ZO NORTHERN REGION	
TABLE 293: CEILING INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 9 NORTHERN REGION	343
TABLE 294: CEILING INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE - ZO NORTHEAST/NORTH CENTRAL REGION	
TABLE 295: CEILING INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 8 NORTHEAST/NG CENTRAL REGION	
TABLE 296: CEILING INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE - ZO CENTRAL REGION	
TABLE 297: CEILING INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 7 CENTRAL REGION	347
TABLE 298: CEILING INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE – ZO SOUTH REGION	
TABLE 299: CEILING INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 6 SOUTH REGION	349
TABLE 300: COOL ROOFS (SC) – DEEMED SAVINGS VALUES – RETAIL STRIP MALL	351

TABLE 301: COOL ROOFS (SC) – DEEMED SAVINGS VALUES – BIG BOX RETAIL 3	351
TABLE 302: COOL ROOFS (SC) – DEEMED SAVINGS VALUES – FULL SERVICE RESTAURANT	352
TABLE 303: COOL ROOFS (SC) – DEEMED SAVINGS VALUES – SECONDARY SCHOOL 3	353
TABLE 304: COOL ROOFS (SC) – DEEMED SAVINGS VALUES – OFFICE BUILDING	354
TABLE 305: COOL ROOFS (SC) – DEEMED SAVINGS VALUES – ALL OTHER BUILDING TYPES 3	355
TABLE 306: AIR INFILTRATION (CR) – MINIMUM FINAL VENTILATION RATE IN CFM/FT2 OF CONDITIONED FLOOR AF	
TABLE 307: AIR INFILTRATION – N FACTOR	
TABLE 308: INFILTRATION (CR) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	
TABLE 309: INFILTRATION (CR) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION	
TABLE 310: INFILTRATION (CR) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	
TABLE 311: INFILTRATION (CR) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	
TABLE 312: ROOF DECK INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE - ZON	JE 9
Northern Region	
TABLE 313: ROOF DECK INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 9 NORTHERN REGION 3	
TABLE 314: ROOF DECK INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE - ZON NORTHEAST/NORTH CENTRAL REGION	
TABLE 315: ROOF DECK INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 8 NORTHEAST/NOF CENTRAL REGION	
TABLE 316: ROOF DECK INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE - ZON CENTRAL REGION	
TABLE 317: ROOF DECK INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 7 CENTRAL REGION3	367
TABLE 318: ROOF DECK INSULATION (SC) – ELECTRIC AND GAS SAVINGS FOR DX COILS WITH GAS FURNACE - ZON SOUTH REGION	
TABLE 319: ROOF DECK INSULATION (SC) – ELECTRIC SAVINGS FOR ELECTRIC HEAT - ZONE 6 SOUTH REGION	369
TABLE 320: WALL INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 9 NORTH REGION	370
TABLE 321: WALL INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION 3	371
TABLE 322: WALL INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	371
TABLE 323: WALL INSULATION (CR) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	371
TABLE 324: WINDOW AWNINGS (SC) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	372
TABLE 325: WINDOW AWNINGS (SC) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION 3	373
TABLE 326: WINDOW AWNINGS (SC) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	373
TABLE 327: WINDOW AWNINGS (SC) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	373
TABLE 328: WINDOW FILM (CR) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN	375
TABLE 329: WINDOW FILM (CR) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION	376
TABLE 330: WINDOW FILM (CR) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION 330	376
TABLE 331: WINDOW FILM (CR) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	376
TABLE 332: WINDOW FILM (SC) – DEEMED SAVINGS VALUES - ZONE 9 NORTHERN REGION	378
TABLE 333: WINDOW FILM (SC) – DEEMED SAVINGS VALUES - ZONE 8 NORTHEAST/NORTH CENTRAL REGION	378
TABLE 334: WINDOW FILM (SC) – DEEMED SAVINGS VALUES - ZONE 7 CENTRAL REGION	378

TABLE 335: WINDOW FILM (SC) – DEEMED SAVINGS VALUES - ZONE 6 SOUTH REGION	
TABLE 336: DAYTIME AND NIGHTTIME DESIGN TEMPERATURES	
TABLE 337: AVERAGE MONTHLY AMBIENT TEMPERATURES.	384
TABLE 338: DOOR SWEEPS – DEEMED ELECTRIC COOLING ENERGY SAVINGS VALUES (KWH PER LINEAR FOOT)	385
TABLE 339: DOOR SWEEPS – DEEMED ELECTRIC RESISTANCE HEATING ENERGY SAVINGS VALUES (KWH PER L FOOT)	
TABLE 340: DOOR SWEEPS – DEEMED ELECTRIC HEAT PUMP HEATING ENERGY SAVINGS VALUES (KWH PER L FOOT)	INEAR
TABLE 341: DOOR SWEEPS – DEEMED ELECTRIC COOLING DEMAND SAVINGS VALUES (KW PER LINEAR FOOT)	386
TABLE 342: DOOR SWEEPS – DEEMED GAS ENERGY SAVINGS VALUES (THERMS PER LINEAR FOOT)	386
TABLE 343: DOOR SWEEPS – DEEMED GAS DEMAND SAVINGS VALUES (PEAK THERMS PER LINEAR FOOT)	386
TABLE 344: COMMERCIAL WATER HEATERS – WATER HEATER PERFORMANCE REQUIREMENTS	388
TABLE 345: "Residential Water Heater" Standards	389
TABLE 346: TANK WATER HEATER DRAW PATTERN	391
TABLE 347: INSTANTANEOUS WATER HEATER DRAW PATTERN	391
TABLE 348: HEAT PUMP WATER HEATER DRAW PATTERN	391
TABLE 349: HOT WATER REQUIREMENTS BY BUILDING TYPE	393
TABLE 350: HOT WATER REQUIREMENTS BY UNIT OR PERSON"	
TABLE 351: AVERAGE SUPPLY (WATER MAIN) TEMPERATURE	395
TABLE 352 PARAMETERS FOR ANNUAL ENERGY AND PEAK DEMAND SAVINGS CALCULATIONS	403
TABLE 353: APPROXIMATE SURFACE AREAS OF CYLINDRICAL TANKS	407
TABLE 354: AVERAGE AMBIENT TEMPERATURE BY WEATHER ZONE.	407
TABLE 355: MAXIMUM AND MINIMUM TEMPERATURES PER WEATHER ZONE	409
TABLE 356: AVERAGE AMBIENT TEMPERATURE BY WEATHER ZONE.	411
TABLE 357: MAXIMUM AND MINIMUM TEMPERATURES PER WEATHER ZONE	
TABLE 358: LOW-FLOW SHOWERHEAD – BASELINE AND EFFICIENCY STANDARDS	414
TABLE 359: SHOWERS PER DAY (PER SHOWERHEAD) AND DAYS OF OPERATION BY BUILDING TYPE	415
TABLE 360: AVERAGE INLET WATER TEMPERATURE (T _{supply}) AND HOT WATER FRACTION (F _{HW}) BY WEATHER	415
TABLE 361: REDUCTION IN DAILY HOT WATER USAGE, ΔV (GPD)	416
TABLE 362: PARAMETERS FOR ANNUAL ENERGY AND PEAK DEMAND SAVINGS CALCULATIONS	419
TABLE 363: PREMIUM EFFICIENCY MOTORS – REVIEW OF MOTOR MEASURE INFORMATION	427
TABLE 364: PREMIUM EFFICIENCY MOTORS – REPLACE ON BURNOUT BASELINE EFFICIENCIES BY MOTOR SIZE	430
TABLE 365: PREMIUM EFFICIENCY MOTORS – EARLY RETIREMENT BASELINE EFFICIENCIES BY MOTOR SIZE	431
TABLE 366: REWOUND MOTOR EFFICIENCY REDUCTION FACTORS	432
TABLE 367: PREMIUM EFFICIENCY MOTORS – OPERATING HOURS, LOAD FACTOR	432
TABLE 368: PREMIUM EFFICIENCY MOTORS - REMAINING USEFUL LIFE (RUL) OF REPLACED SYSTEMS [,]	433
TABLE 369: HVAC FANS AND PUMPS DEFAULT FRACTIONAL FLOW PROFILES	441
TABLE 370: PART LOAD RATIOS FOR HVAC FANS	442

TABLE 371: PART LOAD RATIOS FOR HVAC PUMPS	443
TABLE 372: SOLID DOOR REFRIGERATORS AND FREEZERS – EFFICIENCY LEVELS	444
TABLE 373: SOLID-DOOR REFRIGERATORS AND FREEZERS – BASELINE MEASURE INFORMATION	445
TABLE 374: SOLID-DOOR REFRIGERATORS AND FREEZERS – QUALIFYING MEASURE INFORMATION	445
TABLE 375: SOLID DOOR REFRIGERATORS AND FREEZERS – DEEMED SAVINGS VALUES	446
TABLE 376: FEDERAL MINIMUM STANDARDS FOR AIR-COOLED BATCH ICE MAKERS (H=HARVEST MANUFACTURED ON OR AFTER JANUARY 28, 2018	
TABLE 377:FEDERAL MINIMUM STANDARDS FOR BASELINE EFFICIENCY LEVELS FOR AIR-COOLED CONTINUC MAKERS (H=HARVEST RATE) MANUFACTURED ON OR AFTER JANUARY 28, 2018	
TABLE 378: ENERGY STAR® REQUIREMENTS FOR AIR-COOLED BATCH ICE MAKERS (H = HARVEST RATE) EFF JANUARY 28, 2018	ECTIVE
TABLE 379: ENERGY STAR® Requirements for Air-Cooled Continuous Ice Makers (H = Harvest effective January 28, 2018	
TABLE 380: OCCUPANCY-BASED CONTROLS – ENERGY AND DEMAND SAVINGS BY MACHINE TYPE	452
TABLE 381: SCHEDULE-BASED CONTROLS – ENERGY AND DEMAND SAVINGS BY MACHINE TYPE	452
TABLE 382: DEFAULT CONNECTED LOAD BY MACHINE TYPE	453
TABLE 383: ENERGY SAVINGS FACTOR BY MACHINE TYPE	453
TABLE 384: ANTI-SWEAT HEATER CONTROLS – SAVINGS PER LINEAR FOOT OF CASE BY LOCATION	455
TABLE 385: REFRIGERATED CASE NIGHT COVERS – DEEMED SAVINGS VALUES (PER LINEAR FOOT)	458
TABLE 386: VERTICAL & SEMIVERTICAL REFRIGERATED CASE SAVINGS	459
TABLE 387: HORIZONTAL REFRIGERATED CASE SAVINGS	460
TABLE 388: STRIP CURTAIN CALCULATION ASSUMPTIONS	462
TABLE 389: STRIP CURTAIN CALCULATION ASSUMPTIONS FOR SUPERMARKETS	463
TABLE 390: STRIP CURTAIN CALCULATION ASSUMPTIONS FOR CONVENIENCE STORES	464
TABLE 391: STRIP CURTAIN CALCULATION ASSUMPTIONS FOR RESTAURANTS	465
TABLE 392: STRIP CURTAIN CALCULATION ASSUMPTIONS FOR REFRIGERATED WAREHOUSES	466
TABLE 393: STRIP CURTAINS – DEEMED SAVINGS VALUES	468
TABLE 394: DOOR GASKET ASSUMPTIONS	470
TABLE 395: DOOR GASKETS DEEMED SAVINGS VALUES (PER LINEAR FOOT OF GASKET)	470
TABLE 396: ASSUMPTIONS FOR SAVINGS CALCULATIONS	
TABLE 397: ZERO ENERGY DOORS – DEEMED SAVINGS VALUES (PER DOOR)	472
TABLE 398: FEDERAL STANDARD MAXIMUM NOMINAL WATTAGES AND MAXIMUM WATTAGES	475
TABLE 399: INCANDESCENT/LED TRAFFIC SIGNAL FIXTURE WATTAGES	476
TABLE 400: ESTIMATED USEFUL LIFE BY MEASURE	477
TABLE 401: COINCIDENCE FACTOR AND ANNUAL OPERATING HOURS BY MEASURE	478
TABLE 402: LIGHTING CONTROLS – ENERGY SAVING ESTIMATES FOR OCCUPANCY SENSORS	480
TABLE 403: LIGHTING CONTROLS – ENERGY SAVING ESTIMATES FOR DAYLIGHTING SENSORS	480
TABLE 404: LIGHTING CONTROLS – POWER ADJUSTMENT FACTORS	482
TABLE 405: NEW MAXIMUM WATTAGES FOR GENERAL SERVICE INCANDESCENT LAMPS, 2012-2014	484
TABLE 406: LIGHTING EFFICIENCY – CURRENT FEDERAL EFFICIENCY STANDARDS FOR GSFLS	486

TABLE 407: ADJUSTED BASELINE WATTAGES FOR T12 EQUIPMENT	
TABLE 408: ESTIMATED USEFUL LIFE BY LAMP TYPE	
TABLE 409: TRANSFERABILITY OF DATA ACROSS GEOGRAPHIC REGIONS	
TABLE 410: ANNUAL OPERATING HOURS (AOH) AND COINCIDENCE FACTORS (CF)	
TABLE 411: COMMERCIAL CONDITIONED AND REFRIGERATED SPACE INTERACTIVE EFFECTS FACTORS, I ENERGY AND DEMAND	Electric
TABLE 412: COMMERCIAL CONDITIONED SPACE GAS HEATING PENALTY	
TABLE 413: BASELINE FIXTURE SPECIFICATIONS BY CROP TYPE	
TABLE 414: ANNUAL OPERATING HOURS (AOH) BY CROP TYPE	
TABLE 415: ENERGY STAR® CRITERIA FOR ELECTRIC AND GAS SINGLE AND DOUBLE SIDED GRIDDLES	500
TABLE 416: ENERGY CONSUMPTION RELATED PARAMETERS FOR COMMERCIAL GRIDDLES	502
TABLE 417: BASELINE AND EFFICIENT ASSUMPTIONS FOR ELECTRIC GRIDDLES	502
TABLE 418: BASELINE AND EFFICIENT ASSUMPTIONS FOR GAS GRIDDLES	503
TABLE 419: ENERGY STAR® CRITERIA FOR ELECTRIC CONVECTION OVENS	504
TABLE 420: ENERGY STAR® CRITERIA FOR GAS CONVECTION OVENS	504
TABLE 421: BASELINE AND EFFICIENT ASSUMPTIONS FOR ELECTRIC CONVECTION OVENS	506
TABLE 422: BASELINE AND EFFICIENT ASSUMPTIONS FOR FULL-SIZE GAS CONVECTION OVENS	506
TABLE 423: BASELINE AND EFFICIENT CRITERIA FOR GAS CONVEYOR OVENS	
TABLE 424: BASELINE AND EFFICIENT ASSUMPTIONS FOR GAS CONVEYOR OVENS AT >25" WIDE	
TABLE 425: BASELINE AND ENERGY STAR CRITERIA FOR GAS SINGLE RACK OVENS	
TABLE 426: BASELINE AND ENERGY STAR CRITERIA FOR GAS DOUBLE RACK OVENS	
TABLE 427: BASELINE AND EFFICIENT ASSUMPTIONS FOR GAS SINGLE AND DOUBLE RACK OVENS	
TABLE 428: ENERGY STAR VERSION 3.0 REQUIREMENTS FOR ELECTRIC AND GAS COMBINATION OVENS CAPACITY (P)	
TABLE 429: ENERGY CONSUMPTION RELATED PARAMETERS FOR COMMERCIAL COMBINATION OVENS	
TABLE 430: BASELINE AND EFFICIENT ASSUMPTIONS FOR ELECTRIC COMBINATION OVENS	
TABLE 431: BASELINE AND EFFICIENT ASSUMPTIONS FOR GAS COMBINATION OVENS	517
TABLE 432: ENERGY STAR® CRITERIA AND FSTC BASELINE FOR OPEN DEEP-FAT ELECTRIC FRYERS	519
TABLE 433: ENERGY STAR® CRITERIA AND FSTC BASELINE FOR OPEN DEEP-FAT GAS FRYERS	
TABLE 434: ENERGY CONSUMPTION RELATED PARAMETERS FOR COMMERCIAL FRYERS	
TABLE 435: BASELINE AND EFFICIENT ASSUMPTIONS FOR ELECTRIC STANDARD AND LARGE VAT FRYERS	
TABLE 436: BASELINE AND EFFICIENT ASSUMPTIONS FOR GAS STANDARD AND LARGE VAT FRYERS	
TABLE 437: ENERGY STAR® CRITERIA FOR ELECTRIC STEAM COOKERS	523
TABLE 438: ENERGY STAR® CRITERIA FOR GAS STEAM COOKERS	
TABLE 439: ENERGY CONSUMPTION RELATED PARAMETERS FOR COMMERCIAL STEAM COOKERS	
TABLE 440: DEEMED SAVINGS ASSUMPTIONS FOR ELECTRIC STEAM COOKERS	
TABLE 441: DEEMED SAVINGS ASSUMPTIONS FOR GAS STEAM COOKERS.	
TABLE 442: DEEMED ASSUMPTIONS FOR COMMERCIAL UNDERFIRED BROILERS	
TABLE 443: DEEMED SAVINGS FOR COMMERCIAL UNDERFIRED BROILERS	

TABLE 444: SAVINGS PARAMETERS FOR COMMERCIAL CONVEYOR BROILERS	531
TABLE 445: DEEMED SAVINGS FOR COMMERCIAL CONVEYOR BROILERS	531
TABLE 446: DEEMED SAVINGS PER EXHAUST FAN HP BY BUILDING TYPE WITH OR WITHOUT A DEDICATED MA AIR (MAU) UNIT	
TABLE 447: DERIVATION OF KW SAVED PER HP AND MAU _{factor} based on field data results in California	534
TABLE 448: ANNUAL OPERATING HOURS BY BUILDING TYPE	535
TABLE 449: HEAT LOADS IN LITTLE ROCK, ARKANSAS	
TABLE 450: DEFINITION OF PARAMETERS FOR SAVINGS CALCULATION	536
TABLE 451: ENERGY STAR® REQUIREMENTS FOR COMMERCIAL DISHWASHERS, HIGH TEMPERATURE	537
TABLE 452: ENERGY STAR® REQUIREMENTS FOR COMMERCIAL DISHWASHERS, LOW TEMPERATURE	538
TABLE 453: DEFAULT ASSUMPTIONS FOR LOW TEMPERATURE, ELECTRIC AND GAS WATER HEATERS	539
TABLE 454: DEFAULT ASSUMPTIONS FOR HIGH TEMPERATURE, ELECTRIC AND GAS WATER HEATERS ⁴	540
TABLE 455: DEEMED SAVINGS FOR COMMERCIAL DISHWASHERS, HIGH TEMPERATURE	541
TABLE 456: DEEMED SAVINGS FOR COMMERCIAL DISHWASHERS, LOW TEMPERATURE	542
TABLE 457: VARIABLES FOR THE DEEMED SAVINGS ALGORITHM	544
TABLE 458: BUILDING TYPE DEFINITIONS	
TABLE 459: DAILY OPERATING MINUTES	546
TABLE 460: COMPRESSOR ANNUAL OPERATING HOURS (AOH) AND COINCIDENCE FACTOR	548
TABLE 461: BASELINE COMPRESSOR FACTORS	
TABLE 462: EFFICIENT COMPRESSOR FACTORS	
TABLE 463: COMPRESSED AIRFLOW SAVINGS BASED ON SYSTEM PRESSURE	
TABLE 464: COMPRESSOR EFFICIENCIES (KW/CFM) FOR TYPICAL COMPRESSOR TYPES	
TABLE 465: COMPRESSOR ANNUAL OPERATING HOURS AND COINCIDENCE FACTOR	552
TABLE 466: CAPACITY CONTROL TYPE ADJUSTMENT FACTORS	552
TABLE 467: MAXIMUM STANDARD NOZZLE FLOWRATES	554
TABLE 468: MAXIMUM ENGINEERED NOZZLE FLOWRATES	555
TABLE 469: AIR COMPRESSOR EFFICIENCY	555
TABLE 470: CAPACITY CONTROL TYPE ADJUSTMENT FACTORS	555
TABLE 471: COMPRESSOR ANNUAL OPERATING HOURS AND COINCIDENCE FACTOR	556
TABLE 472: AIR COMPRESSOR TYPICAL DEMAND PER HP BY TYPE & CONTROL	559
TABLE 473: COMPRESSOR ANNUAL OPERATING HOURS AND COINCIDENCE FACTOR	559
TABLE 474: PLUG LOAD WITHOUT OCCUPANCY SENSORS – BASELINE DATA	
TABLE 475: PLUG LOAD OCCUPANCY SENSORS – MINIMUM REQUIREMENTS	560
TABLE 476: PLUG LOAD OCCUPANCY SENSORS – UNIT MEASURE SAVINGS	561
TABLE 477: REVIEW OF PLUG LOAD OCCUPANCY SENSOR MEASURE INFORMATION	561
TABLE 478: PERIPHERAL WATT CONSUMPTION BREAKDOWN	563
TABLE 479: DEEMED SAVINGS FOR COMMERCIAL APS (PER PERIPHERAL DEVICE)	566
TABLE 480: COMPUTER POWER MANAGEMENT - EQUIPMENT WATTAGES	
TABLE 481: COMPUTER POWER MANAGEMENT - DEEMED SAVINGS VALUES	569

TABLE 482: ENERGY STAR® SELF-PRIMING (INGROUND) POOL PUMPS – ENERGY EFFICIENCY LEVEL	570
TABLE 483: ENERGY STAR® VARIABLE SPEED POOL PUMPS – DEEMED SAVINGS VALUES	571
TABLE 484: CONVENTIONAL AND VARIABLE SPEED POOL PUMPS ASSUMPTIONS	573
TABLE 485: AVERAGE WIND SPEED BY WEATHER ZONE	577
TABLE 486: DIRECTIONAL FREQUENCY OF WIND BY WEATHER ZONE	577
TABLE 487: AVERAGE ANNUAL EXTERIOR TEMPERATURE BY WEATHER ZONE	577
TABLE 488: AVERAGE HUMIDITY RATIO BY WEATHER ZONE	578
TABLE 489: BATTERY CHARGING SYSTEM - EFFICIENCY REQUIREMENTS	580
TABLE 490: BATTERY CHARGING SYSTEM - HOURS AND WATTAGES	581
TABLE 491: BATTERY CHARGING SYSTEM - DEEMED SAVINGS VALUES PER CHARGER	581
TABLE 492: EV CHARGERS – BASELINE EFFICIENCY REQUIREMENTS	582
TABLE 493: LEVEL 2 VEHICLE CHARGER - DEEMED SAVINGS VALUES PER CHARGER PORT	
TABLE 494: VARIABLES FOR DEEMED SAVINGS CALCULATIONS, PER CHARGER PORT	584
TABLE 495: COMMERCIAL COINCIDENCE FACTORS BY BUILDING TYPE	
TABLE 496: EQUIPMENT SIZING	595
TABLE 497: EQUIVALENT FULL-LOAD HOURS FOR COOLING (EFLH _C) BY WEATHER ZONE	596
TABLE 498: EQUIVALENT FULL-LOAD HOURS FOR HEATING (EFLH _H) BY WEATHER ZONE	596

1. DEEMED SAVINGS OVERVIEW

1.1 Introduction

This update to the Deemed Savings, Installation, and Efficiency Standards section of the Technical Reference Manual (TRM) is the result of efforts by the Arkansas Parties Working Collaboratively (PWC) to identify outdated deemed savings measures, include new measures, and prioritize review of existing measures to identify those requiring additional engineering and/or literature review.

The Independent Evaluation Monitor (IEM) with input from PWC members, have produced the Residential and Commercial measures included in the TRM.

This volume is a compilation of deemed savings values for electric and gas energy efficiency measures being implemented by the Arkansas Investor-Owned Utilities (IOUs), and is intended to serve a range of users and functions, including:

- Electric and gas utilities and energy efficiency program administrators, for cost-effectiveness screening, program planning, tracking, and reporting;
- Regulatory agencies and independent program evaluators, for evaluating the performance of energy efficiency programs relative to statutory goals, and facilitating planning and portfolio review; and
- Markets, mercantile customers, and others, for assessing potential energy savings opportunities.¹

This volume contains the methodologies and calculations used to determine the deemed savings values in this volume of the TRM for gas and electric energy annual usage, as well as coincident peak electric demand savings and peak day gas savings. Additionally, certain measures include methods to calculate deemed water savings methods, which may be used to calculate water savings for the evaluation of non-energy benefits.

The methods and calculations to determine the Estimated Useful Lives (EULs) are also included in the deemed savings to facilitate economic evaluations, but have no impact on the deemed savings values.

Deemed savings is an approach to estimate energy and demand savings, usually used for programs targeting energy efficiency measures with well-known and consistent performance characteristics. This method involves multiplying the number of installed measures by an estimated (or deemed) savings value derived from engineering analysis and/or historical evaluations. Deemed savings approaches may be complemented by on-site inspections.

Deemed savings are derived through the use of proven analysis of measure performance using field data, accepted engineering calculations, engineered energy efficiency models (simulations) and secondary research. These methods use typical building types, equipment characteristics and operating schedules developed for particular applications, with or without on-site testing or metering. This deemed savings document relies upon engineering calculations, the results of evaluations conducted in Arkansas, and the best available data from other jurisdictions that have conducted vetted evaluations. The TRM update process is described more fully in Protocol H in Volume 1 of this TRM.

¹ The deemed savings values in this reference manual represent best estimates of the average impact of a measure on the gas or electric utility's system at the customer's meter if installation standards are properly applied. Because these represent averages, they are not appropriate for guaranteeing savings figures to customers. It is the installer's responsibility to evaluate premise and equipment conditions as well as customer usage patterns to properly estimate actual savings. No warranty of savings or the suitability of any measure contained in these documents is implied.

Use of Best Available Data. The PWC seeks to quantify, measure and verify the savings in the most accurate way possible, while still providing consistency and certainty in the application of savings estimates and results.

In keeping with this approach, the TRM allows for the use of site-specific data, when it is of high quality and available from program implementers. Site-specific data may be used for any inputs to TRM algorithms presented in this volume; however, deviation from the TRM algorithms would require the measures as custom, thus requiring additional data collection by both implementers and evaluators. The use of site-specific data is not required, and default values specified throughout the TRM can be used in lieu of detailed customer information. It must be noted that the TRM does not condone cherry-picking of TRM values or customer inputs solely for the purpose of maximizing claimed program savings.

Annual Evaluation, Measurement and Verification (EM&V) program evaluation reports should be tailored to the approach used by the program implementer. Measure savings which use TRM-deemed values, should be evaluated and compared to the requirements and parameters described in the TRM. Data collection by evaluators should not be used to adjust savings if default values from this TRM were used to claim ex ante savings. However, the evaluation should note any differences found and recommended changes for the next TRM update and provide an indication of the expected impact of proposed changes. This will allow for a full vetting of the proposed values prior to their use. Any proposed updates would be assessed before and during the next TRM revision process. EM&V contractors should use customer specific information when verifying savings if program implementers use customer specific information to claim savings. It is the EM&V contractors' responsibility to use evaluation industry best practices for evaluating measures claimed using custom specific inputs. This would include developing a sampling plan, data collection, engineering analysis, and revising savings estimates as needed.

Table 1 shows some examples of the proper use of best available data for several measure types. This is not an all-inclusive list. Questions or concerns about specific measures or evaluation methods should be discussed with the IEM during evaluation planning.

Measure Name and Number	Program Implementer Methodology	EM&V Contractor Methodology	Appropriate Result
2.5 Residential Lighting Efficiency	Claimed savings using default hours of use (2.17 hours per day) found in TRM.	Completed a residential lighting metering study for a large, statistically significant sample of participants. Found 3.0 hours per day.	Evaluator uses default values from TRM for evaluated savings. Recommends increasing TRM default hours of use to 3.0 in next TRM update.
3.6 Commercial Lighting Efficiency	Implementation contractor utilizes customer specific lighting HOU and CF (i.e., does not use TRM values).	Evaluation contractor measures site-specific HOU during evaluation site visit for statistically valid sample.	Evaluation contractor uses measured lighting HOU and CF from evaluation site visit, extrapolates realization rate to population wide reported savings following sampling plan.
3.7 Food Service Equipment	Implementation Contractor used default values from TRM for several food service measures.	Evaluation contractor conducted on site verification of specific parameters related to food service measures to help refine deemed assumptions and reported "Verified equipment input".	Evaluation contractor uses default values from TRM during evaluation. Notes their measured parameters are/are not different and recommends TRM update if needed.

Table 1: Examples of Proper Use of Primary Data

Methodology: Estimating deemed savings requires the following steps:

- 1. Establishing a baseline;
- 2. Developing reasonable minimum efficiency requirements for eligible energy efficiency measures;
- 3. Characterizing the typical setting for the majority of installations; and
- 4. Producing a viable model of customer usage patterns for those measures.

The approaches taken in these steps vary considerably, depending upon the nature of the energy efficiency measure.

Deemed savings for each measure were developed according to one of the following methods: (1) engineering algorithms combining equipment performance information with annual or seasonal loads and operating conditions; or, (2) annual computer simulations run on an hourly timestep using typical climate conditions for different regions of the state. The chosen approach is noted within each measure section. The baseline for new or replace-on-burnout (ROB) equipment is generally determined by either a federal standard or the locally applicable code. The applicable code for Arkansas is the 2009 edition of the International Energy Conservation Code (IECC).

Once the baseline and eligibility standards are developed, the estimation of impacts resulting from an eligible installation becomes an engineering task. Non-weather-dependent measures can be represented by engineering calculations, multiplying hours of use by the net change in average hourly or daily demand (for gas or electricity). Peak impacts must be estimated from databases and studies of hourly or monthly loads. The engineering calculations are generally derived from standard industry sources, such as the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE).

Modelling

Building simulation modeling software was used to develop deemed savings values for many weathersensitive energy efficiency measures. Original modeling for residential (and commercial measures implemented in converted residences) was performed using EnergyGauge USA[®] (EnergyGauge) modeling software and TMY2 weather data. Detailed discussion of EnergyGauge modeling software is available at <u>http://www.energygauge.com</u>. Residential envelope measures have been updated using BEoptTM, a publicly available modeling platform for residential building simulations from the National Renewable Energy Laboratory (NREL). Prototype model input assumptions were updated and TMY3 weather data was used. More information on BEoptTM is available from NREL at <u>http://beopt.nrel.gov/</u>. For small commercial measures, eQuest modeling software was used. Detailed discussion of the eQuest modeling software is available at <u>www.doe2.com/equest</u>.

Simulations run in both EnergyGauge and eQuest rely on the DOE2 simulation engine. BEoptTM runs were performed using EnergyPlus², as it is a more recent simulation engine combining two major building energy simulation programs, DOE2 and Building Loads Analysis and System Thermodynamics (BLAST). The DOE is actively maintaining and developing EnergyPlus. Therefore, BEopt/EnergyPlus will be used for all residential simulation updates.

² Available at:

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=48&action=viewlive

Separate deemed savings have been calculated for the most common residential heating and cooling configurations:

- Electric air conditioning with gas heat;
- Electric air conditioning with electric resistance heat;
- Electric heat pumps; and
- Gas heating with no air conditioning.

Within this document, the term *Converted Residence* (CR) is used to describe a building that was originally constructed as a house, but has been adapted for commercial purposes. A CR differs from a house in its occupancy and operating schedule, but also differs from other commercial buildings in that it has the construction properties of a house.

1.2 Weather

Weather-sensitive measures are separated according to the four weather zones designated for Arkansas by the IECC.Deemed savings for modelled weather-sensitive energy efficiency measures are calculated using data for a TMY available from the NREL National Solar Radiation Database (NSRDB).³ Depending upon when they were developed, deemed savings in this TRM were derived using either TMY2 or TMY3 data series selected as representative of the four weather zones in Arkansas (IECC 2009 climate zones) shown in Figure 1.

The following hourly time series are contained within the TMY data:

- Temperature;
- Humidity;
- Wind speed and direction;
- Cloud cover; and
- Solar radiation.

Building simulation modeling is useful for weather sensitive measures because it can produce hourly energy consumption estimates by applying location-specific historical weather files.

Endnotes referencing the original source materials are used throughout the TRM. All endnotes are italicized (see CDD column in following table) to avoid confusion with footnotes (see Rogers in the following table). At the time of publication, all references and links throughout this document were correct.

City	IECC Zone	Winter 99% Design °F	HDD6 5	Summer 1% Design °F	CDD65
Rogers5 or Fayetteville	9	13	4,402	93	1,757
Fort Smith	8	19	3,919	96	2,129
Little Rock	7	21	3,344	95	2,184
El Dorado	6	23	2,946	96	2,622

Table 2: Arkansas Weather Zones and Design Weather Data⁴

³ A TMY is a collection of selected weather data for a specific location, generated from a database containing many years of weather data. It is constructed to present the range of weather phenomena for the location in question while still giving annual averages that are consistent with the location's long term averages. An explanation of TMY weather files can be found on the NREL website and in Section 1 of the User's Manual for TMY3 Data Sets available at: https://www.nrel.gov/docs/fy08osti/43156.pdf

⁴ Design °F data from Manual J Load Calculations, 8th Edition. HDD and CDD values calculated from TMY3 data.

⁵ Winter 99% and Summer 1% Manual J Edition 8 design conditions for Fayetteville, AR are taken from Fayetteville as data specific to Rogers are not available in Manual J; available at: <u>https://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/County%20Level%20Design%20Temperatur</u>

https://www.energystar.gov/ia/partners/bldrs_lenders_raters/downloads/County%20Level%20Design%20Temperatur e%20Reference%20Guide%20-%202015-06-24.pdf

Climate-sensitive energy efficiency measures are presented for four different regions of the state. The weather zones are described below and graphically illustrated in Figure 1.

- Zone 9 Northern, using typical weather information for Fayetteville, AR or Rogers, AR
- Zone 8 Northeast/North Central, using typical weather information for Fort Smith, AR
- Zone 7 Central Region, using typical weather information for Little Rock, AR
- Zone 6 South Region, using typical weather information for El Dorado, AR

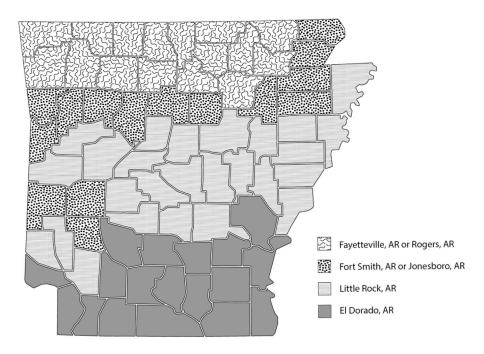


Figure 1: Arkansas Weather Zones (derived from IECC 2003)

1.3 Derivation of Electric and Gas Peak Savings

This section describes how peak gas and electric peak savings presented in Volume 2 of the Arkansas TRM were derived.

Electric utilities generally define peak demand for electricity as the period (measured in hours or fractions of hours) during which the electric production and transmission and distribution system is delivering energy at a maximum rate. Gas peaks are measured in days, rather than hours, and generally reflect the most load intensive conditions the transmission and distribution infrastructure are expected to experience. For the purpose of this TRM, the peak is the total system peak.

The TRM provides deemed savings values or algorithms for the calculation of peak demand. These values have been calculated using one of a small number of calculation and analysis approaches that are described in this section.

1.3.1 Peak Demand for Electricity

On-peak electric demand savings (kW) are defined as the reduction in the demand for electricity that coincides with periods of peak demand for electricity, the total system peak. High summer temperatures are a primary driver of peak demand for electricity in Arkansas. Peaks generally occur on weekdays when residential, commercial, and industrial consumption patterns coincide to produce the highest demand.

For weather sensitive measures, peak demand savings can be estimated using the extent to which measure implementation reduces electricity usage when temperatures are highest.

Case 1: Peak demand for measures relying on building simulation models

For all measures for which building simulation models were used to estimate deemed savings, energy use in the base case and efficient case models were extracted from the hourly outputs for the specific hours in which the weekday criterion and temperature criterion (greater than the 1% design temperature)⁶ are met in a statistically determined TMY. Taking the difference between average energy use in those hours in the base case and efficient case models, peak demand savings are calculated by averaging the top sixteen designated peak hours (from TMY2 or TMY3 weather file) for each weather zone.

Finally, total average demand savings are normalized by the method stated in each specific measure (e.g. per square foot of treated area for insulation, radiant barrier, and window film measures or per cubic feet per minute (CFM) of infiltration reduction for air infiltration).

⁶ One percent design temperatures are taken from the Air Conditioning Contractors of America (ACCA) Manual J, 8th Edition (as reproduced in Table 2).

Table 3: Case 1 Measure List

Sector	Section	Measure Number	Measure Name
	HVAC	2.1.2	Duct Insulation
		2.2.1	Attic Knee Wall Insulation
		2.2.2	Ceiling Insulation
		2.2.3	Wall Insulation
		2.2.4	Floor Insulation
Residential	Envolono	2.2.5	Roof Deck Insulation
	Envelope	2.2.6	Radiant Barriers
		2.2.7	Windows
		2.2.8	Window Film
		2.2.9	Air Infiltration
		2.2.10	Low-Emissivity (Low-E) Storm Windows
	HVAC	3.1.10	Duct Efficiency Improvements
		3.1.11	Duct Insulation (Converted Residences)
		3.1.12	Duct Insulation (Small Commercial)
		3.1.13	Occupancy-Based PTAC/PTHP Controls
		3.2.1	Ceiling Insulation (Converted Residences)
		3.2.2	Ceiling Insulation (Small Commercial)
Commercial		3.2.3	Cool Roofs
		3.2.4	Air Infiltration (Converted Residences Only)
	Envelope	3.2.5	Roof Deck Insulation (Small Commercial)
		3.2.6	Wall Insulation (Converted Residences Only)
		3.2.7	Window Awnings (Small Commercial Only)
		3.2.8	Window Film (Converted Residences)
		3.2.9	Window Film (Small Commercial)

Case 2: Peak demand savings for measures where annual energy savings are multiplied by a peak ratio factor (specified per measure)

Peak ratio factors are derived by taking the product of two ratios: the ratio of on-peak energy use for water heating to average hourly energy use for water heating according to the daily hot water energy use relationships as presented by the Building America Benchmark project, and an estimated ratio of peak month energy use to average month energy use. The first half of the ratio takes into account the fact that energy use for water heating in the mid to late afternoon peak hours generally exceeds average hourly use. The latter half of the ratio accounts for the reduced water heating energy use of summer months due to higher inlet water temperatures. The product of the two values is the ratio of water heating energy use in peak hours compared to the energy use in the average hour. This value is divided by 8,760 to normalize the annual energy savings by which the peak ratio factor is multiplied to estimate the demand savings.

$$kW_{savings} = kWh_{savings} \times Peak Ratio Factor$$

(1)

Sector	Sect i o n	Measure Number	Measure Name
		2.3.1	Water Heater Replacement
Residential	DHW	2.3.4	Faucet Aerators
		2.3.5	Low-Flow Showerheads

Table 4: Case 2 Measure List

Case 3: Peak demand savings for measures utilizing algorithms to calculate peak savings

The following calculation methodologies are used to derive peak demand savings:

Case 3a: Based on system capacity, efficiency or change in efficiency, and coincidence factor (specified per measure)

Peak demand savings are calculated by multiplying capacity by coincidence factor (CF) and dividing by efficiency or change in efficiency (η). Other conversion factors are outlined in each measure.

$$kW_{savings} = Capacity \times \frac{1}{\eta} \times CF \times conversion \ factor$$
(2)

or

$$kW_{savings} = Capacity \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right) \times CF \times conversion factor$$

Sector	Sectio n	Measure Number	Measure Name
		2.1.5	Central Air Conditioner and Heat Pump Tune-Up
D		2.1.6	Central Air Conditioner Replacement
Residential	HVAC	2.1.8	Central Heat Pump Replacement
		2.1.10	Window Air Conditioner Replacement
	HVAC	3.1.6	Central Air Conditioner and Heat Pump Tune-Up
		3.1.14	Packaged Terminal AC/HP (PTAC/PTHP) Equipment
Commercial		3.1.16	Unitary and Split System AC/HP Equipment
-		3.1.17	Air or Water Cooled Chilling Equipment (Chillers)
	Envelope	3.2.10	Commercial Door Air Infiltration

Table 5: Case 3a Measure List

Case 3b: Based on horsepower, load factor, and change in efficiency

Peak demand savings are calculated by multiplying rated horsepower (HP) by load factor (LF) and dividing by change in efficiency. Other conversion factors are outlined in each measure.

$$kW_{savings} = HP \times LF \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right) \times conversion factor$$

(4)

Table 6: Case 3b Measure List

Sector	Sectio n	Measure Number	Measure Name
Commercial	Motors	3.4.2	Premium Efficiency Motors

Case 3c: Based on discharge rate, latent heat, and efficiency

Peak demand savings are calculated by multiplying discharge rate by the latent heat of vaporization (h) and dividing by efficiency. Other conversion factors are outlined in each measure.

$$kW_{savings} = Steam Trap Discharge Rate \times h \times \frac{1}{\eta} \times conversion factor$$

 Table 7: Case 3c Measure List

Sector	Sectio n	Measure Number	Measure Name
Commercial	HVAC	3.1.15	Steam Trap Replacement

Case 3d: Based on flow rate, change in temperature, and efficiency or change in efficiency

(specified per measure)

Peak demand savings are calculated by multiplying water density (ρ) by the specific heat of water (C_p), flow rate, and change in temperature and dividing by efficiency or change in efficiency. Other conversion factors are outlined in each measure.

$$kW_{savings} = \rho \times C_P \times \Delta Flow Rate \times (T_{hot water} - T_{supply}) \times \frac{1}{\eta} \times conversion factor$$
(6)

or

$$kW_{savings} = \rho \times C_P \times \Delta Flow Rate \times (T_{hot water} - T_{supply}) \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right)$$

× conversion factor

(5)

Table 8: Case 3d Measure List

Sector	Section	Measure Number	Measure Name
Commercial	DHW	3.3.1	Water Heater Replacement
		3.3.2	Faucet Aerators
		3.3.5	Low-Flow Showerheads
	Food Service	3.8.11	Low-Flow Pre-Rinse Spray Valves

Case 3e: Based on U-value, surface area, change in temperature, and efficiency (specified per measure)

Peak demand savings are calculated by multiplying the change in heat transfer, U-value (calculated as $1 \div R$ -value) by surface area and change in temperature and dividing by efficiency. Other conversion factors are outlined in each measure.

$$kW_{savings} = (U_{pre} - U_{post}) \times A \times (T_{in} - T_{out}) \times \frac{1}{\eta} \times conversion \ factor$$

Table 9: Case 3e Measure List

Sector	Section	Measure Number	Measure Name
Residential		2.3.2	Water Heater Jackets
		2.3.3	Water Heater Pipe Insulation
Commercial	DHW	3.3.3	Water Heater Jackets
		3.3.4	Water Heater Pipe Insulation

Case 3f: Based on change in wattage, in service-rate, HVAC interactive effects, and coincidence factor (specified per measure)

Peak demand savings are calculated by multiplying the change in fixture wattage by the in-service rate (ISR), HVAC interactive effects (IEF), and coincidence factor (CF).

$$kW_{savings} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times ISR \times IEF \times CF$$
(9)

Table 10: Case 3f Measure List

Sector	Section	Measure Number	Measure Name
Residential		2.5.1	Lighting Efficiency
Commercial	Lighting	3.6.1	Light Emitting Diode (LED) Traffic Signals
		3.6.3	Lighting Efficiency

(8)

Case 3g: Based on number of fixtures, fixture wattage, control power adjustment factor, HVAC interactive effects, and coincidence factor

Peak demand savings are calculated by multiplying the number of fixtures by fixture wattage, change in control power (1-PAF), HVAC interactive effects (IEF), and coincidence factor (CF).

$$kW_{savings} = N_{fixt} \times \frac{W_{fixt}}{1000} \times (1 - PAF) \times IEF \times CF$$

(10)

Table 11: Case 3g Measure List

Sector	ſ	Section	Measure Number	Measure Name
Commercia	al	Lighting	3.6.2	Lighting Controls

Case 3h: Based on connected load and bonus factor (specified per measure)

Peak demand savings are calculated by multiplying the connected load of a typical reach-in cooler or freezer door with a heater and the bonus factor (BF) for reducing cooling load from eliminating heat generated by the door heater from entering the cooler or freezer. Other adjustment factors (if applicable) are outlined in each measure.

$kW_{savinas} = kW connected load \times BF \times adjustment factors$

(11)

Table 12: Case 3h Measure List

Sector	Section	Measure Number	Measure Name
	Refrigeration	3.5.8	Zero Energy Doors
Commercial	& Refrigeration Controls	3.5.9	Evaporator Fan Controls

Case 3i: Based on annual energy savings, operating hours, and coincidence factor (specified per measure)

Peak demand savings are calculated by dividing the measure specific annual energy savings (kWh) by the measure specific operating hours and multiplying by any appropriate coincidence factors (CF) or other specified peak adjustment factors. These factors are defined in each specific measure.

$$kW_{savings} = \frac{kWh_{savings}}{hours} \times CF$$

(12)

Sector	Section	Measure Numbe r	Measure Name
	HVAC	2.1.11	Duct Sealing
		2.4.1	Clothes Washers
Residential		2.4.2	Dishwashers
Residential	Appliances	2.4.3	Refrigerators
		2.4.4	Advanced Power Strips
		2.4.5	Pool Pumps
	Other	3.9.2	Advanced Power Strips
		3.9.3	Computer Power Management
	Refrigeration and Refrigeration Controls	3.5.2	Commercial Ice Makers
		3.5.4	Door Heater Controls for Refrigerated Display Cases
		3.5.6	Strip Curtains for Walk-in Coolers and Freezers
Commercial		3.7.1	Commercial Griddles
		3.7.2-3.7.5	Commercial Ovens
		3.7.6	Commercial Fryers
	Food Service	3.7.7	Commercial Steam Cookers
		3.7.10	Commercial Kitchen Demand Ventilation Controls
		3.7.11	Commercial Dishwashers

Table 13: Case 3i Measure List

Case 4: Peak demand savings for measures where peak savings extracted from referenced studies

For a small sub-set of measures, peak demand savings values were taken directly from a referenced study.

Sector	Section	Measure Number	Measure Name
Residential HVAC	IIVAC	2.1.7	Ground Source Heat Pumps
	HVAC	2.1.12	Smart Thermostats
Commercial	Motors	3.4.1	Electronically Commutated Motors for Refrigeration and HVAC Applications
	Refrigeration	3.5.3	Beverage and Snack Machine Controls
	and Refrigeration Controls	3.5.7	Door Gaskets for Walk-in and Reach-in Coolers and Freezers

Table 14: Case 4 Measure List

Case 5: Peak demand savings for measures where the methodology for peak savings is undocumented or incomplete

Undocumented or incomplete peak demand savings methodologies will be updated at the time that each measure is selected for update in a future TRM.

Subcase 5a: Proprietary Analysis

For a small sub-set of measures, electric peak demand savings were derived using proprietary analysis unavailable to the TRM development team.

Table 15: Case 5a Measure List

Sector	Section	Measure Number	Measure Name
C 1	Appliances	3.5.1	Solid-Door Refrigerator and Freezers
Commercial	Other	3.9.1	Plug Load Occupancy Sensors

Subcase 5b: Incomplete Methodology Description

For a small sub-set of measures, electric peak demand savings were derived by developing a load profile for the applicable measure and calibrating using metered end-use data obtained from utility metering studies. This approach is described in detail in the measure section itself.

 Table 16: Case 5b Measure List

Sector	Section	Measure Number	Measure Name
Residential	DHW	2.3.2	Water Heater Jackets

Subcase 5c: Missing Information

For a single measure, electric peak demand savings were derived using a methodology that is not specified in the measure description.

Table 17: Case 5c Measure List

Sector	Section	Measure Number	Measure Name
Commercial	Food Service	3.7.8	Commercial Underfired Broilers

Case 6: Measures where no peak savings are specified

For a small sub-set of measures, there are no applicable peak demand savings.

Table 18: Case 6 Measure List

Sector	Section	Measure Number	Measure Name
Commercial	Refrigeration and Refrigeration Controls	3.5.5	Refrigerated Case Night Covers
	Food Service	3.7.9	Commercial Conveyor Broilers

1.3.2 Peak Demand for Gas

During the TRM Version 7.0 (for 2018) update period, the Arkansas Parties Working Collaboratively (PWC) decided that peak gas savings do not need to be reported. Therefore, peak gas savings do not need to be calculated by evaluation contractors. The sections and equations pertaining to peak gas savings are maintained in the TRM in case they are needed for future reporting.

Case 7: Peak demand savings for measures

Gas utilities require estimates of their peak day consumption for capacity planning; however, the impact of energy efficiency measures on that peak day consumption cannot be calculated directly using TMY data. Whereas TMY data sets are drawn from historic weather data (e.g. TMY3 are drawn from the period from 1976-2005) to represent typical weather conditions, gas utilities apply the most extreme temperature and wind data over the past 25 to 30 years for their capacity planning.

To calculate the peak day gas consumption impact of each measure, a statistical relationship was derived that expresses daily gas consumption as a function of two weather variables: average daily temperature and average wind speed. This statistical relationship (described in Appendix G: Adjustments to Gas Peak Day Impacts) is robust for most energy efficiency measures and is detailed in Appendix G of TRM Volume 3. To calculate gas peak day savings, a gas utility program administrator must simply enter the hourly output from a building simulation model run against TMY data into the regression spreadsheet, which will map the annual gas consumption to the most extreme daily average temperature and wind speed using the appropriate equation and return the peak day therms savings.

Table 19: Case 7 Measure List

Sector	Sectio n	Measure Number	Measure Name
	INVIG	2.1.2	Duct Insulation
	HVAC	2.1.9	Hydronic Heating
		2.2.1	Attic Knee Wall Insulation
		2.2.2	Ceiling Insulation
		2.2.3	Wall Insulation
D 11 / 1		2.2.4	Floor Insulation
Residential		2.2.5	Roof Deck Insulation
	Envelope	2.2.6	Radiant Barriers
		2.2.7	Windows
		2.2.8	Window Film
		2.2.9	Air Infiltration
		2.2.10	Low-Emissivity (Low-E) Storm Windows
		3.1.10	Duct Efficiency Improvements
	HVAC	3.1.11	Duct Insulation (Converted Residences)
		3.1.12	Duct Insulation (Small Commercial)
		3.2.1	Ceiling Insulation (Converted Residences)
		3.2.2	Ceiling Insulation (Small Commercial)
Communicit		3.2.3	Cool Roofs
Commercial		3.2.4	Air Infiltration (Converted Residences Only)
	Envelope	3.2.5	Roof Deck Insulation (Small Commercial)
		3.2.7	Wall Insulation (Converted Residences Only)
		3.2.8	Window Awnings (Small Commercial Only)
		3.2.9	Window Film (Converted Residences)
		3.2.10	Window Film (Small Commercial)

Case 8: Peak demand savings for measures where annual therms savings are multiplied by a peak heating ratio (specified per measure)

Peak heating ratios are derived using TMY3 data. Annual heating degree days (HDD) were calculated using a base temperature of 65°F. The peak heating ratio is a result of dividing the number of HDD on the coldest day by the total annual HDDs. Then, peak demand savings are calculated by multiplying the peak heating ratio against the annual therms savings.

 $peak therms_{savings} = therms_{savings} \times Peak Heating Ratio$

(13)

Sector	Section	Measure Number	Measure Name
	HVAC	2.1.1	Direct Vent Heaters
		2.1.3	Gas Furnace Replacement
D 1 (1		2.1.4	Gas Furnace Tune-Up
Residential		2.3.1	Water Heater Replacement
	DHW	2.3.4	Faucet Aerators
		2.3.5	Low-Flow Showerheads
Commercial	HVAC	3.1.9	Direct Vent Heaters (Small Commercial/Converted Residences)

Table 20: Case 8 Measure List

Case 9: Peak demand savings for measures utilizing algorithms to calculate peak savings

The following calculation methodologies are used to derive peak demand savings:

Case 9a: Based on system capacity and efficiency or change in efficiency (specified per measure)

Peak day therms savings are calculated by dividing capacity by efficiency or change in efficiency (η). Other conversion factors are outlined in each measure.

peak therms_{savings} = Capacity
$$\times \frac{1}{\eta} \times \text{conversion factor}$$
(14)

or

$$peak \ therms_{savings} = Capacity \ \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right) \times conversion \ factor$$

(15)

Table 21:	Case 9a	Measure List
-----------	---------	--------------

Sector	Section	Measure Number	Measure Name
		3.1.4	Boiler Tune-Up
Commencial	Commercial HVAC	3.1.5	Burner Replacement for Commercial Boilers
Commercial		3.1.7	Commercial and Industrial Boilers
		3.1.8	Commercial Furnaces

Case 9b: Based on flow rate, change in temperature, and efficiency or change in efficiency (specified per measure)

Peak demand savings are calculated by multiplying water density (ρ) by the specific heat of water (C_p), flow rate, and change in temperature and dividing by efficiency or change in efficiency. Other conversion factors are outlined in each measure.

peak therms_{savings}

$$= \rho \times C_P \times \Delta Flow Rate \times (T_{hot water} - T_{supply}) \times \frac{1}{\eta} \times conversion factor$$
(16)

or

peak therms_{savings}

$$= \rho \times C_P \times \Delta Flow Rate \times (T_{ho water} - T_{supply}) \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right)$$

× conversion factor

Table 22: Case 9b Measure List

Sector	Section	Measure Number	Measure Name
		3.3.1	Water Heater Replacement
Commercial	DHW	3.3.2	Faucet Aerators
		3.3.5	Low-Flow Showerheads

Case 9c: Based on U-value, surface area, change in temperature, and efficiency (specified per measure)

Peak demand savings are calculated by multiplying the change in heat transfer, U-value (calculated as $1 \div R$ -value) by surface area and change in temperature and dividing by efficiency. Other conversion factors are outlined in each measure.

peak therms_{savings} =
$$(U_{pre} - U_{post}) \times A \times (T_{in} - T_{out}) \times \frac{1}{\eta} \times conversion factors$$
(18)

Table 23: Case 9c Measure List

Sector	Section	Measure Number	Measure Name
Residential		2.3.3	Water Heater Pipe Insulation
Commencial	DHW	3.3.3	Water Heater Jackets
Commercial		3.3.4	Water Heater Pipe Insulation

Case 9d: Based on annual energy savings and annual operating hours (specified per measure)

Peak demand savings are calculated by dividing the measure specific annual energy savings (therms) by the measure specific annual operating hours.

$$peak therms_{savings} = \frac{therms_{savings}}{hours}$$

(19)

Table 24: Case 9d Measure List

Sector	Section	Measure Number	Measure Name
Commercial	HVAC	3.2.10	Commercial Door Air Infiltration

Case 9e: Based on annual energy savings and annual operating days

Peak demand savings are calculated by dividing the measure specific annual energy savings (therms) by the measure specific annual operating days.

$$peak therms_{savings} = \frac{therms_{savings}}{days}$$

(20)

Table 25: Case 9e Measure List

Sector	Section	Measure Number	Measure Name
Commercial	Food Service	3.7.12	Low-Flow Pre-Rinse Spray Valves

Case 10: Peak demand savings for measures where peak savings extracted from referenced studies

For a single measure, peak demand savings were taken directly from a referenced study.

 Table 26: Case 10 Measure List

Sector	Section	Measure Number	Measure Name
Residential	HVAC	2.1.12	Smart Thermostats

Case 11: Peak demand savings for measures where the methodology for peak savings is undocumented or incomplete

Undocumented or incomplete peak demand savings methodologies will be updated at the time that each measure is selected for update in a future TRM.

Subcase 11a: Incomplete Methodology Description

For a single measure, electric peak demand savings were derived by developing a load profile for the applicable measure and calibrating using metered end-use data obtained from utility metering studies. This approach is described in detail in the measure referenced below.

Table 27: Case 11a Measure List

Sector	Section	Measure Number	Measure Name
Residential	DHW	2.3.2	Water Heater Jackets

Case 12: Measures where no peak savings are specified

For a small sub-set of measures, there are no applicable peak demand savings.

Table 28: Case 12 Measure List

Sector	Section	Measure Number	Measure Name
Commercial	HVAC	3.1.1	Boiler Cut-Out Controls
		3.1.2	Boiler or Furnace Vent Dampers
		3.1.3	Boiler Reset Controls

1.4 General Installation Standards

If pre-application is a program requirement, installed equipment should exceed applicable state and federal energy standards adopted at the time the project is approved, or at the time the project invoice is submitted to the utility. The deemed savings assume that installed equipment is new; deemed savings are not available for used or reconditioned equipment. Similarly, deemed savings are based on the assumptions that all equipment is installed per manufacturers installation instructions and best practices. All projects must follow all applicable state and local building codes.

1.5 Effective Dates for Measure Calculations

Once approved by the Commission, the deemed savings estimates contained herein should generally be used for all subsequent estimates of energy efficiency savings filed with the Commission.

To ensure that the savings are accurately calculated, and to provide sufficient time for the utilities, the thirdparty administrators, and program implementers to collect data to conform to the new tracking requirements as defined in Protocol A-Database Tracking, Volume 1, the effective date for determining savings for the affected measures will be either January 1, 2025 or 60 days after approval by the Commission, whichever date is later.

Measures that have been updated, and thus may require additional data collection fields or other tracking changes include can be found in the concordance of changes.

Any other TRM measure in which the required data to estimate measure savings were not tracked in the current database system, including requiring changes in formulae for estimating savings, or adding data fields to conform with the new tracking requirements.

1.6 Organization of this Volume

This volume is organized into the following sections and subsections:

- 2. Residential Deemed Savings Measures
 - 2.1 Heating, Ventilation & Air Conditioning (HVAC) Measures
 - 2.2 Envelope Measures
 - 2.3 Domestic Hot Water Measures
 - 2.4 Appliances
 - 2.5 Lighting
 - 2.6 Other
- 3. Commercial, Industrial, and Small Commercial Deemed Savings
 - 3.1 Heating, Ventilation and Air Conditioning (HVAC) Measures
 - 3.2 Envelope Measures
 - 3.3 Domestic Hot Water
 - 3.4 Motors
 - 3.5 Refrigeration and Refrigeration Controls
 - 3.6 Lighting
 - 3.7 Food Service Equipment
 - 3.8 Compressed Air
 - 3.9 Other
- 4. General Reference Information
 - 4.1 Acronyms and Abbreviations
 - 4.2 Coincidence Factors for HVAC
 - 4.3 Equivalent Full Load Hours
 - 4.4 Commercial Measure References

Each section describing a measure is formatted as follows:

Measure Name

- Measure Description
- Baseline and Efficiency Standards
- Estimated Useful Life
- Deemed Savings Values
- Calculation of Deemed Savings

To provide additional guidance to the reader, Section 4 provides general reference information in the following ways:

- Section 4.1 The definition of key terms and abbreviations
- Section 4.2 Description of coincidence factors for HVAC measures
- Section 4.3 Description of equivalent full load hours to use for calculations
- Section 4.4 Endnotes referencing the original source materials used throughout the TRM. All endnotes are italicized to avoid confusion with footnotes. At the time of publication, all references and links throughout this document were correct.

1.7 Early Retirement

Early retirement occurs when existing, functional, actively used equipment is replaced with similar, higher efficiency equipment. The equipment being replaced should have at least one year of remaining useful life (RUL) unless otherwise specified in the measure.

In the case of early retirement, a dual baseline may be applied to assess savings more accurately over the effective useful life (EUL) of the measure. When a dual baseline is used, there are two baselines, where:

- 1. Pre-existing equipment baseline for savings during the RUL period; and
- 2. Code requirements or industry standard practices baseline for the balance of the EUL period for the new equipment (EUL RUL).

For projects or programs where several pieces of equipment are being replaced, calculation of the average age of existing equipment for the purposes of determining a single RUL, rather than using separate EULs for each piece of equipment is allowed.

The following measures include provisions for the optional early retirement baseline:

- 2.1.1 Direct Vent Heaters
- 2.1.3 Gas Furnace Replacement
- 2.1.6 Central Air Conditioner Replacement
- 2.1.8 Central Heat Pump Replacement
- 2.4.3 Refrigerators
- 3.1.7 Commercial and Industrial Boilers
- 3.1.14 Packaged Terminal AC/HP (PTAC/PTHP) Equipment
- 3.1.16 Unitary and Split System AC/HP Equipment
- 3.1.17 Air or Water Cooled Chilling Equipment (Chillers)
- 3.4.2 Premium Efficiency Motors

1.7.1 Derivation of RUL

The EUL for a measure is the expected median number of years that a measure is in place and operational after installation⁷, consistent with the age at which 50 percent of systems installed in a given year will no longer be in service. The expected trend in equipment retirement is calculated using survival functions specified in DOE Technical Support Documents (TSD) for a given measure. Measure specific TSDs are referenced in each individual measure with an optional early retirement baseline.

The method used for estimating the RUL of a replaced system uses the age of the existing equipment to reestimate the survival function over the life of the measure. The age of the system being replaced and corresponding survival rate is plotted on a chart using the Weibull distribution specified in the DOE TSD for that measure. The Weibull distribution is a probability distribution function commonly used to measure failure rates.⁸ Its form is similar to an exponential distribution, which would model a fixed failure rate, except that it allows for a failure rate which changes over time in a particular fashion. The Weibull survival function takes the form:

$$P(x) = e^{-\left(\frac{x-\theta}{\alpha}\right)^{\beta}} \text{ for } x > \theta \text{ and } P(X) = 1 \text{ for } x \le \theta$$
(21)

Where:

P(x) = probability that the appliance is still in use at age x


- x = appliance age
- α = the scale parameter, which is the decay length in an exponential distribution (defined in measure TSD)
- β = the shape parameter, which determines the way in which the failure rate changes in time (defined in measure TSD)
- θ = the delay parameter, which allows for delay before any failure occurs (defined in measure TSD)

As shown in Figure 2, after plotting the survival function, the age of the existing equipment is identified in the figure, and the corresponding percentage of surviving systems is determined from this chart.

⁷ Violette, D. 2013 Navigant Consulting, "The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures. Chapter 13: Assessing Persistence and Other Evaluation Issues Cross-Cutting Protocols", National Renewable Energy Laboratory (NREL) <u>http://energy.gov/sites/prod/files/2013/11/f5/53827-13.pdf</u>

⁸ National Institute of Standards and Technology (NIST), "NIST/SEMATECH e-Handbook of Statistical Methods." <u>www.itl.nist.gov/div898/handbook/</u>

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Figure 2: Example Survival Function for ENERGY STAR® Refrigerators

For example, referring to Figure 2, if the unit is 10 years old, the number of surviving units is 82 percent.

The surviving percentage value is then divided in half to identify the equipment age representing 50 percent survival for the adjusted survival function. This is done to account for the percentage of units that have already failed, and to isolate only the remaining fully functioning equipment and re-estimate the survival function.

For example, if the number of surviving units is 82 percent, half the surviving percentage value is 41 percent.

Then, the age (year) that corresponds to this new percentage is read from the chart.

For example, referring to Figure 2, the age at a surviving percentage of 41 percent, is 17.8 years.

RUL is estimated as the difference between that age and the current age of the system being replaced, representing the estimated age at which 50 percent of the systems still functioning will no longer be in service.

For example, referring to

Table 31, the RUL of a 10-year-old refrigerator is 17.8 years - 10 years = 7.8 years.

In most cases, these percentages will not align with a year rounded to the nearest whole number. Linear interpolation is applied to identify age estimates to one decimal place.

For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure. This guideline also applies to samples of multiple systems. Individual systems exceeding this maximum lifetime should not be included in any sample. Those systems should use the replace-on-burnout baseline.

In the example, referring to Figure 2, the maximum age of the unit is 22 years. Systems exceeding 22 years must use the replace-on-burnout baseline.

Additional, specific, application information is provided in each measure where the early retirement methodology is applied.

1.7.2 Annual and Lifetime Savings

To apply a dual baseline, annual kW, kWh, and therms savings must be calculated separately for two time periods:

- 1. For the deemed remaining life of the equipment that is being removed (RUL period)
- 2. The remaining time in the EUL period (EUL RUL)

Step 1: Calculate First Year Savings

First year savings (as reported to the PSC) are the savings claimed during the RUL period. This savings value will be calculated by using the less stringent baseline and savings calculation methodologies specified in the installed measure.

Step 2: Calculate after RUL Savings

Savings may be claimed during the remaining time in the EUL period after the RUL has been exceeded. This savings value is calculated using the more stringent baseline and savings calculation methodologies specified in the installed measure.

The savings calculation methodology should not change when calculating the first year and second tier savings values. The only difference is the use of a different, more stringent baseline.

Step 3: Calculate Lifetime Savings

Lifetime savings are the savings claimed during the entire EUL of the measure. These savings are represented by the sum of the savings during the RUL period and the savings after the RUL period, or EUL – RUL. Lifetime kW, kWh, and therms savings for early retirement projects are calculated as follows:

$$Lifetime \ kW_{Savings} = [(kW_{Savings,ER} \times RUL) + (kW_{Savings,ROB} \times (EUL - RUL))]$$
(22)

$$Lifetime \ kWh_{Savings} = \left[\left(kWh_{Savings,ER} \times RUL \right) + \left(kWh_{Savings,ROB} \times (EUL - RUL) \right) \right]$$
(23)

$$Lifetime \ therms_{Savings} = [(therms_{Savings,ER} \times RUL) + (therms_{Savings,ROB} \times (EUL - RUL))]$$

Where:

ER = Early Retirement

ROB = Replace-on-Burnout

(24)

1.7.3 Early Retirement Savings Examples

Early retirement savings are calculated differently depending on the measure. However, applying the early retirement baseline will always result in an initial set of demand and energy savings that will be applied over the RUL period and a second set of demand and energy savings that will be applied over the remainder of the EUL period (EUL - RUL).

Example 1:

Below is an example of an early retirement of a 12-year-old refrigerator. Table 29 contains the initial savings for the RUL period and the secondary savings for the RUL-EUL period. The RUL for a 12-year old refrigerator is seven years and the EUL for the ENERGY STAR® Refrigerator measure is 17 years.

Savings Tier	EUL	RUL	kW Savings	kWh Savings	Measure Life
ER	17.0	7.0	6.0	1,000	RUL = 7.0
ROB	17.0	7.0	3.0	500	EUL – RUL = 17.0 – 7.0 = 10.0

Table 29: Early Retirement Savings Tiers

First year annual savings are 6.0 kW and 1,000 kWh. Those savings may be claimed annually for the first 7 years of the measure life. In year eight, annual savings should be reduced to 3.0 kW and 500 kWh. Those savings should be claimed annually for years 8 through 17 of the measure life.

Lifetime kW and kWh savings for early retirement projects are calculated as follows: (example)

$$kW_{Savings} = [(6.0 \times 7.0) + (3.0 \times (17.0 - 7.0))] = 42.0 + 30.0 = 72.0 \, kW$$

$$kWh_{Savings} = [(1,000 \times 7.0) + (500 \times (17.0 - 7.0))] = 7,000 + 5,000 = 12,000 \, kWh$$

Example 2:

For a project with several pieces of equipment of varying age, the average RUL can be used to determine the RUL for the early retirement project. In this example, five functional refrigerators of various ages are replaced with new ENERGY STAR® refrigerators. Equipment RUL is taken from Table 31. The sampled equipment should not include any individual systems with a system age that exceeds the specified maximum lifetime to be eligible for early retirement.

Equipment #	Equipment Age	Equipment RUL
1	6	10.3
2	7	9.6
3	9	8.3
4	12	7.0
5	15	6.0
Average	9.8	8.2

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Equipment Age	RUL	Equipment Age	RUL
6	10.3	15	6.0
7	9.6	16	5.8
8	8.9	17	5.5
9	8.3	18	5.3
10	7.8	19	5.1
11	7.4	20	4.9
12	7.0	21	4.8
13	6.6	22	4.6
14	6.3	23 +	0.0

Table 31: RUL of Replaced Refrigerator

Using the average equipment RUL of 8.2 years and the ER and ROB savings from Example 1 annual and lifetime savings should be applied as follows:

Table 32: Early Retirement Savings Tiers

Savings Tier	EUL	RUL	kW Savings	kWh Savings	Measure Life
ER	17.0	0.7	6.0	1,000	RUL = 8.2
ROB	17.0	8.2	3.0	500	EUL – RUL = 17.0 – 8.2 = 8.8

First year annual savings are 6.0 kW and 1,000 kWh. Those savings should be claimed annually for the first 8.2 years of the measure life. For the remaining 8.8 years, annual savings should be reduced to 3.0 kW and 500 kWh. Those savings should be claimed annually for the last 0.2 years of year 8 and for years 9 through 17 of the measure life.

Lifetime kW and kWh savings for early retirement projects are calculated as follows: (example)

 $kW_{Savings} = [(6.0 \times 8.2) + (3.0 \times (17.0 - 8.2))] = 49.2 + 26.4 = 75.6 \, kW$

 $kWh_{Savings} = [(1,000 \times 8.2) + (500 \times (17.0 - 8.2))] = 8,200 + 4,400 = 12,600 \, kWh$

2. RESIDENTIAL DEEMED SAVINGS MEASURES

2.1 Heating, Ventilation & Air Conditioning (HVAC) Measures

2.1.1 Direct Vent Heaters

Measure Description

This measure applies to a direct vent, natural gas-fired, wall-type furnace with electronic ignition for small open areas not requiring ducted air distribution.⁹ Typical applications include single-room areas such as living room areas, and bedrooms. This measure applies to all residential applications.

Baseline and Efficiency Standards

Direct vent furnaces are available in sizes from 5,000 BTU/hr to 60,000 BTU/hr input and rated up to 82 percent efficient. Direct vent wall furnaces are installed in exterior walls, utilizing outside air for combustion and directly discharging combustion products to the outside area. The energy savings are a result of using a more efficient furnace.

The baseline for replace-on-burnout projects is the Federal Energy Conservation Standard for direct heating equipment manufactured after April 16, 2013. The baseline for early retirement projects is the Federal Energy Conservation Standard for direct heating equipment manufactured after January 1, 1990 and before April 16, 2013.¹⁰ The minimum efficiency requirements as listed in Table 33 are based on a review of available direct heating equipment must meet the American National Standards Institute Z21.86 (latest standard) for Fan Type Direct-Vent Wall Furnaces.

For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Category	Baseline: Replace-on-Burnout AFUE %	Baseline: Early Retirement AFUE%	Efficiency Standard AFUE %	
Gas wall fan type up to 42,000 Btu/hour	75	73	80	
Gas wall fan type over 42,000 Btu/hour	76	74	80	
Gas wall gravity type up to 10,000 Btu/hour		59		
Gas wall gravity type over 10,000 Btu/hour up to 12,000 Btu/hour	65	60	70	
Gas wall gravity type over 12,000 Btu/hour up to 15,000 Btu/hour	- 65	61	70	
Gas wall gravity type over 15,000 Btu/hour		62		

Table 33. Direct-Vent Heat	ers – Baseline and Efficiency Standards
Table 55. Direct-vent neau	ers – Dasenne and Enficiency Standards

⁹ Due to the hazard of carbon monoxide gas, non-vented space heaters were not considered.

¹⁰ <u>https://www.energy.gov/eere/buildings/appliance-and-equipment-standards-program</u>

Category	Baseline: Replace-on-Burnout AFUE %	Baseline: Early Retirement AFUE%	Efficiency Standard AFUE %
up to 19,000 Btu/hour			
Gas wall gravity type over 19,000 Btu/hour up to 27,000 Btu/hour		63	
Gas wall gravity type over 27,000 Btu/hour up to 46,000 Btu/hour	66	64	
Gas wall gravity type over 46,000 Btu/hour	67	65	

Estimated Useful Life (EUL)

The average lifetime of this measure is 36¹¹ years, the same as gas furnaces. The technology for direct-vent heaters is similar to gas furnaces.

Calculation of Deemed Savings

Annual Therm Savings

Replace-on-Burnout (ROB)

Deemed savings for replace-on-burnout projects can be calculated using the following equation:

Annual Therm Savings = Heat load
$$\times \left(\frac{1}{AFUE_{base}} - \frac{1}{AFUE_{eff}}\right)$$
(25)

$$Heat \ load = (therms/sq.ft./year) \times heated \ area$$

(26)

¹¹ DNV. Residential HVAC and DHW Measure Effective Useful Life Study Report. California Public Utility Commission. February 9, 2024.

Where:

- *heated area* = square footage of the heated area; see Table 35 for estimates of (therms/ft^2)/year, or if *heated area* is unknown, use installed capacity (btuh)/30 (btuh/ft²) ¹²
- $AFUE_{base}$ = baseline efficiency of the wall furnace, see Table 33
- $AFUE_{eff}$ = efficiency of the new wall furnace installed, in AFUE

Early Retirement (ER)

Annual savings must be calculated separately for two time periods:

- 1. The estimated remaining life (RUL, see Table 34) of the equipment that is being removed, designated the first N years, and
- 2. Years EUL N through EUL, where EUL is 20 years.

For the first N years:

Deemed savings for early retirement projects can be calculated using the same equation as used for replace-on-burnout projects, but replacing the $AFUE_{base}$ factor with the $AFUE_{base_{early}}$ factor using either field measurements of the AFUE of the existing system, or as described by the following equation:¹³

$$AFUE_{base_{early}} = (Base \ AFUE) \times (1 - M)^{age}$$

Where:

Base AFUE= efficiency of the existing equipment when new, in AFUE, see Table 33

 M^{14} = maintenance factor, 0.01

age = the age of the existing equipment, in years

For Years EUL - N through EUL:

Savings should be calculated exactly as they are for ROB projects.

Lifetime savings for Early Retirement Projects is calculated as follows:

 $Lifetimetherm_{savings} = [(therm_{savings,ER} \times RUL) + (therm_{savings,ROB} \times (EUL - RUL))]$

(28)

(27)

¹² Rule of thumb for system sizing.

¹³ Calculation of baseline efficiency for early retirement projects taken from the October 2010 National Renewable Energy publication "Building America House Simulation Protocols," p. 38.

¹⁴ Maintenance factor of 0.01 is the average maintenance factor for gas furnaces taken from the October 2010 National Renewable Energy publication "Building America House Simulation Protocols," Table 30.

Peak Therm Savings

Peak day therm savings can be calculated using the following equation:

(29)

Where:

Peak Heating Ratio = Percent of heating expected to occur on the coldest day of the year, see Table 36

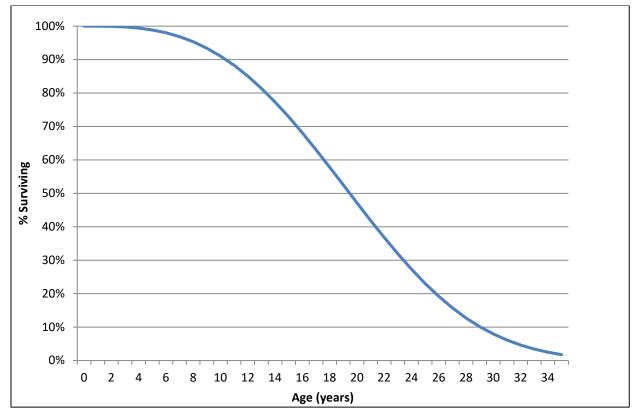

Age of Replaced Wall Furnace (years)	RUL (years)	Age of Replaced Wall Furnace (years)	RUL (years)	
5	14.7	16	5.5	
6	13.7	17	4.5	
7	12.7	18	4.0	
8	11.8	19	3.6	
9	10.9	20	3.2	
10	10.0	21	2.9	
11	9.1	22	2.6	
12	8.3	23	2.4	
13	7.5	24	2.1	
14	6.8	25 +	0.0	
15	6.2		•	

Table 34: Remaining Useful Life (RUL) of Direct Vent Heaters¹⁵

¹⁵ Use of the early retirement baseline is capped at 24 years, representing the age at which 75 percent of existing equipment is expected to have failed. Systems older than 24 years should use the ROB baseline.

Derivation of RULs

Residential gas furnaces have an estimated useful life of 20 years. This estimate is consistent with the age at which 50 percent of systems installed in a given year will no longer be in service, as described in Figure 3.

Figure 3: Survival Function for Residential Direct Vent Heaters¹⁶

The method used for estimating the remaining useful life (RUL) of a replaced system uses the age of the existing system to re-estimate the survival function shown in Figure 3. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

¹⁶ Source: Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". <u>https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx</u>

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

To determine the heat load for use in calculating deemed savings, the following table may be used:

Table 35: Direct Vent Heating Load¹⁷

Weather Zone	Heating Load (therms/sq. ft./year)	
All Zones 6-9	0.1847	

Table 36: Direct Vent Heaters Peak Heating Ratio¹⁸

Weather Zone	Peak Heating Ratio
Zone 9 - Fayetteville	0.019
Zone 8 - Fort Smith	0.015
Zone 7 - Little Rock	0.016
Zone 6 - El Dorado	0.015

¹⁷ Annual direct vent heating load was derived by taking the average reported space heating consumption for gas-fired direct heating equipment in Arkansas from the U.S. Energy Information Administration's Residential Energy Consumption Survey (RECs), and multiplying it by the average AFUE as listed in the Federal Energy Conservation Standard for direct heating equipment manufactured After January 1, 1990 and before April 16, 2013: 65% AFUE, and then dividing it by the average heated square footage for Arkansas homes that use direct heating as their primary heat source as reported in RECs.

¹⁸ The Peak Heating Ratio was derived using TMY3 data. Annual heating degree days (HDD) were calculated using a reference temperature of 65°F. The ratio is the result of dividing the number of HDD on the coldest day by the annual HDD.

2.1.2 Duct Insulation

Measure Description

This measure consists of adding duct insulation to uninsulated metal supply and return ductwork, located in unconditioned space that previously had no existing insulation. This measure applies to all residential retrofit applications.

Baseline and Efficiency Standards

The baseline for this measure is uninsulated sheet metal ducts or insulated metal ducts in which the insulation has failed. Failed insulation is insulation which has non-repairable tears to the vapor barrier, exhibits gaps with exposed metal between the insulation, or insulation which is failing. Flex ducts, and fiber board ducts are not eligible for this measure. The ducts must be located in unconditioned spaces, such as attics or crawl spaces. Old ductwork insulation must be removed prior to installation of new duct wrap insulation.

Unconditioned space is defined as a space which is neither directly nor indirectly conditioned and is isolated from conditioned space by partitions, such as walls and/or closeable doors, and ceilings. It is also classified as space in which the temperature of the area traversed by the ductwork is greater than 100 degrees Fahrenheit during the cooling season and lower than 50 degrees Fahrenheit during the heating season.

The 2014 Arkansas Energy Code requires all new construction to insulate duct work to R-6 for crawl spaces and R-8 for attics. The efficiency upgrade for this measure requires that ducts must be insulated with duct wrap to a minimum R value of R-4.

Estimated Useful Life (EUL)

The average lifetime of this measure is 20 years.

Calculation of Deemed Savings

The methodology applied for savings is based on expected improvements determined by evaluating duct systems before and after insulation using Building Performance Institute's (BPI) Distribution Efficiency Look-up, see Table 37.

Insulation	Condition	Н	leating		Cooling
Insulation		Attic	Vented Crawl	Attic	Vented Crawl
	Leaky	72%	77%	61%	72%
R-0	Average	76%	80%	62%	78%
	Tight	80%	84%	71%	85%
	Leaky	79%	82%	64%	76%
R-2	Average	84%	86%	73%	83%
	Tight	89%	91%	83%	91%
	Leaky	81%	84%	67%	77%
R-4 to R-7	Average	86%	88%	76%	84%
	Tight	91%	93%	87%	92%
	Leaky	82%	85%	69%	78%
R-8 and higher	Average	87%	90%	79%	85%
inglief	Tight	93%	94%	89%	93%

 Table 37: Distribution Efficiency (%)¹⁹

Cooling Savings (Electric):

$$kWh_{savings,C} = \frac{(DE_{post} - DE_{pre}) \times EFLH_C \times CAP}{1000 \times SEER}$$

Where:

 DE_{pre} = Pre-distribution system efficiency (Table 37)

 DE_{post} = Post-distribution system efficiency (Table 37)

 $EFLH_{C}$ = Equivalent full load cooling hours (Table 69)

CAP = Cooling capacity (BTU/hr)

1,000 = Conversion constant from watts to kilowatts

SEER2 = Seasonal Energy Efficiency Ratio of existing system (Btu/W·hr) = 10.9 (default)²⁰

(30)

¹⁹ Building Performance Institute, Distribution Efficiency Look-up Tables, Climate Zone 3. <u>https://www.bpi.org/sites/default/files/Guidance%20on%20Estimating%20Distribution%20Efficiency.pdf</u>

²⁰ Average of US U.S. DOE minimum allowed SEER for new air conditioners from 1992-2006 (10 SEER) and after January 23, 2006 (13 SEER) converted to SEER2 by multiplying by 0.95.

Heating Savings (Heat Pump):

$$kWh_{savings,H} = \frac{(DE_{post} - DE_{pre}) \times EFLH_H \times CAP}{1000 \times HSPF2}$$

(31)

(32)

Where:

 DE_{pre} = Pre-distribution system efficiency (Table 37)

 DE_{post} = Post-distribution system efficiency (Table 37)

 $EFLH_H$ = Equivalent full load heating hours (Table 69)

CAP = Heating capacity (Btu/hr)

1,000 = Conversion constant from watts to kilowatts

HSPF2 = Heating Seasonal Performance Factor of existing system (Btu/W·hr) = Actual, if not available use 6.1 (default)²¹

Heating Savings (Electric Resistance):

$$kWh_{savings,H} = \frac{(DE_{post} - DE_{pre}) \times EFLH_H \times CAP}{3412}$$

Where:

 DE_{pre} = Pre-distribution system efficiency (Table 37)

 DE_{post} = Post-distribution system efficiency (Table 37)

 $EFLH_H$ = Equivalent full load heating hours (Table 69)

CAP = Heating capacity (BTU/hr)

3,412 =Constant to convert from Btu to kWh

Heating Savings (Gas Furnace)

$$Therms_{savings,H} = \frac{(DE_{post} - DE_{pre}) \times EFLH_H \times CAP}{100000 \times AFUE}$$
(33)

Where:

 DE_{pre} = Pre-distribution system efficiency (Table 37)

 DE_{post} = Post-distribution system efficiency (Table 37)

 $EFLH_H$ = Equivalent full load heating hours (Table 69)

²¹ Value is the average of the previous two federal standards (6.8 HSPF to 7.7 HSPF) converted to HSPF2 by multiplying by 0.85.

CAP = Heating capacity (Btuh or BTU/hr)

100,000 =Constant to convert from Btu to therms

AFUE = Annual Fuel Utilization Efficiency of existing system = 0.78 (default)²²

Demand Savings (Cooling):

$$kW_{savings,C} = \frac{kWh_{savings,C}}{EFLH_C} \times CF$$

(34)

Where:

 $kW_{savings,C}$ = Calculated kWh savings for cooling

 $EFLH_C$ = Equivalent full load cooling hours (Table 69)

CF = Coincidence factor = 0.87^{23}

Table 38: Equivalent Full Load Hours for Heating and Cooling²⁴

Weather Zone and Location	EFLH _C	EFLH _H
Zone 9 - Fayetteville	1,305	1,868
Zone 8 - Fort Smith	1,432	1,738
Zone 7 - Little Rock	1,583	1,681
Zone 6 - El Dorado	1,738	1,521

²².<u>www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72</u>.

²³ Please see General Reference Information: Coincidence Factors for HVAC.

²⁴ ENERGY STAR® Central HP Calculator: accessed in 2016. Explanation on EFLH values can be found in the following ACEEE paper, <u>https://www.aceee.org/files/proceedings/2016/data/papers/1_1168.pdf</u>

2.1.3 Gas Furnace Replacement

Measure Description

This measure applies to the replacement of a residential gas furnace with an ENERGY STAR[®] qualified gas furnace or replacement of a residential gravity wall furnace with a comparable unit having an AFUE of 70 percent or greater. This measure applies to all residential applications.

Gas furnaces utilizing a central blower fan and ductwork are referred to in this section as "conventional furnaces." Gravity wall furnaces are units that utilize gravity, instead of a fan, to distribute heated air.

Baseline and Efficiency Standards

The baseline conventional furnace is assumed to be a new gas furnace meeting the current federal standard with an AFUE of 80 percent. For gravity wall furnaces, the baseline efficiencies are shown in Table 39 and were developed based on a review of currently available products.²⁵

The new furnace should be properly sized to the dwelling, based on ASHRAE or the Air Conditioning Contractor of America (ACCA) Manual J standards, and, if coupled with central air conditioning, consistent with the furnace matching guidelines of the equipment manufacturer.

For conventional furnaces, equipment must, at a minimum, meet the ENERGY STAR® efficiency levels to be eligible. Current ENERGY STAR® levels require the AFUE, per federal test method 10 CFR 430, Appendix N to Subpart B, for U.S. South gas furnaces, to be 90 percent or higher.²⁶ For gravity wall furnaces, the equipment must have an AFUE of 70 percent or greater.

For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Type of Furnace	Baseline	Minimum Efficiency Level
Conventional Furnace, All Sizes	80.0% AFUE	ENERGY STAR® 90.0% AFUE
Gravity Wall Furnace, 25,000 Btu/hr	65.0% AFUE	70% AFUE
Gravity Wall Furnace, 35,000 Btu/hr	66.3% AFUE	70% AFUE
Gravity Wall Furnace, 50,000 Btu/hr	66.8% AFUE	70% AFUE

Table 39: Gas Furnace Replacement – Baseline and Efficiency Levels

²⁵ California Technical Forum electronic Technical Reference Manual (eTRM) measure SWHC001-01, Gravity Wall Furnace, accessed after creating account, <u>https://www.caetrm.com/login/</u>

²⁶ <u>http://www.energystar.gov/index.cfm?c=furnaces.pr_crit_furnaces</u>

Estimated Useful Life (EUL)

The average lifetime of this measure is 36²⁷ years.

Calculation of Deemed Savings

Annual Therm Savings

Replace-on-Burnout (ROB)

Deemed savings for replace-on-burnout projects can be calculated using the following equation:

Annual Therm Savings = Heat load
$$\times \left(\frac{1}{AFUE_{base}} - \frac{1}{AFUE_{eff}}\right)$$
(35)

(36)

Where:

heated area = square footage of the project site; see Table 41 for estimates of (therms/ft^2)/year, or if site area is unknown, use installed input capacity (btuh)/30 (btuh/ft²)²⁸

 $AFUE_{base}$ = baseline efficiency of the furnace, from Table 41.

 $AFUE_{eff}$ = efficiency of the new furnace installed, from Table 39.

Early Retirement (ER)

Annual therm savings must be calculated separately for two time periods:

1. The estimated remaining life (RUL, see

²⁷ DNV. Residential HVAC and DHW Measure Effective Useful Life Study Report. California Public Utility Commission. February 9, 2024.

²⁸ Rule of thumb for system sizing.

- 2. Table 40) of the equipment that is being removed, designated the first N years, and
- 3. Years EUL N through EUL, where EUL is 20 years.

For the first N years:

Deemed savings for early retirement projects can be calculated using the same equation as used for replaceon-burnout projects, but replacing the $AFUE_{base}$ factor with the $AFUE_{base_{early}}$ factor using either field measurements of the AFUE of the existing system, or as described by the following equation.²⁹

$$AFUE_{base_{early}} = (Base \ AFUE) \times (1 - M)^{age}$$

(37)

²⁹ Calculation of baseline efficiency for early retirement projects taken from the October 2010 National Renewable Energy publication *"Building America House Simulation Protocols,"* p. 38.

Where:

Base AFUE = efficiency of the existing equipment when new, 78% AFUE for conventional furnaces or baseline efficiencies in Table 39 for gravity wall furnaces

 M^{30} = maintenance factor, 0.01

age = the age of the existing equipment, in years

For Years EUL - N through EUL, savings should be calculated exactly as they are for replace on burnout projects.

Lifetime savings for Early Retirement Projects is calculated as follows:

$$Lifetimetherm_{savings} = [(therm_{savings,ER} \times RUL) + (therm_{savings,ROB} \times (EUL - RUL))]$$
(38)

Peak Therm Savings

Peak day therm savings are calculated using the following equation:

Peak Day Therm Savings = Annual Therm Savings × Peak Heating Rato

(39)

Where:

Peak Heating Ratio = Percent of heating expecting to occur on the coldest day of the year; see Table 42.

³⁰ Maintenance factor of 0.01 is the average maintenance factor for gas furnaces taken from the October 2010 National Renewable Energy publication "*Building America House Simulation Protocols*," Table 30.

Table 40: Remaining U	Useful Life (RUL)) of Gas Furnaces ³¹
-----------------------	-------------------	---------------------------------

Age of Replaced Furnace (years)	RUL (years)
5	14.7
6	13.7
7	12.7
8	11.8
9	10.9
10	10.0
11	9.1
12	8.3
13	7.5
14	6.8
15	6.2

Age of Replaced Furnace (years)	RUL (years)
16	5.5
17	4.5
18	4.0
19	3.6
20	3.2
21	2.9
22	2.6
23	2.4
24	2.1
25 +	0.0

³¹ Use of the early retirement baseline is capped at 24 years, representing the age at which 75 percent of existing equipment is expected to have failed. Systems older than 24 years should use the ROB baseline.

Derivation of RULs

Residential gas furnaces have an estimated useful life of 20 years. This estimate is consistent with the age at which 50 percent of systems installed in a given year will no longer be in service, as described in Figure 4.

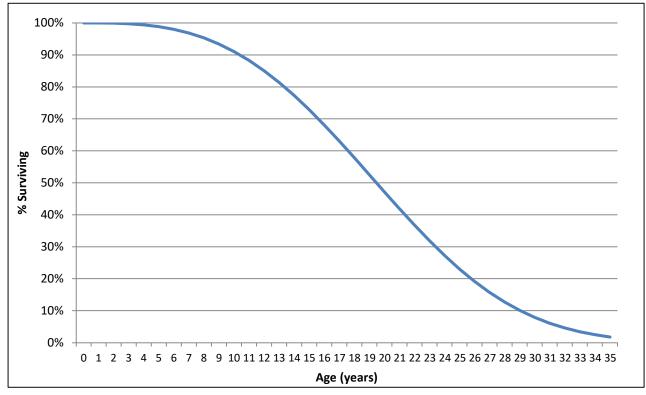


Figure 4: Survival Function for Residential Gas Furnaces³²

The method used for estimating the remaining useful life (RUL) of a replaced system uses the age of the existing system to re-estimate the survival function shown in Figure 4. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

³² RUL was determined by modifying the Weibull distribution offered in the DOE's Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls".

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=48&action=viewlive

The modification included changing the scale parameter to 24 and the shape parameter to 2.34 to reflect the EUL of the gas furnace at 20 years.

To determine the heat load for use in calculating deemed savings, the following table may be used:

	Heating load (therms/sq.ft./year)			
Construction Date	Zone 9 – Rogers	Zone 8 – Fort Smith	Zone 7 – Little Rock	Zone 6 – El Dorado
Pre-1970-1979	0.404	0.360	0.336	0.296
1980-1989	0.303	0.270	0.252	0.222
1990-1999	0.202	0.180	0.168	0.148
2000-Present	0.152	0.135	0.126	0.111

Table 41: Annual Furnace Heating Load^{33,34}

Table 42: Gas Furnace Peak Heating Ratio³⁵

Weather Zone	Peak Heating Ratio
Zone 9 - Fayetteville	0.019
Zone 8 - Fort Smith	0.015
Zone 7 - Little Rock	0.016
Zone 6 - El Dorado	0.015

³³ Annual furnace heating load was derived using the ENERGY STAR® Furnace calculator. For heating load of homes of unknown age, we multiplied the ratio of heating degree days to regional average heating degree days by the average home heating load, weighted by year of construction, to produce an annual heat load. Reference used for zones 8 and 7.

³⁴ ADM Associates, Inc. 2015, "Arkansas Residential Furnace Load Research." July 13. Reference used for zones 9 and 6.

³⁵ The Peak Heating Ratio was derived using TMY3 data. Annual heating degree days (HDD) were calculated using a reference temperature of 65°F. The ratio is the result of dividing the number of HDD on the coldest day by the annual HDD.

2.1.4 Gas Furnace Tune-Up

Measure Description

This measure consists of a tune-up of an existing residential gas furnace, including any adjustments necessary to increase steady state efficiency (SSE). This measure applies to all residential applications.

Baseline and Efficiency Standards

Calculation of gas savings for this measure requires measurement of steady state furnace efficiency before and after tune-up using an electronic combustion analyzer. Alternatively, before and after tune-up efficiency may be measured following the method described in ANSI/ASHRAE Standard 103-2022, Method of Testing for Annual Fuel Utilization Efficiency of Residential Central Furnaces and Boilers. Maximum post tune-up efficiency that can be used in claiming savings cannot exceed the nameplate efficiency of the furnace. Technicians performing tune-ups must provide documentation of before- and after-combustion analysis results.

Estimated Useful Life (EUL)

The average lifetime of this measure is three years.

Calculation of Deemed Savings

$$\Delta Therms/yr = \left(\frac{furnace\ rating}{100,000}\right) \times EFLH \times \left(\frac{1}{SSE_b} - \frac{1}{SSE_a}\right)$$
(40)

Peak Day Therm Savings =
$$\Delta$$
Therms/yr × GM

(41)

Where:

 $\Delta Therms =$ gross annual energy savings

furnace rating measured in Btu per hr

EFLH = heating equivalent full load hours for the appropriate weather zone (from Table 43)

 SSE_b = steady state efficiency before tune-up

 SSE_a = steady state efficiency after tune-up

GM = Gas Multiplier (from Table 44)

100,000 =Conversion constant from BTU to therms

Example: For a 90,000 Btu/hr furnace with a steady state efficiency measured at 75 percent prior to tune up and 78 percent after tune-up, in Zone 7, annual gas savings would be:^{36,37}

 $90000/100000 \ge 1681 \ge (1/0.75 - 1/0.78) = 77.6$ Therms/yr.

Table 43: Heating Equivalent Full Load Operating Hours³⁸

Weather Zone	EFLH _H
Zone 9 - Fayetteville	1,868
Zone 8 - Fort Smith	1,738
Zone 7 - Little Rock	1,681
Zone 6 - El Dorado	1,521

Table 44: Peak Day to Annual Therms Ratio (Gas Multiplier)

Weather Zone	GM (Peak Day Therms per Annual Therms)
Zone 9 - Fayetteville	0.0152195
Zone 8 - Fort Smith	0.0181406
Zone 7 - Little Rock	0.0179136
Zone 6 - El Dorado	0.0244927

³⁶ Dethman, L. & Kunkle, R. 2007. "*Building Tune-up and Operations Program Evaluation*," Energy Trust of Oregon. Energy savings on the order of two to five were realized from a furnace and boiler tune-up program in the Pacific Northwest.

³⁷ Midwest Weatherization Best Practices, <u>https://nascsp.org/wap/waptac/</u>

³⁸ENERGY STAR® Central HP Calculator, accessed in 2016. Explanation on EFLH from EPA 2002 in the following paper, <u>https://www.acceee.org/files/proceedings/2016/data/papers/1_1168.pdf</u>

2.1.5 Central Air Conditioner and Heat Pump Tune-Up

Measure Description

This measure applies to central air conditioners and heat pumps. An AC tune-up, in general terms, involves checking, adjusting and resetting the equipment to factory conditions, such that it operates closer to the performance level of a new unit. This measure applies to all residential applications.

For this measure, the service technician must complete the following tasks according to industry best practices:

Air Conditioner Inspection and Tune-Up Checklist39

- Inspect and clean condenser, evaporator coils, and blower.
- Inspect refrigerant level and adjust to manufacturer specifications.
- Measure the static pressure across the cooling coil to verify adequate system airflow and adjust to manufacturer specifications.
- Inspect, clean, or change air filters.
- Calibrate thermostat on/off set points based on building occupancy.
- Tighten all electrical connections, and measure voltage and current on motors.
- Lubricate all moving parts, including motor and fan bearings.
- Inspect and clean the condensate drain.
- Inspect controls of the system to ensure proper and safe operation. Check the starting cycle of the equipment to assure the system starts, operates, and shuts off properly.
- Provide documentation showing completion of the above checklist to the utility's representative.

Baseline and Efficiency Standards

The baseline is a system with demonstrated imbalances of refrigerant charge or pre-tune-up field measured efficiency.

After the tune-up, the equipment must meet airflow and refrigerant charge requirements. To ensure the greatest savings when conducting tune-up services, the eligibility minimum requirement for airflow is the manufacturer specified design flow rate, or 350 CFM/ton, if unknown. Also, the refrigerant charge must be within +/- 3 degrees of target sub-cooling for units with thermal expansion valves (TXV) and +/- 5 degrees of target super heat for units with fixed orifices or a capillary.

The efficiency standard, or efficiency after the tune-up, is assumed to be the manufacturer specified energy efficiency ratio (EER) of the existing central air conditioner or heat pump, or the calculated or measured system EER as detailed next.

Effective January 1, 2023, HVAC minimum efficiencies apply a new M1 rating using the nomenclature of SEER2, EER2 and HSPF2. AHRI approved methods for conversion from EER and SEER through a multiplier of 0.95 and for HSPF, a multiplier of 0.85 (0.84 for packaged units).

³⁹ Based on ENERGY STAR® HVAC Maintenance Checklist. www.energystar.gov/index.cfm?c=heat_cool.pr_maintenance

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life for refrigerant charge correction is 10 years.

Calculation of Deemed Savings

Deemed peak demand and annual energy savings for unitary AC/HP tune-up should be calculated using the following formulas:

$$kW_{savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{EER2_{pre}} - \frac{1}{EER2_{post}}\right) \times CF$$
(42)

$$kWh_{savings,C} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{EER2_{pre}} - \frac{1}{EER2_{post}}\right)$$
(43)

$$kWh_{savings,H} = CAP_{H} \times \frac{1}{1000} \times EFLH_{H} \times \left(\frac{1}{HSPF2_{pre}} - \frac{1}{HSPF2_{post}}\right)$$
(44)

$$kWh_{savings,AC} = kWh_{savings,C}$$

(45)

$$kWh_{savings,HP} = kWh_{savings,C} + kWh_{savings,H}$$
(46)

Where:

 CAP_{C} = Rated or calculated equipment cooling capacity (Btu/hr)

- CAP_H = Rated or calculated equipment heating capacity (Btu/hr)
- 1,000 = Conversion constant for watts to kilowatts
- EER_{pre} = Calculated or measured efficiency of the equipment for cooling before tune-up, see Equation (47) to calculate.
- EER_{post} = Nameplate, measured or calculated efficiency of the existing equipment for cooling; if unknown, use 11.8 EER (default)⁴⁰
- Note: Site measurements may be substituted for EER_{pre} and EER_{post}, providing that the measurements are taken on the same site visit and under similar operating conditions using reliable, industry accepted techniques.
- $HSPF_{pre}$ = Calculated or measured efficiency of the equipment for heating before tune-up, see Equation

 $^{^{40}}$ Code specified SEER value (14 SEER from federal standard effective January 1, 2015) converted to EER using EER = -0.02 x SEER² + 1.12 x SEER. National Renewable Energy Laboratory (NREL). "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. <u>www.nrel.gov/docs/fy11osti/49246.pdf</u>

(50) to calculate.

 $HSPF_{post}$ = Nameplate, measured or calculated efficiency of the existing equipment for heating; if unknown, use 7.7 HSPF (default)

CF = Coincidence Factor = 0.87^{41}

 $EFLH_{C}$ = Equivalent full-load cooling hours (Table 47)

 $EFLH_H$ = Equivalent full-load heating hours (Table 47)

There are two methods for calculating system pre and post efficiencies as described below:

Method 1: Change of efficiency based on change in system charge.

In method 1, the efficiency improvement resulting from the refrigerant charge adjustment depends on the pre-adjustment refrigerant charge. This method may be used for air conditioners and heat pumps operating in cooling mode.

$$EER2_{pre} = (1 - EL) \times EER2_{post}$$
(47)

Where:

 $EER2_{pre}$ = Calculated efficiency of the equipment for cooling before tune-up

 $EER2_{post}^{42}$ = Nameplate efficiency of the existing equipment for cooling; if unknown, use 11.8 EER (default)

EL = Efficiency Loss (Fixed Orifice:

⁴¹See Section 4.2 General Reference Information: Coincidence Factors for HVAC.

⁴² For prior code specified SEER and EER values apply a multiplier of 0.95 to convert to SEER2 and EER2. Code specified SEER values converted to EER using EER = $-0.02 \times (SEER)^2 + 1.12 \times SEER$.

Table 45; TXV:

Table 46) determined by averaging reported efficiency losses from multiple studies.^{43,44,45,46,47} Interpolation of the efficiency loss values presented is allowed. Extrapolation is not allowed.

⁴³ Architectural Energy Corporation, managed by New Buildings Institute. 2003 "*Small HVAC System Design Guide*." Prepared for the California Energy Commission. Figure 11.

⁴⁴ Davis Energy Group. "HVAC Energy Efficiency Maintenance Study." California Measurement Advisory Council (CALMAC). December 29, 2010. Figure 14.

⁴⁵ Proctor Engineering Group. "Innovative Peak Load Reduction Program CheckMe![®] Commercial and Residential AC Tune-Up Project." California Energy Commission. November 6, 2003. Table 6-3.

⁴⁶ Proctor Engineering Group. PEG Tune-Up Calculations spreadsheet.

⁴⁷ Pennsylvania Technical Reference Manual. June 2012. Measure 3.3.2, Table 3-96.

% Charged	EL
≤ 70	0.37
75	0.29
80	0.20
85	0.15
90	0.10
95	0.05
100	0.00
<u>> 120</u>	0.03

Table 45: Efficiency Loss Percentage by Refrigerant Charge Level (Fixed Orifice)

Table 46: Efficiency Loss Percentage by Refrigerant Charge Level (TXV)

% Charged	EL
≤ 70	0.12
75	0.09
80	0.07
85	0.06
90	0.05
95	0.03
100	0.00
<u>≥</u> 120	0.04

Method 2: Calculation of savings based on pre or pre and post measurement of system efficiency, and age of equipment

In calculation method 2, direct site measurements of EER pre and post are used. Pre and post EER measurements should be conducted and the measurements should be taken on the same site visit and under similar operating conditions using reliable, industry accepted techniques.

If onsite measurements are used to determine savings for improvements other than refrigerant charge, then the implementer should use an EUL of three years.

When using this approach, the system capacity (CAPc) is adjusted using the following calculation:

$$CAPc = CAP_{nameplate} \times \frac{EER_{post}}{EER_{namplate}}$$
(48)

In cases where only a pre-tune up efficiency can be completed, then post tune-up efficiency may be estimated using the lesser of the nameplate efficiency or the results from the below equation estimates the efficiency of the unit based on the age as well as typical maintenance practices of the customer.

$$EER_{post} = \frac{EER_{pre}}{(1-M)^{age}}$$
(49)

Where:

M = Maintenance factor⁴⁸, use 0.01 if annual maintenance conducted or 0.03 if maintenance is seldom; use default value of 0.03 if maintenance history is unknown.

Age = Age of equipment in years, up to a maximum of 20 years, use a default of 10 years if unknown.

Heat Pump Heating Credit

For heat pump systems, an additional saving credit may be taken as follows:

$$HSPF_{pre} = HSPF_{post} \times (1 - M)^{age}$$
(50)

Where:

- $HSPF_{post}^{49} =$ Nameplate efficiency of the existing equipment for heating; if unknown use 7.7 HSPF (default)
- M = Maintenance factor⁵⁰, use 0.01 if annual maintenance conducted or 0.03 if maintenance is seldom; use default value of 0.03 if maintenance history is unknown.

Age = Age of equipment in years, up to a maximum of 20 years, use a default of 10 years if unknown.

Table 47: Equivalent Full-Load Cooling/Heating Hours⁵¹

Weather Zone and Location	EFLH _C	EFLH _H
Zone 9 - Fayetteville	1,305	1,868
Zone 8 - Fort Smith	1,432	1,738
Zone 7 - Little Rock	1,583	1,681
Zone 6 - El Dorado	1,738	1,521

⁴⁸ "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. Table 32. Page 40. http://www.nrel.gov/docs/fy11osti/49246.pdf

⁴⁹ AHRI recommends that previously rated HSPF values are converted to HSPF2 values for split systems by applying a 0.85 multiplier and for packaged systems, a 0.84 multiplier is to be used. Default value here is applying a multiplier of 0.85.

⁵⁰ "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. Table 32. Page 40. http://www.nrel.gov/docs/fy11osti/49246.pdf

⁵¹ ENERGY STAR® Central HP Calculator, accessed in 2016. Explanation on EFLH values can be found in the following ACEEE paper, <u>https://www.aceee.org/files/proceedings/2016/data/papers/1_1168.pdf</u>

2.1.6 Central Air Conditioner Replacement

Measure Description

This measure involves a residential retrofit with a new central air conditioning system or the installation of a new central air conditioning system in a residential new construction (packaged unit, or split system consisting of an indoor unit with a matching remote condensing unit). Maximum cooling capacity per unit is 65,000 BTU/hour. This measure applies to all residential applications. Air conditioning equipment shall be properly sized to the dwelling, based on ASHRAE or ACCA Manual J standards. Manufacturer data sheets on installed air conditioning equipment or the AHRI reference number must be provided to the utility. The installed central air conditioning equipment must be AHRI certified.

Baseline and Efficiency Standards

New federal standards defining regional efficiency levels become effective January 1, 2023. The new standards require any residential central air conditioner manufactured in, or imported into, the United States in the Southeast or Southwest regions to have a minimum efficiency rating meeting the following efficiency requirements:⁵²

- Split system air conditioners < 45,000 Btu/h 14.3 SEER2, 11.7 EER2
- Split system air conditioners >= 45,000 Btu/h 13.8 SEER2, 11.2 EER2
- Single-package air conditioners <=65,000 Btu/h 13.4 SEER2, 10.6 EER2

For equipment not rated under the new testing procedure, AHRI recommends the following conversion factors as noted in the table below. The values noted in the table would be used as a multiplier for previous values of SEER and EER to bring them to a comparative metric of SEER2 and EER2.

System Type	SEER2	EER2
Ducted	0.95	0.95
Ductless	1.00	1.00
Packaged	0.95	0.95

Table 48: Conversion Multiplier

Baseline efficiencies for this measure can be seen in Table 49. For new construction (NC) and ROB projects, the cooling baseline is the current federal minimum standard effective January 1, 2023. For early retirement (ER) projects, the baseline is the previous federal standard that was in place based on the age of the replaced equipment.

Furthermore, for ER, the maximum lifetime age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

⁵² The 2023 federal standards (10 CFR 430.32(c)(5)) are in terms of an updated metric, depicted as SEER2 and manufacturers must certify their products meet the standard according to the new test procedure and new metrics. (<u>https://www.regulations.gov/document/EERE-2014-BT-STD-0048-0200</u>). SEER2 requirements are for the Southwest and Southeast regions. EER2 values only required for the Southwest region but will be used in this chapter to calculate demand savings.

	Product Class Capacity Range		Early Retirement	
Product Class	Capacity Kange	Baseline before 1/23/2015	Baseline on or after 1/1/2015	Baseline as of 1/1/2023*
Split System Air Conditioner	<45,000 Btu/h			14.3 SEER2 11.7 EER2**
	>=45,000 Btu/h and <= 65,000 Btu/h	13 SEER 11.2 EER	14 SEER 11.8 EER	13.8 SEER2 11.2 EER2**
Single Package Air Conditioner	<= 65,000 Btu/h			13.4 SEER2 10.6 EER2

Table 49: Central Air Conditioner Replacement – Baselines for SEER/SEER253 and EER/EER254

* Non-compliant equipment installed after January 1, 2023 must meet DOE approved test method allowance for equivalent rated SEER2 levels in accordance to 10 CF429.16 (a)(1) and 429.16(b)(2)(i). ** For split-system air conditioners with a SEER2 greater than or equal to 15.2, the minimum EER2 efficiency drops to 9.8 EER2.⁵⁵

Estimated Useful Life (EUL)

The average lifetime of this measure is 25 years.⁵⁶

Calculation of Deemed Savings

Replace-on-Burnout

$$kW_{savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{EER2_{base}} - \frac{1}{EER2_{post}}\right) \times CF$$
(51)

$$kWh_{Savings} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{SEER2_{base}} - \frac{1}{SEER2_{post}}\right)$$
(52)

⁵³ The 2023 federal standards (10 CFR 430.32(c)(5)) are in terms of an updated metric, depicted as SEER2 and manufacturers must certify that their products meet the standard according to the new test procedure and new metrics. (<u>https://www.regulations.gov/document/EERE-2014-BT-STD-0048-0200</u>). SEER2 values in this table are taken from the Southeast region requirements.

 $^{^{54}}$ EER values are not specified in federal standards for the Southeast region. Code specified SEER values converted to EER using EER = -0.02 x (SEER)² + 1.12 x SEER. EER2 code specified values are taken from the Southwest minimum requirements.

⁵⁵ <u>10 CFR 430.32(c)(6)(i)</u> at table note \dagger (single dagger)

⁵⁶ Connecticut Measure Life/EUL Update Study-Residential and Commercial HVAC, X2001, Evergreen Economics & Michaels Energy, May 11, 2023

Where:

- CAP_{C} = Rated equipment cooling capacity of the new unit (Btu/hr)
- $EER2_{base}$ = Full-load energy efficiency rating of the baseline equipment for cooling (Table 49)
- $EER2_{post}$ = Nameplate full-load energy efficiency rating of the installed equipment for cooling (at least equal to value from Table 49)
- $SEER2_{base}$ = Seasonal energy efficiency rating of the baseline equipment for cooling (Table 49)
- $SEER2_{post}$ = Nameplate seasonal energy efficiency rating of the installed equipment for cooling (at least equal to value from (Table 49)

 $CF = \text{Coincidence factor} = 0.87^{57}$

 $EFLH_{C}$ = Equivalent full-load cooling hours (Table 50)

Table 50: Central AC Replacement – Equivalent Full-Load Cooling Hours⁵⁸

Weather Zone and Location	EFLH _C
Zone 9 - Fayetteville	1,305
Zone 8 - Fort Smith	1,432
Zone 7 - Little Rock	1,583
Zone 6 - El Dorado	1,738

Early Retirement

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (25 RUL)

For the RUL (Table 51):

$$kW_{savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{EER2_{base}} - \frac{1}{EER2_{post}}\right) \times CF$$
(53)

$$kWh_{Savings} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{SEER2_{base}} - \frac{1}{SEER2_{post}}\right)$$
(54)

⁵⁷ See Section 4.2 General Reference Information: Coincidence Factors for HVAC.

⁵⁸ ENERGY STAR® Central AC Calculator: accessed in 2016. Explanation on EFLH values can be found in the following ACEEE paper, <u>https://www.aceee.org/files/proceedings/2016/data/papers/1_1168.pdf</u>

For the remaining time in the EUL period (25 – RUL):

Calculate annual savings as you would for a replace-on-burnout project using Equations 46 and 47.

Lifetime kWh savings for Early Retirement Projects is calculated as follows:

$$LifetimekWh_{savings} = [(kWh_{savings,ER} \times RUL) + (kWh_{savings,ROB} \times (EUL - RUL))]$$

Where:

ROB = Replace-on-Burnout

ER = Early Retirement

 CAP_{C} = Rated equipment cooling capacity of the new unit (Btu/hr)

1,000 = Conversion constant from watts to kilowatts

- $EER2_{base}^{59}$ = Full-load energy efficiency rating of the baseline equipment for cooling, converted from previous standard EER baseline (Table 49)
- $EER2_{post}$ = Nameplate full-load energy efficiency rating of the installed equipment for cooling (at least equal to value from Table 49)
- $SEER2_{base}^{60}$ = Seasonal energy efficiency rating of the baseline equipment for cooling, converted from previous standard SEER baseline (Table 49)
- SEER2_{post} = Nameplate seasonal energy efficiency rating of the installed equipment for cooling (at least equal to value from Table 49)

 $CF = \text{Coincidence factor} = 0.87 \text{ (default)}^{61}$

 $EFLH_C$ = Equivalent full-load cooling hours (Table 50)

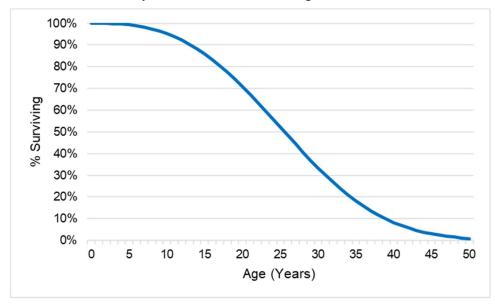
RUL = Remaining Useful Life (Table 51)

EUL = Estimated Useful Life = 25 years

60 ibid.

(55)

⁵⁹ For ducted/packaged systems, prior code specified SEER and EER value should be converted to SEER2 and EER2 by multiplying the code specified value by 0.95. For ductless systems, no multiplier is needed. This is based on the equivalency methodology comparing SEER2 efficiency values against comparable split system ACs <45,000 Btu/h of SEER 15 and >=45,000 Btu/h of SEER 14.5 (see Federal Code of Regulations, 2017-01-06 Energy Conservation Program: Energy Conservation Standards for Residential Central Air-Conditioners and Heat Pumps; Direct final rule; Docket: EERE-2014-BT-STD-0048, Section I Synopsis of the Direct Final Rule). SEER values converted to EER using EER = $-0.02 \times (SEER)^2 + 1.12 \times SEER$.


⁶¹ See Section 4.2 General Reference Information: Coincidence Factors for HVAC.

Age of Replaced System (Years)	RUL (Years)
2	24
3	23
4	22
5	21
6	20
7	19
8	18
9	17
10	16
11	15
12	15
13	14
14	13
15	12
16	12

Age of Replaced System (Years)	RUL (Years)
17	11
18	11
19	10
20	9
21	9
22	8
23	8
24	8
25	7
26	7
27	7
28	6
29	6
30	6

Derivation of RULs

Central air conditioners have an estimated useful life of 25 years. This estimate is consistent with the age at which approximately 50 percent of the central air conditioners installed in a given year will no longer be in service, as described by the survival function in Figure 5.

Figure 5: Survival Function for Central Air Conditioners⁶²

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 5. The age of the central air conditioner being replaced is found on the horizontal axis, and the corresponding percentage of surviving air conditioners is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. The age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

2023.<u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=48&action=viewlive</u> Download TSD at: www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0011-0012.

⁶² Connecticut Measure Life/EUL Update Study – Residential and Commercial HVAC, X2001, Evergreen Economics & Michaels Energy, May 11,

2.1.7 Ground Source Heat Pumps

Measure Description

This measure involves the installation of a water-to-air ground source heat pump as a replacement for an existing air source heat pump (ASHP) or other combination of electric heating and air-to-air cooling system. This measure is only applicable for single-family applications.

The deemed savings apply to units with a capacity of \leq 65,000 BTU/hr.

Baseline and Efficiency Standards

New federal standards affecting heat pumps become effective on January 1, 2023. The new standards effective in 2023 require any residential heat pump manufactured in, or imported into, the south-eastern/southern region of the United States to have a minimum efficiency rating meeting the following:

- Split system heat pumps 14.3 SEER2, 11.7 EER2, 7.5 HSPF2
- Single-package heat pumps 13.4 SEER2, 10.6 EER2, 6.7 HSPF2

The installed ground source heat pump must meet the minimum requirements of the ENERGY STAR® Tier 3 geothermal heat pump key product criteria, effective January 1, 2012, to be eligible for these deemed savings.

Baseline Effective January 1, 2023	ENERGY STAR® Criteria		
Air Source Heat Pump 14.3 SEER2, 9.4 EER2	Closed Loop Water-to-Air	17.1 EER	3.6 COP
7.5 HSPF2 ⁶³ (or 2.20 COP) ⁶⁴	Open Loop Water-to-Air	21.1 EER	4.1 COP

Table 52: Ground Source Heat Pump – Baseline and Efficiency Standards

Estimated Useful Life (EUL)

The average lifetime of this measure is 25 years.⁶⁵

Deemed Savings Values

The existing deemed savings values will continue to be applied until this measure can be updated to reflect the updated baseline, effective January 1, 2023, and updated efficiency standard, effective January 1, 2012. However, projects must still comply with the current baseline and efficiency standard as outlined above.

⁶³ Standard is 7.5 HSPF2 for split systems and 6.7 HSPF2 for packaged systems. 7.5 HSPF2 is assumed because it is more likely that a split system would be installed in a residential setting.

⁶⁴ COP = HSPF x 1055 J/BTU / 3600J/W-hr

⁶⁵ Source DOE Energy Savers website: <u>https://www.energy.gov/energysaver/energy-saver</u>

Desuperheater					
GSHP EfficiencyEnergy Savings (kWh/ton)Demand Saving (kW/ton)					
17.1 EER and above Units	1,104	0.322			
No Desuperheater					
17.1 EER and above Units	1,038	0.246			

Table 53: Ground Source Heat Pump – Deemed Savings Values - Zone 9 Northern Region

 Table 54: Ground Source Heat Pump – Deemed Savings Values - Zone 8 Northeast/North Central Region

Desuperheater				
GSHP EfficiencyEnergy Savings (kWh/ton)Demand Saving (kW/ton)				
17.1 EER and above Units	1,053	0.467		
No Desuperheater				
17.1 EER and above Units	947	0.397		

Table 55: Ground Source Heat Pump – Deemed Savings Values - Zone 7 Central Region

Desuperheater					
GSHP EfficiencyEnergy Savings (kWh/ton)Demand Saving (kW/ton)					
17.1 EER and above Units	1,034	0.404			
No Desuperheater					
17.1 EER and above Units	919	0.333			

Table 56: Ground Source Heat Pump – Deemed Savings Values - Zone 6 South Region

Desuperheater					
GSHP EfficiencyEnergy Savings (kWh/ton)Demand Saving (kW/ton)					
17.1 EER and above Units	892	0.419			
No Desuperheater					
17.1 EER and above Units	721	0.356			

Calculation of Deemed Savings

Deemed savings for this measure were adapted from the Deemed Energy and Demand Savings for Residential Ground Source Heat Pumps Retrofits in the State of Texas study completed by Oak Ridge National Laboratory (ORNL).⁶⁶ Adjustments to the Texas values were based on weather factors comparing the heating and cooling degree days of each of the Arkansas weather climates to those studied in the Texas analysis.

The ORNL study draws from a 1998 analysis based on a study conducted at the Fort Polk Joint Readiness Training Center in Leesville, Louisiana. The Fort Polk study used calibrated simulations of 200 multifamily residences in the complex to estimate energy savings attributable to replacement of air source heat pumps with ground source heat pumps. These estimates were found to be within five percent of actual post-retrofit savings. Building models were developed using TRNSYS.⁶⁷

Using the Fort Polk models, the ORNL study assumed a baseline of a 1.5 ton, 10 SEER air source heat pump. Simulations of low-, medium-, and high-efficiency ground source heat pumps with and without desuperheaters were compared against the baseline unit. The models were run using TMY-2 weather profiles for Texas weather zones. Energy and demand differences between the pre- and post-retrofit models were used to estimate average savings per ton of cooling capacity.

In the 1998 analysis, low-efficiency GSHPs were assumed to be units with an EER of 12.4 and capacity of 19 kBtuh, while medium-efficiency units had an EER of 16.8 and capacity of 21 kBtuh. High-efficiency units had an EER of 18.3, with a capacity of 22 kBtuh.

⁶⁶ Shonder, J. A., Hughes, P. & Thornton, J. 2001. *Development of Deemed Energy and Demand Savings for Residential Ground Source Heat Pump Retrofits in the State of Texas*. Transactions-American Society of Heating, Refrigerating, and Air Conditioning Engineers. 108, no. 1: 953-961.

https://www.proquest.com/openview/0ed6516fed000fa2210958f37767b3f4/1?pq-origsite=gscholar&cbl=34619

⁶⁷ Klein, S. A. 1996. *TRNSYS Manual: A Transient Simulation Program,* Solar Engineering Laboratory, University of Wisconsin-Madison, Version 14.2 for Windows, September.

2.1.8 Heat Pump Replacement

Measure Description

This measure consists of the installation of a new heat pump system (central unit, packaged unit, split system consisting of an indoor unit with one or more matching remote condensing units, or ductless mini-split system⁶⁸) in a residential application. Maximum cooling capacity per unit is 65,000 BTU/hour. Heat pump equipment shall be properly sized to the dwelling based on ASHRAE or ACCA Manual J standards. Manufacturer data sheets for installed air conditioning equipment, or AHRI equivalent combined compressor and coil efficiency ratings, must be provided to the utility. The installed heat pump equipment must be AHRI certified.

Baseline and Efficiency Standards

The baseline efficiency for calculating savings from heat pump replacements will depend on the efficient equipment replacement type (new construction, replace on burnout or early retirement) as well as the baseline heating system type including equipment age, if available.

New federal standards effective on January 1, 2023 identify minimum efficiency values based on a new metric referenced as SEER2, EER2 and HSPF2⁶⁹. For equipment not rated under the new testing procedure, AHRI recommends the following conversion factors as noted in the table below. The values noted in the table would be used as a multiplier for previous values of SEER, EER and HSPF to bring them to a comparative metric of SEER2, EER2 and HSPF2.

System Type	SEER2	EER2	HSPF2
Ducted	0.95	0.95	0.85
Ductless	1.00	1.00	0.90
Packaged	0.95	0.95	0.84

 Table 57 - Conversion Multipliers

⁶⁸ Combination mini-split ductless heat pump and heat pump water heater systems are eligible and should combine savings, as appropriate, from this measure and from 2.3.1 Water Heater Replacement.

⁶⁹ US Department of Energy, 10 CFR Part 430 Subpart B – Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioning and Heat Pumps.

Project Type	Baseline Equipment Type	SEER2/EER2*	HSPF2
New Construction or Replace on	Split ASHP (ducted or ductless)	14.3 SEER2 11.7 EER2	7.5 HSPF2
Burnout (ROB)	Packaged ASHP (ducted)	13.4 SEER2 10.6 EER2	6.7 HSPF2
Early Retirement (Manufactured	Standard ASHP	12.8 SEER2 10.4 EER2	6.9 HSPF2 (split)6.7 HSPF2 (packaged)
1/1/2015 through 12/31/2022)	Central AC	12.8 SEER2 10.4 EER2	
Early Retirement (Manufactured	Standard ASHP	11.9 SEER2 9.7 EER2	6.5 HSPF2
1/23/2006 through 12/31/2014)	Central AC	11.9 SEER2 9.7 EER2	
Early Retirement	Standard ASHP	12.3 SEER2 10.0 EER2	6.6 HSPF2
(Unknown Manufacture Date)	Central AC	12.3 SEER2 10.0 EER2	
Replace on Burnout or Early Retirement	Electric Resistance Furnace		3.41 HSPF2
*All systems rated 15	5.2 SEER2 or higher should	use 9.8 EER2.	

Table 58: Heat Pump Replacement – Baseline Standards⁷⁰

 $^{^{70}}$ Non-compliant equipment installed after January 1, 2024 must meet DOE approved test method allowance for equivalent rated SEER levels in accordance to 10 CF429.16 (a)(1) and 429.16(b)(2)(i). Unknown manufacture date baseline efficiencies are calculated by taking the average the early retirement categories for 2006–2014 and 2015–2022.

Project Type	Before 1/23/2006	After 1/23/2006	After 1/1/2015	Baseline as of 1/1/2024		
New Construction Replace-on- Burnout	13 SEER 11.2 EER 7.7 HSPF		14 SEER 11.8 EER 8.2 HSPF (Split) 8.0 HSPF (Packaged)	For Split Systems: 14.3 SEER2 11.7 EER2 7.5 HSPF2 For Packaged Systems: 13.4 SEER2 10.6 EER2 6.7 HSPF2		
Early Retirement, Heat Pumps	10 SEER (Split)9.7 SEER (Packaged)9.2 EER6.8 HSPF (Split)6.6 HSPF (Packaged)	13 SEER 11.2 EER 7.7 HSPF (Split)		13.3 SEER2 10.6 EER2 6.5 HSPF2 (Split) 6.5 HSPF2 (Packaged)		
Early Retirement, Electric Resistance	10 SEER 9.2 EER 3.41 HSPF	13 SEER 11.2 EER 3.41 HSPF		13.3 SEER2 10.6 EER2 3.41 HSPF2		
* Non-compliant equipment installed after January 1, 2024 must meet DOE approved test method allowance for equivalent rated SEER levels in accordance to 10 CF429.16 (a)(1) and 429.16(b)(2)(i). ** For split-system heat pumps with a SEER2 greater than or equal to 15.2, the minimum EER2 efficiency drops to 9.8 EER2.						

Estimated Useful Life (EUL)

The average lifetime is 20 years for ducted heat pumps (i.e., central unit, packaged unit, and split system) and 17 years for ductless mini-split systems.⁷¹

Calculation of Deemed Savings

Replace-on-Burnout

$$kW_{Savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{EER2_{base}} - \frac{1}{EER2_{post}}\right) \times CF$$
(56)

 $kWh_{Savings} = kWh_{Savings,C} + kWh_{Savings,H}$

(57)

$$kWh_{Savings,C} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{SEER2_{base}} - \frac{1}{SEER2_{post}}\right)$$
(58)

$$kWh_{Savings,H} = CAP_{H} \times \frac{1}{1000} \times EFLH_{H} \times \left(\frac{1}{HSPF2_{base}} - \frac{1}{HSPF2_{post}}\right)$$
(59)

Where:

 CAP_{C} = Rated equipment cooling capacity of the new unit (Btu/hr)

 CAP_H = Rated equipment heating capacity of the new unit (Btu/hr)

 $EER2_{base}$ = Full-load energy efficiency rating of the baseline equipment for cooling (Table 58)

- $EER2_{post}$ = Nameplate full-load energy efficiency rating of the installed equipment for cooling (at least equal to value from Table 58
- SEER2_{base} = Seasonal energy efficiency rating of the baseline equipment for cooling Table 58
- SEER2_{post} = Nameplate seasonal energy efficiency rating of the installed equipment for cooling (at least equal to value from Table 58)
- $HSPF2_{base}$ = Heating seasonal performance factor rating of the baseline equipment for heating (Table 58)
- $HSPF2_{post}$ = Nameplate heating seasonal performance factor rating of the installed equipment for heating (at least equal to value from Table 58)

⁷¹ Connecticut Measure Life/EUL Update Study – Residential and Commercial HVAC, X2001, Evergreen Economics & Michaels Energy, May 11, 2023.

Download TSD at: www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0011-0012.

 $CF = \text{Coincidence factor} = 0.87 \text{ (default)}^{72}$

 $EFLH_{c}$ = Equivalent full-load cooling hours (Table 59)

 $EFLH_H$ = Equivalent full-load heating hours (Table 59)

Weather Zone and Location	EFLH _C	EFLH _H
Zone 9 - Fayetteville	1,305	1,868
Zone 8 - Fort Smith	1,432	1,738
Zone 7 - Little Rock	1,583	1,681
Zone 6 - El Dorado	1,738	1,521

Early Retirement

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (20 RUL).

For the RUL (Table 60):

$$kW_{Savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{EER2_{base}} - \frac{1}{EER2_{post}}\right) \times CF$$
(60)

$$kWh_{Savings} = kWh_{Savings,C} + kWh_{Savings,H}$$

(61)

$$kWh_{Savings,C} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{SEER2_{base}} - \frac{1}{SEER2_{post}}\right)$$
(62)

$$kWh_{Savings,H} = CAP_H \times \frac{1}{1000} \times EFLH_H \times \left(\frac{1}{HSPF2_{base}} - \frac{1}{HSPF2_{post}}\right)$$
(63)

⁷²See Section 4.2 General Reference Information: Coincidence Factors for HVAC.

⁷³ ENERGY STAR® Central HP Calculator: accessed in 2016. Explanation on EFLH values can be found in the following ACEEE paper, <u>https://www.aceee.org/files/proceedings/2016/data/papers/1_1168.pdf</u>

For the remaining time in the EUL period (20 - RUL):

Calculate annual savings as you would for a replace-on-burnout project using Equations (56), (58), and (59). Lifetime kWh savings for Early Retirement Projects is calculated as follows:

$$LifetimekWh_{savings} = [(kWh_{savings,ER} \times RUL) + (kWh_{savings,ROB} \times (EUL - RUL))]$$

Where:

ROB =Replace-on-Burnout

ER = Early Retirement

 CAP_{C} = Rated equipment cooling capacity of the new unit (Btu/hr)

1,000 = Conversion constant from watts to kilowatts

 $EER2_{base}$ = Full-load energy efficiency rating of the baseline equipment for cooling (Table 58)

- $EER2_{post}$ = Nameplate full-load energy efficiency rating of the installed equipment for cooling (at least equal to value from Table 58)
- $SEER2_{base}$ = Seasonal energy efficiency rating of the baseline equipment for cooling (Table 58)
- SEER2_{post} = Nameplate seasonal energy efficiency rating of the installed equipment for cooling (at least equal to value from Table 58)
- $HSPF2_{base}$ = Heating seasonal performance factor rating of the baseline equipment for heating (Table 58)
- $HSPF2_{post}$ = Nameplate heating seasonal performance factor rating of the installed equipment for heating (at least equal to value from Table 58)

 $CF = \text{Coincidence factor} = 0.87^{74}$

 $EFLH_{C}$ = Equivalent full-load cooling hours (Table 59)

 $EFLH_H$ = Equivalent full-load cooling hours (Table 59)

RUL = Remaining Useful Life (Table 60)

EUL = Estimated Useful Life = 20 years

(64)

⁷⁴See Section 4.2 General Reference Information: Coincidence Factors for HVAC.

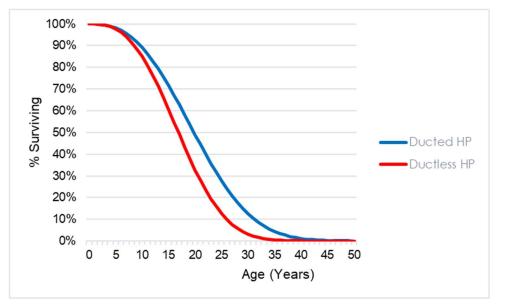

Age of Replaced System (Years)	RUL (Years)	Age of Replaced System (Years)	RUL (Years)
2	18	17	7
3	17	18	7
4	16	19	6
5	15	20	6
6	14	21	6
7	13	22	5
8	12	23	5
9	12	24	5
10	11	25	4
11	10	26	4
12	10	27	4
13	9	28	4
14	8	29	4
15	8	30	3
16	7		

Table 60: Remaining Useful Life (RUL) of Replaced Ducted Heat Pumps⁷⁵

Derivation of RULs

Ducted heat pumps have an EUL of 20 years and ductless mini-split heat pumps have an EUL of 17 years. This estimate is consistent with the age at which approximately 50 percent of the central heat pumps installed in a given year will no longer be in service, as described by the survival function in Figure 6.

⁷⁵ Connecticut Measure Life/EUL Update Study – Residential and Commercial HVAC, X2001, Evergreen Economics & Michaels Energy, May 11, 2023.

Figure 6: Survival Function for Ducted and Ductless Heat Pumps⁷⁶

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 6. The age of the central heat pump being replaced is found on the horizontal axis, and the corresponding percentage of surviving heat pumps is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. The age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

2023.<u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=48&action=viewlive</u> Download TSD at: www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0011-0012.

⁷⁶ Connecticut Measure Life/EUL Update Study – Residential and Commercial HVAC, X2001, Evergreen Economics & Michaels Energy, May 11,

2.1.9 Hydronic Heating

Measure Description

Hydronic heating systems require installation of both a fan coil air handler and one or more tankless gas water heaters and accessories. These systems are expensive as they require extensive piping to install correctly and possibly more than one tankless water heater in order to meet the heating loads of the home. In addition, a secondary heat exchanger may be required by local codes. Given the high incremental costs, customers should be aware that these systems may not be cost effective, even with high gas savings. This measure is only applicable for single-family applications.

Baseline and Efficiency Standards

This measure applies to newly constructed homes only. The baseline for this measure is a new home that meets the state of Arkansas's residential energy code. All jurisdictions in Arkansas have adopted the 2009 IECC. The baseline home assumes the installation of a gas furnace and gas water heater that meets the current minimum federal standard efficiency requirements.

To be eligible for this program, the hydronic furnace must have a minimum AFUE rating of 90 percent. The installed tankless water heaters should have a minimum Energy Factor of 0.82.

Estimated Useful Life (EUL)

The estimated measure life is based on the 20-year life of the instantaneous water heater, according to DEER 2008.

Deemed Savings Values

Please note that the savings are a factor to be multiplied by the MBH (kBTU/hr) rating of the installed equipment. Gas Heat (with no AC) kWh applies to forced air furnace systems only.

Unit	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC Peak (kW)	Peak Gas (Therms)
Hydronic System	per MBH	per MBH	per MBH	per MBH	per MBH
90% AFUE and 0.89 EF	0	0	2.16	0	0.03795
90% AFUE and 0.82 EF	0	0	2.00	0	0.03744

Table 61: Hydronic Heating – Deemed Savings Values - Zone 9 Northern Region

Unit	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC Peak kW	Peak Gas Therms ⁷⁷
Hydronic System	per MBH	per MBH	per MBH	per MBH	per MBH
90% AFUE and 0.89 EF	0	0	2.16	0	0.03333
90% AFUE and 0.82 EF	0	0	2.00	0	0.03282

Table 62: Hydronic Heating – Deemed Savings Values - Zone 8 Northeast/North Central Region

Unit	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC Peak kW	Peak Gas Therms
Hydronic System	per MBH	per MBH	per MBH	per MBH	per MBH
90% AFUE and 0.89 EF	0	0	1.96	0	0.02830
90% AFUE and 0.82 EF	0	0	1.81	0	0.02785

Table 64: Hydronic Heating – Deemed Savings Values - Zone 6 South Region

Unit	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC Peak kW	Peak Gas Therms
Hydronic System	per MBH	per MBH	per MBH	per MBH	per MBH
90% AFUE and 0.89 EF	0	0	1.72	0	0.03086
90% AFUE and 0.82 EF	0	0	1.58	0	0.03036

Calculation of Deemed Savings

Deemed savings values have been calculated for each of the four weather zones. The deemed savings are dependent upon the AFUE and Energy Factor of the equipment and are presented as annual therm savings per MBH (kBTU/hr) of furnace capacity, or output.

EnergyGauge USA was used to estimate energy savings for a series of models. Since hydronic heating savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the EnergyGauge building model are outlined in Appendix A.

⁷⁷ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For the 0.89 EF Systems: for Jonesboro, m = 0.9196. For Fort Smith, m = 0.8825. For the 0.82 EF Systems: for Jonesboro, m = 0.9174. For Fort Smith, m = 0.8797.

2.1.10 Window Air Conditioner Replacement

Measure Description

This measure involves replacement of an existing window air conditioner with a new window air conditioner. This measure applies to all residential applications.

Baseline and Efficiency Standards

The baseline is assumed to be a new air conditioning unit with a combined energy efficiency ratio (CEER) rating that meets the current federal standard, which became effective on June 1, 2014.⁷⁸ Efficient equipment must meet the ENERGY STAR® window air conditioning criteria displayed in Table 65.

Reverse Cycle (Yes/No)	Louvered Sides (Yes/No)	Capacity (Btu/hr)	Baseline Efficiency (CEER)	ENERGY STAR Version 5.0 (CEER)	Most Efficient ENERGY STAR (CEER)
		< 6,000	11.0	13.1	14.85
		\geq 6,000 and < 8,000	11.0	13.7	14.85
		\geq 8,000 and < 11,000	10.9	14.7	16.0
No	Yes	\geq 11,000 and < 14,000	10.9	14.7	16.0
		\geq 14,000 and < 20,000	10.7	14.4	16.0
		\geq 20,000 and < 28,000		12.7	13.8
		≥ 28,000	9.0	12.2	13.2
		< 8,000	10.0	12.8	13.5
		≥ 8,000 and < 11,000	9.6	13.0	14.1
No	No	\geq 11,000 and < 14,000	9.5	12.8	13.9
		\geq 14,000 and < 20,000	9.3	12.6	13.7
		≥ 20,000	9.4	12.7	13.8
Var	Vaa	< 20,000	9.8	13.2	14.4
Yes	Yes	≥ 20,000	9.3	12.6	13.7
Vec	Na	< 14,000	9.3	12.6	13.7
Yes	No	≥ 14,000	8.7	11.7	12.8

Table 65: Window AC Replacement – Baseline and Efficiency Standards⁷⁹

⁷⁸ 10 CFR 430.32(b). <u>https://www1.eere.energy.gov/buildings/appliance_standards/</u> standards.aspx?productid=52&action=viewlive#current_standards

⁷⁹ Current federal standards, as well as ENERGY STAR® criteria for room air conditioners can be found on the ENERGY STAR® website at <u>www.energystar.gov/index.cfm?c=roomac.pr_crit_room_ac</u>.

Estimated Useful Life (EUL)

The measure life is 10.5 years⁸⁰.

Calculation of Deemed Savings

$$kW_{Savings} = CAP \times \frac{1}{1000} \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right) \times CF$$

$$kWh_{Savings} = CAP \times \frac{1}{1000} \times RAF \times EFLH_C \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right)$$
(65)

CAP = Rated equipment cooling capacity of the new unit (Btu/hr)

1,000 = Conversion constant from watts to kilowatts

 η_{base} = Energy efficiency rating (CEER) of the baseline cooling equipment (Table 65)

 η_{post} = Energy efficiency rating (CEER) of the installed cooling equipment (Table 65)

 $CF = \text{Coincidence factor} = 0.87^{81}$

RAF = Room AC adjustment factor = 0.49 (default); derivation described in Table 67

 $EFLH_C$ = Equivalent full-load cooling hours (Table 66)

Table 66: Room AC Replacement – Equivalent Full-Load Cooling Hours⁸²

Weather Zone	Location	EFLH _C
Zone 9	Rogers ⁸³	1,305
Zone 8	Fort Smith	1,432
Zone 7	Little Rock	1,583
Zone 6	El Dorado ⁸⁴	1,738

(66)

⁸⁰ DOE's Technical Support Document, Chapter 8: Life Cycle Cost and Payback Period Analyses 2011

⁸¹See Section 4.2 General Reference Information: Coincidence Factors for HVAC .

⁸² ENERGY STAR® Central AC Calculator: accessed in 2016. Explanation on EFLH values can be found in the following ACEEE paper, <u>https://www.aceee.org/files/proceedings/2016/data/papers/1_1168.pdf</u>

⁸³ Rogers, AR not listed. Used average of Springfield, MO and Fort Smith, AR.

⁸⁴ El Dorado, AR not listed. Used average of Little Rock, AR and Shreveport, LA.

The EFLHs from the ENERGY STAR® Room AC savings are the same as those used for the ENERGY STAR® Central AC savings calculator. This is not appropriate as room AC units typically do not run as many hours as central systems. To correct this issue, an adjustment factor of 49 percent is applied to the ENERGY STAR® EFLHs.

This adjustment factor is derived by taking the ratio of average run hours from two sources to the ENERGY STAR® EFLHs. The derivation of this factor is described in Table 67.

Weather Zone and Location	ES EFLH _C	RLW Adj Hours ⁸⁵	AHAM Hours	Avg. Hours	RAF
Zone 9 – Rogers	1,305	431	833	632	0.48
Zone 8 - Fort Smith	1,432	473	978	725	0.51
Zone 7 - Little Rock	1,583	522	1,009	766	0.48
Zone 6 - El Dorado	1,738	573	1,061	817	0.47
Average Derivation					

Table 67: RAF Derivation

The values in the ES EFLHc column are taken directly from the ENERGY STAR® Room AC savings calculator assumptions. The values in the RLW Adj Hours column were calculated by multiplying the ES EFLHC values by a 0.33 factor. The 0.33 factor was derived by taking the ratio of EFLHc specified in a study performed by RLW Analytics for the Northeast Energy Efficiency Partnerships' New England Evaluation and State Program Working Group to the EFLHc values from the ENERGY STAR® Room AC savings calculator for the same reference cities (calculator is no longer available on the ENERGY STAR website). The values in the AHAM Hours column were taken directly from the Association of Home Manufacturers (AHAM) Room Air Conditioner calculator (no longer offered on the AHAM website).

⁸⁵ RLW Analytics: *Final Report Coincidence Factor Study Residential Room Air Conditioners*, www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20Grid/117_RLW_CF%20Res% 20RAC.pdf. Derived by taking the average ratio of EFLH for Room ACs (from the RLW Analytics report) to EFLHs for Central ACs for the same location (from the ENERGY STAR® Central AC Calculator).

2.1.11 Duct Sealing

Measure Description

This measure involves sealing leaks in supply and return ducts of the distribution systems of homes or converted residences with either central air conditioning or a ducted heating system. This measure applies to all residential applications.

Baseline and Efficiency Standards

The savings calculation methods for this measure are valid up to a maximum pre-installation leakage rate of 40 percent of total fan flow.⁸⁶ Data from nearly 28,000 single-family and manufactured home duct blaster tests conducted for duct efficiency improvements in Texas between 2003 and 2006 show that more than 70 percent of all pre-retrofit leakage rates fall below 38 percent total leakage.⁸⁷ However, Arkansas specific measurements indicate that higher leakages in manufactured homes are common. Therefore, the cap for manufactured homes only is set to 50 percent of total fan flow.⁸⁸

Engineering calculations show that the interior temperature in those settings that exceed 40 percent total leakage would be above the thermally acceptable comfort levels published by ASHRAE in its 2009 *Fundamentals* publication. Homeowners would likely take steps to remedy the situation independent of the program long before their duct system reached these leakage levels, and certainly before the rated useful life of the duct leakage measure. The proposed pre-installation leakage limits will help ensure that the deemed savings are an accurate reflection of the program's impacts, and that the program focus is on scenarios where leakage conditions are likely to persist if unaddressed for several years.

Materials used should be long-lasting materials, such as mastics, UL 181A or UL 181B approved foil tape, or aerosol-based sealants. Fabric-based duct tape is not allowed.

Estimated Useful Life (EUL)

The Estimated Useful Life is 20 years for duct sealing.⁸⁹

Calculation of Deemed Savings

Two methodologies for estimating duct sealing energy savings are provided. The first method, which is the preferred approach, requires duct leakage testing using either a duct pressurization device (e.g., Duct BlasterTM), or a combination duct pressurization and blower door. The second method requires careful inspection of the existing ducts.

Duct Leakage Testing - Measurements to determine pre-installation and post-installation leakage rates must be performed in accordance with utility-approved procedures. In applications where a majority of the ducts are in an unconditioned space, the most commonly-used acceptable test method is the Duct Blaster™ (or equivalent) Total Duct Leakage test. In applications where duct leakage-to-outside must be directly measured, the Project Sponsor may use the Combination Duct Blaster™ (or equivalent) and Blower Door method. Other tests – such as the blower door subtraction method --may be accepted at the utility's discretion.

⁸⁹ Measure Life Report, GDS Associates

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Prior to beginning any installations, the Project Sponsor must submit the intended method(s) and may be required to provide the utility with evidence of competency, such as Home Energy Rating System (HERS) or North American Technician Excellence (NATE) certification.

Leakage rates must be measured and reported at the average air distribution system operating pressure (25 Pa).⁹⁰

2. Evaluation of Distribution Efficiency - This methodology is based on an assumed 5 percent increase in distribution system efficiency (DSE). This assumed value is based on expected DSE improvements determined through evaluation the Building Performance Institute's (BPI) Distribution Efficiency Look-up Table.⁹¹ By assuming an improvement from "significant leaks" to "some observable leaks" or "some observable leaks to "no observable leaks," or "connections sealed with mastic," a conservative estimate of five percent can be identified as typical regardless of duct location and duct insulation value.⁹²

Cooling Savings (Electric):

$$kWh_{savings,C} = \frac{\left(DL_{pre} - DL_{post}\right) \times EFLH_C \times \left(h_{out} \rho_{out} - h_{in} \rho_{in}\right) \times 60}{1000 \times SEER}$$

(6'	7)
10	• •

or

$$kWh_{savings,C} = \frac{\Delta DSE \times EFLH_C \times CAP}{1000 \times SEER}$$

(6	8)	1
L	υ	U)	,

⁹¹ Distribution Efficiency Lookup Table. Building Performance Institute Inc. Updated January 2012. www.bpi.org/files/pdf/DistributionEfficiencyTable-BlueSheet.pdf

⁹² In the referenced table, there are five categories of duct leakage. For duct systems with R-4 to R-7 insulation that are 50% or more outside the conditioned space, the distribution efficiencies associated with the five leakage categories are:

- Connections sealed with mastic: 80%
- No observable leaks: 74%
- Some observable leaks: 70%
- Significant leaks: 65%
- Catastrophic leaks: 60%

For leakage reduction that does not involve any diagnostic testing, and is based solely on the contractors' visual estimate of leakage reduction, the deemed savings are calculated based on the average leakage reduction that would occur if the duct system were improved by one category (e.g., going from "Significant leaks" to "Some observable leaks" or "No observable leaks" to "Connections sealed with mastic"). The percent improvement (per step) going from the leakiest to the tightest leakage category are 5%, 5%, 4%, and 6%. Averaging these improvements yields a deemed improvement of five percent per step.⁹³ ANSI/ASHRAE Standard 152-2004, Table 6.3b

⁹⁰ See RESNET Technical Committee, Proposed Amendment: *Chapter 8 RESNET Standards, 800 RESNET Standard for Performance Testing and Work Scope: Enclosure and Air Distribution Leakage Testing*; Section 803.2 and Table 803.1.

Where:

 DL_{pre} = Pre-improvement duct leakage at 25 Pa (ft³/min)

 DL_{post} = Post-improvement duct leakage at 25 Pa (ft³/min)

 ΔDSE = Assumed improvement in distribution system efficiency = 5% = 0.05

 $EFLH_c$ = Equivalent full load cooling hours (Table 69)

 h_{out} = Outdoor design enthalpy (Btu/lb) (Table 68)

 h_{in} = Indoor design enthalpy (Btu/lb.) (Table 68)

Table 68: Enthalpy at Design Conditions⁹³

Weather Zone and Location	h out	h,in
Zone 9 - Rogers ⁹⁴	39	30
Zone 8- Fort Smith	39	29
Zone 7- Little Rock	40	30
Zone 6- El Dorado	40	30

 ρ_{out} = Density of outdoor air at 95°F = 0.0740 (lb./ft³)⁹⁵

 ρ_{in} = Density of conditioned air at 75°F = 0.0756 (lb./ft³)⁴

60 =Constant to convert from minutes to hours

CAP = Cooling capacity (BTU/hr)

1,000 = Conversion constant from watts to kilowatts

SEER2 = Seasonal Energy Efficiency Ratio of existing system (Btu/W·hr) = 10.9 (default)⁹⁶

As an example, assume the duct leakage before sealing was measured at 360 CFM and the leakage after sealing was 90 CFM for a house in weather zone 7. The annual savings would be:

 $kWh_{savings,C} = \frac{(360 - 90) \times 1669 \times (40 \times 0.074 - 30 \times 0.0756) \times 60}{1000 \times 11.5} = 1627 \ kWh/year$

⁹³ ANSI/ASHRAE Standard 152-2004, Table 6.3b

⁹⁴ Rogers, AR not available, used data for Fort Smith, AR.

⁹⁵ ASHRAE Fundamentals 2009, Chapter 1: Psychometrics, Equation 11, Equation 41, Table 2

⁹⁶ Average of US U.S. DOE minimum allowed SEER for new air conditioners from 1992-2006 (10 SEER) and after January 23, 2006 (13 SEER) converted to SEER2 by multiplying by 0.95.

Heating Savings (Heat Pump):

$$kWh_{savings,H} = \frac{\left(DL_{pre} - DL_{post}\right) \times 60 \times HDD \times 24 \times 0.018}{1000 \times HSPF}$$

or

$$kWh_{savings,H} = \frac{\Delta DSE \times EFLH_H \times CAP}{1000 \times HSPF}$$

(70)

(69)

Where:

 DL_{pre} = Pre-improvement duct leakage at 25 Pa (ft³/min)

 DL_{post} = Post-improvement duct leakage at 25 Pa (ft³/min)

 ΔDSE = Assumed improvement in distribution system efficiency = 5% = 0.05

 $EFLH_H$ = Equivalent full load heating hours (Table 69)

60 =Constant to convert from minutes to hours

HDD = Heating degree days (Table 2)

24 =Constant to convert from days to hours

0.018 = Volumetric heat capacity of air (Btu/ft³°F)

CAP = Heating capacity (Btu/hr)

1,000 = Conversion constant from watts to kilowatts

HSPF2 = Heating Seasonal Performance Factor of existing system (Btu/W·hr) = 6.20 (default)⁹⁷

Heating Savings (Electric Resistance):

$$kWh_{savings,H} = \frac{\left(DL_{pre} - DL_{post}\right) \times 60 \times HDD \times 24 \times 0.018}{3412}$$
(71)

or

$$kWh_{savings,H} = \frac{\Delta DSE \times EFLH_H \times CAP}{3412}$$
(72)

⁹⁷ Average of DOE minimum allowed HSPF for new heat pumps from 1992-2006 (6.8 HSPF) and after January 23, 2006 (7.7 HSPF), converted to HSPF2 through application of 0.85 multiplier.

⁹⁸.<u>www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72</u>.

^{2.1.11} Duct Sealing

Where:

- DL_{pre} = Pre-improvement duct leakage at 25 Pa (ft³/min)
- DL_{post} = Post-improvement duct leakage at 25 Pa (ft³/min)

 ΔDSE = Assumed improvement in distribution system efficiency = 5% = 0.05

60 =Constant to convert from minutes to hours

HDD = Heating degree days (Table 2)

24 =Constant to convert from days to hours

0.018 = Volumetric heat capacity of air (Btu/ft³°F)

 $EFLH_H$ = Equivalent full load heating hours (Table 69)

CAP = Heating capacity (BTU/hr)

3,412 =Constant to convert from Btu to kWh

Heating Savings (Gas Furnace):

$$Therms_{savings,H} = \frac{\left(DL_{pre} - DL_{post}\right) \times 60 \times HDD \times 24 \times 0.018}{100000 \times AFUE}$$
(73)

or

$$Therms_{savings,H} = \frac{\Delta DSE \times EFLH_H \times CAP}{100000 \times AFUE}$$
(74)

Where:

 DL_{pre} = Pre-improvement duct leakage at 25 Pa (ft³/min)

 DL_{post} = Post-improvement duct leakage at 25 Pa (ft³/min)

 ΔDSE = Assumed improvement in distribution system efficiency = 5% = 0.05

60 =Constant to convert from minutes to hours

HDD = Heating degree days (Table 2)

24 =Constant to convert from days to hours

0.018 = Volumetric heat capacity of air (Btu/ft³°F)

 $EFLH_H$ = Equivalent full load heating hours (Table 69)

CAP = Heating capacity (Btuh or BTU/hr)

100,000 =Constant to convert from Btu to therms

AFUE = Annual Fuel Utilization Efficiency of existing system = 0.78 (default)⁹⁸

 $^{^{98}. \}underline{www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/72.}$

Demand Savings (Cooling):

$$kW_{savings,C} = \frac{kWh_{savings,C}}{EFLH_C} \times CF$$

(75)

Where:

 $kW_{savings,C}$ = Calculated kWh savings for cooling

 $EFLH_C$ = Equivalent full load cooling hours (Table 69)

 $CF = \text{Coincidence factor} = 0.87^{99}$

Table 69: Equivalent Full Load Hours for Heating and Cooling¹⁰⁰

Weather Zone and Location	EFLH _C	EFLH _H
Zone 9 - Fayetteville	1,305	1,868
Zone 8 - Fort Smith	1,432	1,738
Zone 7 - Little Rock	1,583	1,681
Zone 6 - El Dorado	1,738	1,521

⁹⁹ Please see General Reference Information: Coincidence Factors for HVAC.

¹⁰⁰ ENERGY STAR® Central HP Calculator: accessed in 2016. Explanation on EFLH values can be found in the following ACEEE paper, <u>https://www.aceee.org/files/proceedings/2016/data/papers/1_1168.pdf</u>

2.1.12 Smart Thermostats

Measure Description

The Smart Thermostats measure involves the replacement of a manually operated or programmable thermostat with a smart programmable thermostat. This measure applies to all residential applications.

Smart thermostats are the next generation of programmable thermostats, which provide an array of features including automatic occupancy sensing and set-point adjustment. An energy management system that includes a communicating climate control will provide energy users with vastly improved and potentially real-time information on heating, ventilation, and air conditioning (HVAC) consumption and cost.

The location of the smart thermostat can affect its performance and efficiency. To operate properly, a thermostat must be installed on an interior wall away from direct sunlight, drafts, doorways, skylights, and windows.¹⁰¹ Additionally, thermostats should be installed in a location with the house that is regularly occupied while residents are home.

For homes with a central and ducted heat pump, smart thermostats must be capable of controlling heat pumps to optimize energy use and minimize the use of backup electric resistance heat. Because of this, smart thermostats may benefit from professional installation and commissioning to maximize savings. Since models listed on the ENERGY STAR list have been certified to offer such savings by providing a high degree of automation for configuration and optimization of heat pumps, ENERGY STAR certified models will be allowed use of the default Deemed Savings values found in Table 70 for installations other than those provided by HVAC professionals. Ductless mini-split heat pumps are excluded from program savings eligibility unless used as a ducted heat pump with all loads controlled by the smart thermostat.

Smart thermostats have capabilities beyond those found in a traditional programmable thermostat. To qualify as a smart thermostat, the units installed, at a minimum, should have the following capabilities and installation parameters:

- Successful connection to existing WIFI
- Remote adjustment via smart phone or online
- Automatic scheduling
- Energy history

Other optional features include:

- Early on function to allow desired set points to be met at onset of occupancy
- Filter reminders
- On screen indication when temperature is set to an energy saving value
- For heat pumps, smart thermostat must be able to control heat pump to optimize energy use and minimize the use of backup electric resistance heat

¹⁰¹ U.S. DOE, "Thermostats." May 7, 2015. <u>http://energy.gov/energysaver/articles/thermostats</u>.

Baseline and Efficiency Standards

The baseline condition is a manually operated or properly programmed thermostat. A default condition when the baseline thermostat is of unknown type or status is also provided. The Arkansas Energy Code does not require the installation of programmable thermostats. For new construction projects, the baseline condition of a manually operated thermostat may be assumed.

The high efficiency condition is an ENERGY STAR® qualifying smart thermostat. The ENERGY STAR® specification for programmable thermostats was suspended on December 31, 2009, and the ENERGY STAR® label is no longer available for this category. Traditional programmable thermostats are not eligible for this measure.

Estimated Useful Life (EUL)

The estimated useful life for smart thermostats is 11 years.¹⁰²

Deemed Savings Values

For homes with both electric cooling and heating, the deemed savings presented below are additive. Cooling savings should only be claimed for homes with central air conditioning. Heating savings may only be claimed for homes with electric resistance, heat pump, or gas heating. If heating system is unknown, use 33% for electric resistance, 24% for heat pump and 43% for gas heating¹⁰³.

Demand savings from smart thermostats realized through demand response (DR) should be claimed through residential demand response program measurement and verification (M&V). No demand savings should be claimed for this measure, but there may be savings that can be claimed via DR programs.

Baseline	% of population	Electric Cooling Energy (kWh/SF)	Electric Resistance Heating Energy (kWh/SF)	Electric HP Heating Energy (kWh/SF)	Gas Heating Energy (therms/SF)
Manual or manually operated Thermostat	85%	0.450	0.845	0.395	0.037
Properly programmed Programmable Thermostat	15%	0.113	0.212	0.099	0.009
Default		0.399	0.750	0.351	0.033

Table 70: Smart Thermostats – Deemed Savings Values per Square Foot¹⁰⁴ of Conditioned Space

¹⁰² Residential Smart Thermostat Workpaper, SCE (Work Paper SCE17HC054, Revision #0, 2017)

¹⁰³ Energy Source Used for Home Heating Arkansas (https://www.eia.gov/state/print.php?sid=AR#tabs-2) and Table HC6.8 Space heating in homes in the South and West regions,

⁽https://www.eia.gov/consumption/residential/data/2020/hc/pdf/HC%206.8.pdf)

¹⁰⁴ Savings values are normalized based on an average square footage of 1,484 SF based on an implementer-reported average size of homes in a population of 17,677 homes receiving air conditioning upgrade measures.

Calculation of Deemed Savings

Energy savings for this measure are derived from secondary research. Many evaluations and papers were reviewed in the development of savings. Particular studies that were used in the savings calculation include the following:

- 1. The Cadmus Group, 2015, "Evaluation of the 2013–2014 Programmable and Smart Thermostat Program." Vectren Corporation. January 29.
- 2. The Cadmus Group, 2015, "Evaluation of the 2013–2014 Programmable and Smart Thermostat *Program*" Northern Indiana PSCo (NIPSCO), Cadmus 2015
- 3. Navigant Energy, *Residential Smart Thermostats Impact Analysis Electric Findings*, Prepared for ComEd and the Illinois Stakeholder Advisory Group (ISAG), Navigant, February 26, 2016
- 4. Navigant Energy, *Residential Smart Thermostats Impact Analysis Gas Preliminary Findings* Prepared for the Illinois Stakeholder Advisory Group (ISAG), Navigant, December 16, 2015
- 5. Nest Labs, 2015, "Nest White Paper: Energy Savings from the Nest Learning Thermostat: Energy Bill Analysis Results" February. <u>https://nest.com/downloads/press/documents/energy-savings-</u>white-paper.pdf.

This group of evaluations included study of smart thermostats in the Illinois (ISAG), Indiana (Vectren and NIPSCO), and around the country (Nest). The evaluated energy savings from the NIPSCO, Vectren and Nest white papers were similar, while the studies for Illinois, which included both unknown thermostat types in the baseline, showed somewhat less savings.

The tables below present study findings and adjustments for Arkansas for electric and gas savings, respectively.

		kWh Savings Calculation Summary						
Study	City	Evaluated Savings	EFLHc eval	EFLH AR	Savings v. Manual	Savings v. Prog	Saving v. Unknown	
Vectren - Smart	Indianapolis	429	948	1508	682	418	550	
NIPSCO - Smart	South Bend	388	710	1508	824	502	663	
ISAG	Chicago	168	683	1508	371	227	299	
Nest	Continental US	585	1,112	1508	793	485	639	
Vectren - Prog	IN-Indianapolis	332	948	1508	528			
NIPSCO - Prog	IN-South Bend	303	710	1508	643			
Savings	Little Rock & Fort Smith	393	863	1508	668	408	538	

Table 71: Evaluation Results and Calculation Summary for Smart Thermostats, Electric, Annual

		Therm Savings Calculation Summary						
Study	City	Evaluated Savings	EFLHh eval	EFLH AR	Savings v. Manual	Savings v. Prog	Saving v. Unknown	
Vectren - Smart	IN-Indianapolis	69	2152	1710	55	43	49	
NIPSCO - Smart	IN-South Bend	106	2391	1710	76	55	66	
ISAG	IL-Chicago	61	2459	1710	42	32	37	
Nest	Average Cont US	56	2,063	1710	46	35	41	
Vectren - Prog	IN-Indianapolis	30	2152	1710	24			
NIPSCO - Prog	IN-South Bend	57	2391	1710	41			
Savings	Little Rock & Fort Smith	73	2266	1710	55	41	48	

Weather adjustments have been made based on the assumption that savings changes in proportion with published equivalent full load hours (EFLH) for locations representing the evaluation regions v. Arkansas.

Accepting that assumption, savings were adjusted as follows:

$$Savings_{Arkansas} = Savings_{Evaluation \ region} \times \frac{EFLH_{Arkansas}}{EFLH_{Evaluation \ region}}$$
(76)

Applying the ratio of average EFLH¹⁰⁵ values result in the manual thermostat deemed savings presented in Table 70. Cooling savings uses EFLHc values, while heating uses EFLHh values.

Heating savings are converted to kWh for homes with electric resistance heating and heat pumps assuming 100% electric efficiency, a furnace AFUE of 78% and a seasonal heat pump efficiency (HSPF) of 7.3.

For the case of programmable thermostat baselines, the savings calculation relied on Vectren and NIPSCO studies which explicitly calculate savings for both smart and programmable thermostats. Because not all thermostats are programmed correctly, default deemed savings calculation assumes that 50 percent of thermostats are programmable and 30 percent¹⁰⁶ of the baseline programmable thermostats are properly programmed.

¹⁰⁵EFLH values from Energy Star Central Air Conditioner Calculator (Calc_CAC.xls).

¹⁰⁶ *How People Actually Use Thermostats,* A. Meier, C. Aragon, B. Hurwitz, T. Peffer, M Pritoni ACEEE 2010 Summer Study on Energy Efficiency in Buildings,

2.1.13 Ventilation Fans

Measure Description

This measure applies to bathroom and utility room fans that meet the requirements for ventilation fans outlined in ENERGY STAR® Version 4.2 (effective 10/01/2015). The new ventilation fan must have a capacity that is between 10 cfm and 500 cfm.

Baseline and Efficiency Standards

ENERGY STAR® does not specify a baseline efficacy for existing residential ventilation fans. The efficacy of the existing ventilation fan should be used. If the ventilation fan efficacy is not known, or installation in new construction, a conservative improvement of 15 percent should be used above the baseline. The resulting baseline efficacy values are shown in Table 73.

Table 73: Baseline Residential Bathroom Ventilating Fan Efficacy

Air Flow	Baseline Efficacy Level (cfm/W)
Bathroom and Utility Room Fans – 10 to 89 cfm	≤ 2.4
Bathroom and Utility Room Fans – 90 to 200 cfm	≤ 3.0
Bathroom and Utility Room Fans – 201 to 500 cfm	≤ 3.4

The efficient baseline ventilation fan must meet the ENERGY STAR® efficacy and sound level standards, which are provided in Table 74 and Table 75.

Table 74: ENERGY STAR® Qualified Residential Ventilating Fans - Minimum Efficacy Levels

Air Flow	ENERGY STAR® Minimun	ENERGY STAR® Most Efficient uum Efficacy Level (cfm/W)		
Bathroom and Utility Room Fans – 10 to 89 cfm	≥ 2.8			
Bathroom and Utility Room Fans – 90 to 200 cfm	≥ 3.5	≥ 11.4		
Bathroom and Utility Room Fans – 201 to 500 cfm	\geq 4.0			

Table 75: ENERGY STAR® Qualified Residential Ventilating Fans - Maximum Sound Levels

Air Flow	ENERGY STAR®	ENERGY STAR® Most Efficient		
	Maximum Allowable Sound level (Sones)			
Bathroom and Utility Room Fans – 10 to 200 cfm	2.0	< 10		
Bathroom and Utility Room Fans – 201 to 500 cfm	3.0	- ≤ 4.0		

Estimated Useful Life (EUL)

The expected measure life is assumed to be 19 years¹⁰⁷.

Calculation of Deemed Savings

Energy Savings

The annual energy savings are calculated using the following equation:

Annual Energy Savings =
$$CFM \times \left(\frac{1}{\eta_{Baseline}} - \frac{1}{\eta_{Efficient}}\right) \times \frac{1}{1000} \times HOU$$
(77)

Where:

CFM = Nominal capacity of the exhaust fan = between 10 - 500 CFM, or default of 70 CFM

 $\eta_{Baseline}$ = Average efficacy for baseline fan (cfm/W) = Refer to Table 73

 $\eta_{Efficient}$ = Average efficacy for the ENERGY STAR® fan (cfm/W) = actual, or refer to efficacy listed in Table 74 based on the CFM of the installed fan

HOU = hours of use = Actual, or default 792.6¹⁰⁸ hours per year

1,000 = conversion constant for Watts to Kilowatts

Demand Savings

The peak demand electric savings are calculated using the following equation:

Peak Demand Savings =
$$CFM \times \left(\frac{1}{\eta_{Baseline}} - \frac{1}{\eta_{Efficient}}\right) \times \frac{1}{1000} \times CF$$
(78)

Where:

CF = summer peak coincidence factor

 $= 0.1^{109}$

¹⁰⁷ Conservative estimate based upon GDS Associates Measure Life Report "Residential and C&I Lighting and HVAC Measures" 25 years for whole-house fans, and 19 for thermostatically-controlled attic fans.

¹⁰⁸ A Assumed to be consistent with indoor lighting hours of use at 2.17 hours/day (or 792.6 hours/year).conservative of assumption of 438 hours/year was used. A DOE lighting end use study found that a bathroom light runs for 1.2 hours day, or 438 hours per year (1.2 x 365 = 438). It was assumed that the vent fan was in operation whenever the bathroom light was on. Reference: <u>https://www1.eere.energy.gov/buildings/publications/pdfs/ssl/2012_residential-lighting-study.pdf</u>. Page 50. Accessed on August 8, 2017

¹⁰⁹ Assumed to be the same summer coincidence factor as the residential lighting measures.

2.2 Envelope Measures

The residential envelope measures were updated for TRM Version 6.0. Note that Zone 9 (Northern Region) savings values use TMY3 weather data from Rogers, Arkansas. This is a change from using Fayetteville weather in prior TRM versions because weather in Rogers is more representative of the Northwest Arkansas climate.

2.2.1 Attic Knee Wall Insulation

Measure Description

This measure involves adding attic knee wall insulation to uninsulated knee wall areas in residential dwellings of existing construction. A wall with an insulation value of R-0 has no insulation, but does have a nominal wall R-value made up of interior and exterior wall materials, air film and wood studs. This measure applies to all residential applications.

Baseline and Efficiency Standards

This measure applies to existing construction only.

Table 76: Attic Knee Wall Insulation – Baseline and Efficiency Standards

Baseline	Efficiency Standard
Uninsulated knee wall	Minimum R-19 or R-30

Estimated Useful Life (EUL)

The average lifetime of this measure is 30 years.¹¹⁰

Deemed Savings Values

Deemed savings values have been calculated for each of the four weather zones. The deemed savings are dependent on the R-value of the attic knee wall, pre- and post-retrofit.

BEoptTM was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since attic knee wall insulation savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions was used for the analysis. The prototype home characteristics used in the BEoptTM building model are outlined in Appendix A.

Please note that the savings per square foot is a factor to be multiplied by the square footage of the attic knee wall area that is being insulated. Gas Heat (no AC) kWh applies to forced air furnace systems only.

¹¹⁰ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

Insulation Level	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
Installed	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
R-19	1.104	0.131	0.176	5.073465	2.682	0.00079	0.00264
R-30	1.166	0.139	0.187	5.372651	2.839	0.00083	0.00279

 Table 77: Knee Wall Insulation – Deemed Savings Values - Zone 9 Northern Region

Table 78: Knee Wall Insulation – Deemed	Savings Values - Zone	8 Northeast/North Central Region
---	-----------------------	----------------------------------

Insulation Level	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms ¹¹¹
Installed	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
R-19	1.219	0.114	0.158	4.804	2.489	0.00090	0.00271
R-30	1.289	0.121	0.167	5.086	2.634	0.00094	0.00286

Table 79: Knee Wall Insulation – Deemed Savings Values - Zone 7 Central Region

Insulation Level	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
Installed	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
R-19	1.230	0.100	0.140	4.405	2.298	0.00090	0.00244
R-30	1.300	0.106	0.148	4.662	2.430	0.00095	0.00258

Table 80: Knee Wall Insulation – Deemed Savings Values - Zone 6 South Region

Insulation Level Installed	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
Instancu	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
R-19	1.389	0.089	0.123	4.215	2.255	0.00091	0.00226
R-30	1.468	0.094	0.131	4.461	2.384	0.00096	0.00239

¹¹¹ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.887 (R-19), 0.887 (R-30). For Fort Smith, m = 0.858 (R-19), 0.858 (R-30).

2.2.2 Ceiling Insulation

Measure Description

This measure requires adding ceiling insulation above a conditioned area in a residential dwelling of existing construction to a minimum ceiling insulation value of R-38. Savings are also estimated for an optional final insulation level of R-49. This measure applies to all residential applications.

This measure pertains to ceiling insulation only (attic floor). There is a separate measure (Measure 2.2.5) for roof deck insulation.

Baseline and Efficiency Standards

In existing construction, ceiling insulation levels vary greatly, depending on the age of the home, type of insulation, and attic space utilization (such as using the attic for storage and HVAC equipment). The average pre-retrofit insulation level of the treated area will be determined and documented by the insulation contractor according to the ranges in Table 81. Degradation due to age and condition of the existing insulation will need to be considered by the insulation contractor. Care must be exercised in differentiating between an existing R-value in the 0-1 range versus in the 2-4 range as the resulting savings are very sensitive in the lower ranges.

The eligibility standard for this measure (minimum final R-value) is R-38, as specified in IECC 2009. Savings are also provided for R-49 as an optional final R-value, as specified for IECC climate zone 4 beginning in IECC 2012.

Table 81: Ceiling Insulation – Baseline and	l Efficiency Standards
---	------------------------

Baseline	Efficiency Standard
\leq R1	
> R1 to < R5	
\geq R5 to \leq R8	R-38 or R-49
> R8 to < R15	
\geq R15 to \leq R22	

Estimated Useful Life (EUL)

The average lifetime of this measure is 30 years.¹¹²

Deemed Savings Values

Deemed savings values have been calculated for each of the four weather zones. BEoptTM was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine; available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEoptTM building model are outlined in Appendix A.

The deemed savings are based on the R-value of the ceiling insulation pre-retrofit and a combined postretrofit R-value (R-values of the existing insulation and the insulation being added) of at least R-38. Savings are also provided for R-49, and linear interpolation may be used to claim savings for final R-values between

¹¹² As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

R-38 and R-49.

Note that the savings per square foot is a factor to be multiplied by the square footage of the ceiling area over a conditioned space that is being insulated. Gas Heat (no AC) kWh applies to forced air furnace systems only.

For deemed savings for installation between the range of R-38 to R-49, linear interpolation can be used to determine the value that can be claimed as savings.

Deemed Savings for R-38

Table 82: Ceiling Insulation (R-38) – Deemed Savings Values - Zone 9 Nortl	hern Region
There each each and the second of the second s		ner n reegion

Ceiling Insulation Base	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
R-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.716	0.254	0.342	9.366	5.071	0.00140	0.00541
> R1 to < R5	0.969	0.141	0.189	5.212	2.764	0.00080	0.00283
\geq R5 to \leq R8	0.586	0.084	0.114	3.136	1.653	0.00050	0.00164
> R8 to < R15	0.364	0.052	0.070	1.926	1.013	0.00032	0.00100
\geq R15 to \leq R22	0.172	0.025	0.034	0.931	0.486	0.00014	0.00047

Table 83: Ceiling Insulation (R-38) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Ceiling Insulation Base	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings ¹¹³ (therms)
R-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.8642	0.2203	0.3060	8.734	4.572	0.00107	0.00539
> R1 to < R5	1.0497	0.1215	0.1687	4.846	2.495	0.00061	0.00284
\geq R5 to \leq R8	0.6330	0.0728	0.1011	2.909	1.495	0.00038	0.00165
> R8 to < R15	0.3909	0.0446	0.0618	1.784	0.917	0.00025	0.00099
\geq R15 to \leq R22	0.1847	0.0216	0.0299	0.858	0.439	0.00011	0.00048

¹¹³ Data in table are for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m=0.890 (0-1), m = 0.901 (2 to 4), 0.906 (5 to 8), 0.907 (9 to 14), 0.918 (15 to 22). For Fort Smith, m=0.859 (0-1), m = 0.872 (2 to 4), 0.878 (5 to 8), 0.879 (9 to 14), 0.891 (15 to 22).

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Ceiling Insulation Base	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
R-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.8820	0.1933	0.2700	7.936	4.067	0.00201	0.00482
> R1 to < R5	1.0505	0.1070	0.1495	4.401	2.252	0.00118	0.00254
\geq R5 to \leq R8	0.6315	0.0643	0.0898	2.643	1.355	0.00073	0.00149
> R8 to < R15	0.3901	0.0394	0.0551	1.624	0.834	0.00047	0.00090
\geq R15 to \leq R22	0.1854	0.0190	0.0266	0.781	0.400	0.00022	0.00043

Table 84: Ceiling Insulation (R-38) – Deemed Savings Values - Zone 7 Central Region

Table 85: Ceiling Insulation (R-38) – Deemed Savings Values - Zone 6 South Region

Ceiling Insulation Base	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
R-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	2.1230	0.1703	0.2378	7.482	3.873	0.00203	0.00440
> R1 to < R5	1.1967	0.0954	0.1331	4.200	2.180	0.00118	0.00235
\geq R5 to \leq R8	0.7242	0.0578	0.0806	2.545	1.324	0.00073	0.00137
> R8 to < R15	0.4497	0.0356	0.0497	1.574	0.820	0.00047	0.00082
\geq R15 to \leq R22	0.2116	0.0172	0.0240	0.753	0.391	0.00021	0.00040

Deemed Savings for R-49

Table 86: Ceiling Insulation	(R-49) -	- Deemed Savings '	Values - Zone	9 Northern Region
Table 60. Cening Insulation	(11-7)	Decineu Savings	values - Lone	7 Northern Region

Ceiling Insulation Base R-value	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
K-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.756	0.260	0.350	9.578	5.182	0.00143	0.00581
> R1 to < R5	1.009	0.146	0.197	5.424	2.876	0.00084	0.00310
\geq R5 to \leq R8	0.626	0.090	0.121	3.348	1.764	0.00053	0.00185
> R8 to < R15	0.404	0.057	0.077	2.139	1.124	0.00036	0.00116
\geq R15 to \leq R22	0.212	0.031	0.041	1.143	0.597	0.00018	0.00061

Table 87: Ceiling Insulation (R-49) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Ceiling Insulation Base R-	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings ¹¹⁴ (therms)
value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.907	0.225	0.313	8.931	4.673	0.00109	0.00550
> R1 to < R5	1.093	0.126	0.176	5.043	2.596	0.00064	0.00295
\geq R5 to \leq R8	0.676	0.077	0.108	3.105	1.596	0.00040	0.00176
> R8 to < R15	0.434	0.049	0.069	1.981	1.018	0.00027	0.00110
\geq R15 to \leq R22	0.228	0.026	0.037	1.055	0.539	0.00013	0.00058

Table 88: Ceiling Insulation (R-49) – Deemed Savings Values - Zone 7 Central Region

Ceiling Insulation Base R-value	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.925	0.198	0.276	8.115	4.159	0.00207	0.00492
> R1 to < R5	1.093	0.111	0.156	4.581	2.344	0.00124	0.00264
\geq R5 to \leq R8	0.674	0.069	0.096	2.822	1.447	0.00079	0.00159
> R8 to < R15	0.433	0.044	0.061	1.803	0.926	0.00053	0.00100
\geq R15 to \leq R22	0.228	0.023	0.033	0.960	0.492	0.00027	0.00053

¹¹⁴ Data in table are for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m=0.897 (0-1), m = 0.904 (2 to 4), 0.907 (5 to 8), 0.907 (9 to 14), 0.918 (15 to 22). For Fort Smith, m=0.869 (0-1), m = 0.878 (2 to 4), 0.883 (5 to 8), 0.883 (9 to 14), 0.894 (15 to 22).

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Ceiling Insulation Base R-value	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
Duse It vulue	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	2.173	0.174	0.243	7.657	3.964	0.00208	0.00449
> R1 to < R5	1.247	0.099	0.139	4.375	2.271	0.00123	0.00244
\geq R5 to \leq R8	0.774	0.061	0.086	2.719	1.415	0.00078	0.00146
> R8 to < R15	0.500	0.039	0.055	1.748	0.911	0.00053	0.00090
\geq R15 to \leq R22	0.262	0.021	0.030	0.928	0.482	0.00027	0.00048

Table 89: Ceiling Insulation (R-49) – Deemed Savings	Values - Zone	6 South Region
Table 07. Cening Insulation (IX 77,	j Deemeu Savings	values Lone	o South Region

2.2.3 Wall Insulation

Measure Description

This measure consists of adding wall insulation in the wall cavity in residential dwellings of existing construction. This measure applies to all residential applications.

Baseline and Efficiency Standards

In order to qualify for this measure, there must be no existing wall cavity insulation. Post-retrofit condition will be a wall cavity filled with either fiberglass or cellulose insulation (R-13 nominal value), open cell insulation (R-13 nominal value), or closed cell foam insulation (R-23 nominal value). Each type of insulation's nominal R-value depends on a full thickness application within the cavity of a wall with 2x4 inch studs.

Baseline	Efficiency Standard (Nominal R-Values)					
	Fiberglass/Cellulose	R-13				
Uninsulated wall cavity	Open Cell Foam	R-13				
	Closed Cell Foam	R-23				

Estimated Useful Life (EUL)

The average lifetime of this measure is 30 years.¹¹⁵

Deemed Savings Values

Deemed savings values have been calculated for each of the four weather zones. The deemed savings are dependent on the R-value of the wall pre- and post-retrofit. BEopt[™] was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since wall insulation savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEopt[™] building model are outlined in Appendix A.

The savings per square foot is a factor to be multiplied by the surface area of the newly-insulated exterior wall. The exterior wall must insulate a conditioned space and shall not include window or door area. Electrical energy savings for Gas Heat (no AC) are the reduction in electricity used by the furnace's air handler during the heating season.

Deemed savings for R-13 can be achieved with either fiberglass, cellulose, or open cell foam insulation. Deemed savings for R-23 is only applicable to closed cell insulation. The R-value represents the nominal value of the cavity insulation and not the R-value of the wall assembly.

For deemed savings for installation between the range of R-13 to R-23, linear interpolation can be used to determine the value that can be claimed as savings.

¹¹⁵ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

Equipment Type	kWh per ft ²		kW Peak per ft ²		Therms per ft ²		Peak Therms per ft ²	
	R-13	R-23	R-13	R-23	R-13	R-23	R-13	R-23
AC with Gas Heat	0.527	0.563	0.00041	0.00048	0.267	0.295	0.0043	0.00454
Gas Heat Only (no AC)	0.206	0.226		n/a	0.278	0.305	0.0045	0.00454
AC with Electric Resistance	6.644	7.324	0.00041	0.00048	n/a		n/a	
AC with Heat Pump	3.424	3.447	47 0.00041 0.00048 n/a		n/a		n/	a

 Table 91: Wall Insulation – Deemed Savings Values - Zone 9 Northern Region

Table 92: Wall Insulation – Deemed Savings Values - Zone 8 Northeast/North Central Region

Equipment Type	kWh per ft ²		kW Peak per ft ²		Therms per ft ²		Peak Therms per ft ²	
	R-13	R-23	R-13	R-23	R-13	R-23	R-13	R-23
AC with Gas Heat	0.586	0.625	0.00027	0.00029	0.239	0.264	0.00409	0.0042 9
Gas Heat Only (no AC)	0.179	0.197	n	n/a		0.275	0.00409	0.0042 9
AC with Electric Resistance	6.059	6.689	0.00027	0.00029	n/a		n/a	
AC with Heat Pump	2.946	2.980	0.00023	0.00025	n/a		n/a	

Table 93: Wall Insulation – Deemed Savings Values - Zone 7 Central Region

E	kWh per ft ²		kW Peak Savings per ft ²		Therms per ft ²		Peak Therms per ft ²	
Equipment Type	R-13	R-23	R-13	R-23	R-13	R-23	R-13	R-23
AC with Gas Heat	0.570	0.607	0.00047	0.00071	0.207	0.230	0.0036 8	0.0037 7
Gas Heat Only (no AC)	0.156	0.173	n	n/a		0.242	0.0036 8	0.0037 7
AC with Electric Resistance	5.315	5.900	0.00047	0.00072	n/a		n	/a
AC with Heat Pump	2.479	2.592	0.00047	0.00061	n/a		n	/a

Equipment Type	kWh per ft ²		kW Peak Savings per ft ²		Therms per ft ²		Peak Therms per ft ²	
	R-13	R-23	R-13	R-23	R-13	R-23	R-13	R-23
AC with Gas Heat	0.712	0.751	0.00046	0.00084	0.178	0.202	0.00333	0.00354
Gas Heat Only (no AC)	0.134	0.151	n	/a	0.188	0.211	0.00333	0.00354
AC with Electric Resistance	4.798	5.389	0.00046	0.00084	n/a		n/a	
AC with Heat Pump	2.223	2.388	0.00046	0.00071	n/a		n/a	

Table 94: Wall Insulation – Deemed Savings Values - Zone 6 South Region

2.2.4 Floor Insulation

Measure Description

This measure presents two eligible scenarios for retrofitting a crawl space underneath an uninsulated floor.

- 1. Insulating the underside of the floor (above the vented crawl space), where the floor previously had no insulation
- 2. "Encapsulating" the crawl space sealing and insulating the vented perimeter skirt or stem wall between the ground (finished grade) and the first floor of the house, leaving the underside of the first floor structure uninsulated

This measure applies to all residential applications.

Baseline and Efficiency Standards

The baseline is considered to be a house with pier and beam construction, no insulation under the floor of the conditioned space, and a vented crawl space. In order to qualify for deemed savings, either the floor can be insulated to a minimum of R-19 or the crawl space can be encapsulated as described below. Deemed savings are provided for each option.

Option 1 – Insulating the underside of the floor to a minimum of R-19.

Option 2 – Encapsulating the crawl space: The crawl space perimeter skirt or stem walls are sealed in a sound and durable manner and the ground (floor of the crawl space) is sealed with a heavy plastic vapor barrier. The skirt or stem wall interior surfaces are insulated to R-13 (minimum) with closed cell foam.¹¹⁶ The underside of the floor above the crawlspace is left uninsulated. A small flow of conditioned air to the crawl space is recommended to moderate humidity levels.¹¹⁷

Occupational Safety and Health Administration (OSHA) standards and applicable versions of the IECC and IRC codes will be pertinent to the installation. Note that this will include ensuring that any oil or gas-fueled furnaces or water heaters located in the crawlspace be provided with dedicated combustion air supply or be sealed-combustion units equipped with a powered combustion system.¹¹⁸

Table 95: Floor Insulation – Baseline and Efficiency Standards

Baseline	Efficiency Standard
No insulation under floor	 R-19 installed under floor, OR Encapsulated crawl space with air-sealed perimeter having R-13 insulation on the interior side, no floor insulation under the floor above, and moisture-sealed grade under the crawl space

¹¹⁸ Ibid (p. 59).

¹¹⁶ IECC 2012, Table R402.1

 ¹¹⁷ U.S. DOE publication "Building America Best Practices Series, Vol 17, "Insulation" found at https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf (accessed 7-8-15), p. 58, 1 cfm per every 50 sq. ft. of floor area.

Estimated Useful Life (EUL)

The average lifetime of this measure is 30 years.¹¹⁹

Deemed Savings Values

Deemed savings values have been calculated for each of the four weather zones for both options – floor insulation and crawl space encapsulation. BEopt[™] was used to estimate energy savings for both options using the same base case model (uninsulated floor, vented crawl space) and the DOE EnergyPlus simulation engine. Savings are sensitive to weather; therefore, available TMY3 weather data specific to each of the four Arkansas weather regions was used for the analysis. The prototype home characteristics used in the BEopt[™] building model are outlined in Appendix A.

The deemed savings values listed in the following tables are per square foot of first level floor area above the crawl space.

For homes with gas heat and electric air conditioning, the deemed savings include the heating season therm savings plus the heating season (furnace fan) and cooling season kWh savings.

For homes with gas heat and no air conditioning, the deemed savings include the heating season therm savings plus the furnace fan kWh savings.

Floor Insulation Deemed Savings

Table 96: R-19 Floor Insulation – Deemed Savings Values - Zone 9 Northern Region

Equipment Type	kWh per ft ²	kW Peak per ft ²	Therms per ft ²	Peak Therms per ft ²
AC with Gas Heat	-0.139	-0.000031	0.058	0.00036
Gas Heat Only (no AC)	0.044	n/a	0.060	0.00036
AC with Electric Resistance	1.192	-0.000031	n/a	n/a
AC with Heat Pump	0.442	-0.000031	n/a	n/a

Table 97: R-19 Floor Insulation –	- Deemed Savings Values	- Zone 8 Northeast/North Central Region

Equipment Type	kWh per ft ²	kW Peak per ft ²	Therms per ft ²	Peak Therms per ft ²¹²⁰
AC with Gas Heat	-0.165	-0.00003	0.050	0.00026
Gas Heat Only (no AC)	0.036	n/a	0.051	0.00026
AC with Electric Resistance	0.985	-0.00003	n/a	n/a
AC with Heat Pump	0.294	-0.00003	n/a	n/a

¹¹⁹ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

¹²⁰ Data in table is for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 1.596. For Fort Smith, m = 1.619.

Equipment Type	kWh per sq. ft.	kW per sq. ft.	Therms per sq. ft.	Peak Therms per sq. ft.
AC with Gas Heat	-0.159	-0.00002	0.043	0.00031
Gas Heat Only (no AC)	0.031	n/a	0.044	0.00031
AC with Electric Resistance	0.849	-0.00002	n/a	n/a
AC with Heat Pump	0.237	-0.00002	n/a	n/a

Table 98: R-19 Floor Insulation – Deemed Savings Values - Zone 7 Central Region

Table 99: R-19 Floor In3sulation – Deemed Savings Values - Zone 6 South Region

Equipment Type	kWh per sq. ft.	kW per sq. ft.	Therms per sq. ft.	Peak Therms per sq. ft.
AC with Gas Heat	-0.101	0.00003	0.004	-0.00004
Gas Heat Only (no AC)	0.026	n/a	0.038	-0.00004
AC with Electric Resistance	0.706	0.00003	n/a	n/a
AC with Heat Pump	0.181	0.00003	n/a	n/a

Crawlspace Insulation Deemed Savings

Table 100: Crawlspace Encapsulation – Deemed Savings Values - Zone 9 Northern Region

Equipment Type	kWh per sq. ft.	kW per sq. ft.	Therms per sq. ft.	Peak Therms per sq. ft.
AC with Gas Heat	0.031	-0.00003	0.082	0.00021
Gas Heat Only (no AC)	0.062	n/a	0.084	0.00021
AC with Electric Resistance	1.922	-0.00003	n/a	n/a
AC with Heat Pump	0.625	-0.00003	n/a	n/a

 Table 101: Crawlspace Encapsulation – Deemed Savings Values - Zone 8 Northeast/North Central Region

Equipment Type	kWh per sq. ft.	kW per sq. ft.	Therms per sq. ft.	Peak Therms per sq. ft. ¹²¹
AC with Gas Heat	0.017	-0.00002	0.070	0.00026
Gas Heat Only (no AC)	0.054	n/a	0.076	0.00026
AC with Electric Resistance	1.647	-0.00002	n/a	n/a
AC with Heat Pump	0.448	-0.00002	n/a	n/a

¹²¹ Data in table is for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 2.799. For Fort Smith, m = 2.796.

Equipment Type	kWh per sq. ft.	kW per sq. ft.	Therms per sq. ft.	Peak Therms per sq. ft.
AC with Gas Heat	0.011	-0.00005	0.061	0.00008
Gas Heat Only (no AC)	0.048	n/a	0.067	0.00008
AC with Electric Resistance	1.432	-0.00005	n/a	n/a
AC with Heat Pump	0.397	-0.00005	n/a	n/a

Table 102: Crawlspace Encapsulation – Deemed Savings Values - Zone 7 Central Region

Table 103: Crawlspace Encapsulation – Deemed Savings Values - Zone 6 South Region

Equipment Type	kWh per sq. ft.	kW per sq. ft.	Therms per sq. ft.	Peak Therms per sq. ft.
AC with Gas Heat	0.122	0.00003	0.068	0.00084
Gas Heat Only (no AC)	0.045	n/a	0.063	0.00084
AC with Electric Resistance	1.353	-0.00003	n/a	n/a
AC with Heat Pump	0.401	-0.00003	n/a	n/a

2.2.5 Roof Deck Insulation

Measure Description

This measure consists of installing roof deck insulation underneath the uninsulated roof deck area (no existing insulation). The ceiling insulation at the "floor" of the attic is to be removed in accordance with industry best practice.¹²² It is recommended that the top of ceiling be vacuumed to remove insulation fibers and other debris that would otherwise migrate into the living space through openings in the ceiling. This measure applies to all residential applications.

Baseline and Efficiency Standards

The baseline condition refers to as-found (pre-retrofit) ceiling insulation levels. In existing construction, ceiling insulation levels vary greatly, depending on the age of the home, type of insulation, and attic space utilization. The average pre-retrofit insulation level of the treated area will be determined and documented by the insulation contractor according to the ranges in the Table 104. Degradation of the existing insulation due to age and other factors will need to be considered by the insulation contractor. Baseline conditions include having no existing insulation under the roof deck.

If the existing ceiling insulation level is greater than R-22, it is not eligible for this measure. Additionally, ducts must be predominantly located in the attic to be eligible for this measure.

Insulation will be added to the underside of the roof decking to a total R-values meeting the customer's needs and/or meeting applicable codes for the jurisdiction. Savings are estimated for two levels of final roof deck insulation, R-19 and R-38. For estimating savings between these two final R-values, linear interpolation may be used.

Table 104: Ceiling Insulation – Baseline and Efficiency Standards

Baseline	Efficiency Standard			
R-0 to R-1	_			
R-2 to R-4	D 10 and D 29			
R-5 to R-8	R-19 and R-38			
R-9 to R-14				

For this measure, the attic is encapsulated using spray-applied polyurethane foam on the underside of roof decking and on all surfaces separating the attic from unconditioned space (such as gable ends and attic extensions over a porch, garage, etc.), to a minimum insulation value of R-19.¹²³ The application shall include coating all supporting framing, such as rafters, with a minimum of 1" of foam to mitigate thermal bridging.

¹²² U.S. DOE publication "Building America Best Practices Series, Vol 17 "Insulation", found at

https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf <<a>accessed 7-8-15>>, p. 39.

¹²³ Knee wall insulation retrofits are covered in a separate measure.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

The roof deck spray foam insulation can consist of either closed cell foam, which also provides a vapor barrier, or open cell foam which is air permeable. Although not an eligibility issue for this measure, the following is provided from building science literature for consideration by the homeowner when examining options for the project.¹²⁴ Literature suggests that a vapor barrier is needed in Zone 9 (not in other zones) to protect the roof deck (wood) surface from attic moisture condensation that may occur due to the colder climate. This vapor barrier can be provided in at least two options; (1) apply closed cell foam as the "first layer" of foam applied to the underside of the deck (the balance of the installation can be open cell), or (2) use all open cell foam applied to the underside of the deck, with a spray-applied vapor retarding paint on the interior side of the cured open cell foam. Both of these options would only pertain to Zone 9.

All installations should comply with applicable versions of the IECC and IRC codes. This includes ensuring that any oil or gas-fueled furnaces or water heaters located in the attic be provided with a dedicated combustion air supply or be sealed-combustion units equipped with a powered combustion system.¹²⁵

Estimated Useful Life (EUL)

The average lifetime of this measure is 30 years.¹²⁶

Deemed Savings Values

BEoptTM was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. All base case model runs assumed ducts located in the attic, and all efficient case model runs had the ducts moved from the attic to the interior. Since envelope insulation savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEoptTM building model are outlined in Appendix A.

Please note that the savings per square foot is a factor to be multiplied by the square footage of the ceiling area over a conditioned space that is being insulated. Savings from insulating a knee wall(s) are defined under a separate measure and are additive to the savings for this measure.

For homes with gas heat and electric air conditioning, the deemed savings include the heating season therm savings plus the heating season (furnace fan) and cooling season kWh savings. For homes with gas heat and no air conditioning, the deemed savings include the heating season therm savings plus the furnace fan (kWh) savings.

¹²⁵ Ibid, page 59

¹²⁴ U.S. DOE publication "Building America Best Practices Series, Vol 17 "Insulation", found at https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf https://www1.eere.energy.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf https://www.nerg.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf https://www.nerg.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf https://www.nerg.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf https://www.nerg.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf https://www.nerg.gov/buildings/publications/pdfs/building_america/insulation_guide.pdf <a href="https://www.nerg.gov/buildings/publications/pdfs/buildin

¹²⁶ As recommended in Guidehouse 'EMV Group A, Deliverable 16 EUL Research – Residential Insulation', prepared for California Public Utilities Commission, June 2021.

Deemed Savings for Roof Deck Insulation at R-19

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
(Duse)	per ft ²	per ft ² .	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.703	0.260	0.350	9.507	4.761	0.00151	0.00603
> R1 to < R5	1.006	0.153	0.206	5.554	2.685	0.00098	0.00360
\geq R5 to \leq R8	0.640	0.099	0.134	3.570	1.685	0.00069	0.00249
> R8 to < R15	0.426	0.069	0.092	2.418	1.113	0.00052	0.00187
\geq R15 to \leq R22	0.242	0.043	0.059	1.473	0.644	0.00034	0.00138

Table 105: Roof Deck Insulation (R19) – Deemed Savings	Values - Zone 9 Northern Region
--	---------------------------------

 Table 106: Roof Deck Insulation (R19) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
(per ft ²	per ft ² .	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
≤ R1	1.880	0.228	0.317	8.921	4.315	0.00119	0.00583
> R1 to < R5	1.117	0.135	0.187	5.225	2.484	0.00077	0.00352
\geq R5 to \leq R8	0.717	0.089	0.123	3.373	1.580	0.00054	0.00245
> R8 to < R15	0.482	0.062	0.086	2.301	1.055	0.00040	0.00185
\geq R15 to \leq R22	0.282	0.040	0.056	1.417	0.620	0.00027	0.00124

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	1.879	0.201	0.281	8.036	3.885	0.00201	0.00532
> R1 to < R5	1.104	0.119	0.166	4.656	2.223	0.00130	0.00323
\geq R5 to \leq R8	0.702	0.078	0.109	2.961	1.388	0.00090	0.00227
> R8 to < R15	0.467	0.055	0.076	1.981	0.905	0.00067	0.00173
\geq R15 to \leq R22	0.268	0.035	0.049	1.169	0.501	0.00045	0.00129

Table 107: Roof Deck Insulation (R19) – Deemed Savings Values - Zone 7 Central Region

Table 108: Roof Deck Insulation (R19) – Deemed Savings Values - Zone 6 South Region

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
(Duse)	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	2.097	0.178	0.249	7.564	3.743	0.00207	0.00406
> R1 to < R5	1.268	0.105	0.147	4.425	2.193	0.00136	0.00218
\geq R5 to \leq R8	0.829	0.069	0.096	2.823	1.392	0.00097	0.00129
> R8 to < R15	0.572	0.047	0.066	1.889	0.922	0.00073	0.00079
\geq R15 to \leq R22	0.349	0.030	0.042	1.099	0.522	0.00050	0.00041

Deemed Savings for Roof Deck Insulation at R-38

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
(per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
≤ R1	1.846	0.272	0.366	10.011	5.038	0.00158	0.00628
> R1 to < R5	1.148	0.164	0.221	6.058	2.962	0.00105	0.00385
\geq R5 to \leq R8	0.783	0.111	0.150	4.074	1.962	0.00076	0.00274
> R8 to < R15	0.568	0.080	0.108	2.922	1.390	0.00059	0.00213
\geq R15 to \leq R22	0.384	0.055	0.075	1.977	0.920	0.00042	0.00164

Table 109: Roof Deck Insulation (R38) – Deemed Savings Values - Zone 9 Northern Region

Table 110: Roof Deck Insulation (R38) – Deemed Savings Values - Zone 8 Northeast/North Central
Region

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
(Duse)	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	2.032	0.238	0.331	9.384	4.571	0.00124	0.00609
> R1 to < R5	1.269	0.145	0.201	5.688	2.740	0.00082	0.00378
\geq R5 to \leq R8	0.869	0.098	0.137	3.836	1.836	0.00059	0.00271
> R8 to < R15	0.634	0.072	0.100	2.764	1.311	0.00046	0.00211
\geq R15 to \leq R22	0.434	0.050	0.070	1.881	0.875	0.00032	0.00150

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
(Duse)	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	2.031	0.210	0.293	8.463	4.126	0.00212	0.00555
> R1 to < R5	1.256	0.128	0.178	5.084	2.464	0.00141	0.00346
\geq R5 to \leq R8	0.854	0.087	0.121	3.389	1.629	0.00102	0.00250
> R8 to < R15	0.619	0.063	0.088	2.408	1.146	0.00078	0.00196
\geq R15 to \leq R22	0.420	0.044	0.061	1.596	0.742	0.00056	0.00152

Table 111: Roof Deck Insulation (R38) – Deemed Savings Values - Zone 7 Central Region

Table 112: Roof Deck Insulation (R38) – Deemed Savings Values - Zone 6 South Region

Ceiling Insulation (Base)	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
(Dase)	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
\leq R1	2.264	0.186	0.260	7.983	3.681	0.00217	0.00500
> R1 to < R5	1.436	0.113	0.158	4.845	2.132	0.00146	0.00312
\geq R5 to \leq R8	0.997	0.077	0.107	3.243	1.331	0.00107	0.00223
> R8 to < R15	0.739	0.055	0.077	2.308	0.861	0.00083	0.00173
\geq R15 to \leq R22	0.517	0.037	0.052	1.519	0.460	0.00060	0.00135

2.2.6 Radiant Barriers

Measure Description

Radiant barriers are designed to block radiant heat transfer between a building roof and the attic space insulation. They typically consist of a metallic foil material (usually aluminum) and are generally installed on the roof decking or beneath roof sheathing. Radiant barriers are most effective at reducing cooling consumption by reflecting heat away from a home. This measure applies to all residential applications.

Baseline and Efficiency Standards

This measure applies to existing construction that does not have a radiant barrier installed on the roof decking.

The efficiency requirements for radiant barriers must meet the standards set by the Reflective Insulation Manufacturers Association International (RIMA) to include proper attic ventilation. The following table displays the requirements for radiant barriers:

	Required Sub	stantiation	
Physical Property	Test Method or Standard	Requirement	
Surface Emittance	ASTM C 1371	0.1 or less	
Water Vapor Transmission	ASTM E 96: Procedure A Desiccant Method	0.02 for Vapor Retarder 0.5 or greater for perforated products	
	Surface B	urning	
Flame Spread	ASTM E 84	25 or less	
Smoke Density	ASTM E 84	450 or less	
Corrosivity	ASTM D 3310	Corrosion on less than 2% of the affected surface	
Tear Resistance	ASTM D 2261		
	Adhesive Per	formance	
Bleeding	Section 10.1 of ASTM C 1313	Bleeding or delamination of less than 2% of the surface area	
Pliability	Section 10.2 of ASTM C 1313	No cracking or delamination	
Mold and Mildew	No growth when visually ev		

Table 113: Radiant Barriers – Required Substantiation

Interior radiation control coatings are not applicable for the deemed savings derived. A study performed by RIMA found that none of the coating-type products currently on the market had an emittance of 0.10 or lower as required by the standards set by ASTM for a product to be considered a radiant barrier.¹²⁷ Therefore, all coating materials and spray application materials are ineligible for application of these savings values.

All radiant barriers should be installed according to the RIMA Handbook, Section 7.4.¹²⁸ However, horizontal installation is not eligible, due to the likelihood of dust buildup and wear-and-tear damage to the radiant barrier.

A radiant barrier cannot be in contact with any other materials on its underside or else it becomes defective. Therefore, once a radiant barrier is installed on the roof decking, no roof deck insulation can be installed.

Estimated Useful Life (EUL)

The average lifetime of this measure is estimated to be about 25 years for downward facing radiant barriers, based on the US DOE's Radiant Barrier Fact Sheet.

https://web.ornl.gov/sci/buildings/docs/factSheets/Insulation-FactSheet-2008.pdf

Deemed Savings Values

Deemed savings values have been calculated for each of the four weather zones. The calculations for deemed savings values are based on the addition of a radiant barrier to the roof decking where a radiant barrier did not previously exist.

BEoptTM was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since radiant barrier savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEoptTM building model are outlined in Appendix A.

Please note that the savings per square foot is a factor to be multiplied by the square footage of the ceiling area over a conditioned space to which the radiant barrier is applied. Gas Heat (no AC) kWh applies to forced air furnace systems only.

Addition of Radiant Barrier with existing attic insulation	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
level	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft²	per ft ²
Attic insulation ≤R-19	0.221	0.007	0.009	0.419	0.322	0.0001	0.00019
Attic insulation >R19	0.134	0.003	0.004	0.225	0.187	0.0001	0.00011

Table 114: Radiant Barriers – Deemed Savings Values - Zone 9 Northern Region

¹²⁷ Study by RIMA that found no radiant coating on the market having a low enough emittance to be considered a radiant barrier: <u>https://www.rimainternational.org/technical/</u>

¹²⁸ RIMA Handbook available online: <u>https://rimainternational.org/wp-content/uploads/2011/01/HandbookAll-2014-Final-1.pdf</u>

Addition of Radiant Barrier with existing attic	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas ¹²⁹ Therms
insulation level	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Attic insulation ≤R-19	0.240	0.005	0.007	0.401	0.304	0.00015	0.00019
Attic insulation >R19	0.145	0.003	0.003	0.216	0.177	0.00008	0.00011

Table 115: Radiant Barriers – Deemed Savings Values - Zone 8 Northeast/North Central Region

Table 116: Radiant Barriers – Deemed Savings Values - Zone 7 Central Region

Addition of Radiant Barrier with existing attic	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
insulation level	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Attic insulation ≤R-19	0.244	0.005	0.007	0.393	0.288	0.00015	0.00016
Attic insulation >R19	0.148	0.002	0.003	0.213	0.166	0.00008	0.00009

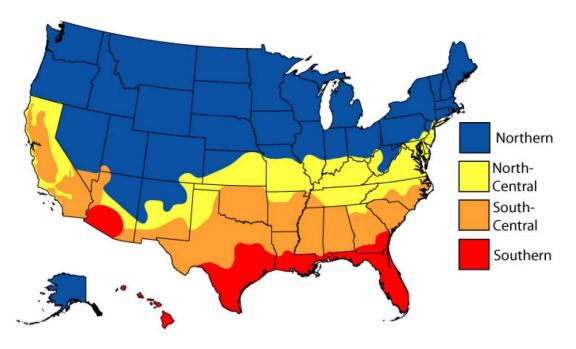
Table 117: Radiant Barriers – Deemed Savings Values - Zone 6 South Region

Addition of Radiant Barrier with existing attic	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
insulation level	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Attic insulation ≤R-19	0.278	0.005	0.007	0.438	0.311	0.00014	0.00016
Attic insulation >R19	0.171	0.003	0.003	0.245	0.183	0.00008	0.00009

¹²⁹ Data in table are for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.734 ($\leq R-19$), 0.722 (>R19). For Fort Smith, m = 0.709 ($\leq R-19$), 0.694 (>R19).

2.2.7 Windows

Measure Description


This measure involves the replacement of windows with ENERGY STAR® window(s) in an existing home. This measure applies to all residential applications.¹³⁰

Baseline and Efficiency Standards

For this measure, there are two separate baseline assumptions and two sets of deemed savings values. One set of deemed savings values is applicable where the window being replaced is a single-pane window without a storm window.

The other set of deemed savings values is applicable in instances where the ENERGY STAR® window is replacing a double-glazed or a single-pane window with a storm window.

Effective January 1, 2015, ENERGY STAR® increased the efficiency levels for ENERGY STAR® windows. The updated requirements are specific to climate as shown in the Figure 7.

ENERGY STAR Program Requirements for Windows, Doors, and Skylights: Version 5.0 (April 7, 2009)

Figure 7: ENERGY STAR® Window Program Requirements – Climate Map

 $^{^{130}}$ The energy star windows savings are an adequate proxy for sliding glass doors with a glazing level > 1/2 –lite

In compliance with the climate map, the new efficiency levels are as follows:

Baseline	Efficiency Levels						
All Zones	Weather Zone			SHGC			
Single-pane clear glass aluminum frame, no thermal break,	Zone 9	North-Central	0.30	0.40			
U-factor of 1.12, SHGC of 0.79, air infiltration rate of 0.7 cfm/ft ² .	South-Central	0.30	025				
Double-glazed (i.e., double-pane), clear window aluminum frame,	Zone 7	South-Central	0.30	0.25			
U-factor of 0.81, SHGC of 0.64, air infiltration rate of 0.7 cfm/ft ² .	Zone 6	South-Central	0.30	0.25			

Table 118: ENERGY STAR® Windows – Weather Zones

Estimated Useful Life (EUL)

The average lifetime of this measure is 20 years, according to DEER 2008.

Deemed Savings Values

The deemed savings depend upon the U-factor and SHGC of the pre- and post-retrofit glazing as displayed

Table A3.g of Appendix A in Arkansas TRM Volume 3. BEoptTM was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since ENERGY STAR® window savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEopt building model are outlined in Appendix A.

Deemed savings are calculated per square foot of window, inclusive of frame and sash. The following table applies to qualified ENERGY STAR® windows replacing single-paned or double-paned, clear glass. Gas Heat (no AC) kWh savings are the reduction in electricity used by the furnace's air handler during the heating season.

 Table 119: ENERGY STAR® Replacement for Single-Pane Window – Deemed Savings Values - Zone

 9 Northern Region

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²
AC with Gas Heat	4.884	0.0031	0.360	0.0124
Gas Heat Only (no AC)	0.275	n/a	0.368	0.0124
AC with Electric Resistance	13.050	0.0031	n/a	n/a
Heat Pump	8.509	0.0031	n/a	n/a

 Table 120: ENERGY STAR® Replacement for Single-Pane Window – Deemed Savings Values - Zone

 8 Northeast/North Central Region

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²¹³¹
AC with Gas Heat	5.800	0.0036	0.253	0.011
Gas Heat Only (no AC)	0.187	n/a	0.256	0.011
AC with Electric Resistance	11.485	0.0036	n/a	n/a
Heat Pump	7.768	0.0036	n/a	n/a

 Table 121: ENERGY STAR® Replacement for Single-Pane Window – Deemed Savings Values - Zone

 7 Central Region

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²
AC with Gas Heat	5.889	0.0035	0.216	0.0085
Gas Heat Only (no AC)	0.160	n/a	0.219	0.0085
AC with Electric Resistance	10.719	0.0035	n/a	n/a
Heat Pump	7.278	0.0035	n/a	n/a

 Table 122: ENERGY STAR® Replacement for Single-Pane Window – Deemed Savings Values - Zone

 6 South Region

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²
AC with Gas Heat	6.864	0.0037	0.174	0.0083
Gas Heat Only (no AC)	0.127	n/a	0.173	0.0083
AC with Electric Resistance	10.771	0.0037	n/a	n/a
Heat Pump	7.526	0.0037	n/a	n/a

¹³¹ Data in table is for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.629. For Fort Smith, m = 0.597.

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²
AC with Gas Heat	3.028	0.0019	0.317	0.0091
Gas Heat Only (no AC)	0.243	n/a	0.326	0.0091
AC with Electric Resistance	10.241	0.0019	n/a	n/a
Heat Pump	6.303	0.0019	n/a	n/a

Table 123: ENERGY STAR® Replacement for Double-Pane Window – Deemed Savings Values - Zone 9 Northern Region

 Table 124: ENERGY STAR® Replacement for Double-Pane Window – Deemed Savings Values - Zone

 8 Northeast/North Central Region

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²¹³²
AC with Gas Heat	3.730	0.0037	0.210	0.0077
Gas Heat Only (no AC)	0.156	n/a	0.214	0.0077
AC with Electric Resistance	8.476	0.0037	n/a	n/a
Heat Pump	5.484	0.0031	n/a	n/a

Table 125: ENERGY STAR® Replacement for Double-Pane Window – Deemed Savings Values - Zone 7 Central Region

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²
AC with Gas Heat	3.785	0.0036	0.179	0.0062
Gas Heat Only (no AC)	0.134	n/a	0.185	0.0062
AC with Electric Resistance	7.820	0.0035	n/a	n/a
Heat Pump	5.072	0.0031	n/a	n/a

Table 126: ENERGY STAR® Replacement for Double-Pane Window – Deemed Savings Values - Zone 6 South Region

Equipment Type	kWh Savings per ft ²	kW Savings per ft ²	Therm Savings per ft ²	Peak Therms per ft ²
AC with Gas Heat	4.449	0.0042	0.1478	0.0061
Gas Heat Only (no AC)	0.109	n/a	0.1493	0.0061
AC with Electric Resistance	7.787	0.0042	n/a	n/a
Heat Pump	5.198	0.0035	n/a	n/a

¹³² Data in table are for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.660. For Fort Smith, m = 0.627.

2.2.8 Window Film

Measure Description

This measure consists of adding solar film to east and west facing windows. This measure applies to all residential applications.

Baseline and Efficiency Standards

This measure is applicable to existing homes only. Low E windows and tinted windows are not applicable for this measure. In order to qualify for deemed savings, solar film should be applied to east and west facing glass.

Table 127: Window Film – Baseline and Efficiency Standards

Baseline	Efficiency Standard
Single- or double-pane window with no existing solar films, solar screens, or low-e coating	Solar Film with SHGC <0.50

Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008.

Deemed Savings Values

Deemed savings values have been calculated for each of the four weather zones. The deemed savings are dependent on the SHGC of pre- and post-retrofit glazing. BEopt[™] was used to estimate energy savings for a series of models using the DOE EnergyPlus simulation engine. Since window film savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEopt building model are outlined in Appendix A.

Please note that the savings per square foot is a factor to be multiplied by the square footage of the window area to which the films are being added. Gas Heat (no AC) kWh applies to forced air furnace systems only.

Existing Window Pane Type	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
I alle Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft²	per ft ²	per ft ²
Single Pane	2.883	-0.229	-0.312	-3.946	-0.320	0.002	-0.00152
Double Pane	0.943	-0.079	-0.107	-1.405	-0.152	0.000	-0.00052

 Table 128: Window Film – Deemed Savings Values - Zone 9 Northern Region

Existing Window Pane Type	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
I alle Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Single Pane	3.167	-0.196	-0.276	-2.850	0.324	0.0016	-0.00239
Double Pane	1.029	-0.067	-0.095	-1.037	0.060	0.0005	-0.00083

Table 129: Window Film – Deemed Savings Values - Zone 8 Northeast/North Central Region

Table 130: Window Film – Deemed Savings Values - Zone 7 Central Region

Existing Window Pane Type	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC with Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
I alle Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Single Pane	3.273	-0.171	-0.243	-1.989	0.733	0.0016	-0.00245
Double Pane	1.069	-0.059	-0.084	-0.739	0.204	0.0005	-0.00085

 Table 131: Window Film – Deemed Savings Values - Zone 6 South Region

Existing Window Pane Type	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak kW	Peak Gas Therms
Tane Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft²	per ft ²
Single Pane	3.668	-0.141	-0.201	-0.617	1.507	0.0015	-0.00189
Double Pane	1.202	-0.048	-0.069	-0.258	0.473	0.0005	-0.00066

2.2.9 Air Infiltration

Measure Description

This measure reduces air infiltration into the residence, using pre- and post-treatment blower door air pressure readings to quantify the air leakage reduction. There is no post-retrofit minimum infiltration requirement, however, installations must comply with the prevailing Arkansas mechanical or ventilation code. This measure applies to all residential applications.

Baseline and Efficiency Standards

The baseline for this measure is the existing leakage rate of the residence to be treated. The existing leakage rate should be capped to account for the fact that the deemed savings values per CFM_{50} leakage reduction are only applicable up to a point where the existing HVAC equipment would run continuously. Beyond that point, energy use will no longer increase linearly with an increase in leakage.

Baseline assumptions used in the development of these deemed savings are based on the 2013 ASHRAE Handbook of Fundamentals, Chapter 16, which provides typical infiltration rates for residential structures. In a study of low income homes reported in ASHRAE, approximately 95 percent of the home infiltration rates were below 3.0 ACH_{Nat}.¹³³ Therefore, to avoid incentivizing homes with envelope problems not easily remedied through typical weatherization procedures, or improperly conducted blower door tests, these savings should only be applied starting at a baseline ACH_{Nat} of 3.0 or lower.

To calculate the maximum allowable CFM_{50, pre} value for a particular house, use the following equation:

$$CFM_{50,pre} \ per \ ft^2 = \frac{ACH_{Nat,pre} \times h \times N}{60}$$
(79)

Where:

 $CFM_{50,pre}$ per ft² = Per square foot pre-installation infiltration rate (CFM₅₀/ft²)

 $ACH_{Nat,pre}$ = Pre-installation natural air change rate (ACH_{Nat}); Maximum = 3.0

60 = Constant to convert from minutes to hours

 $h = \text{Ceiling height (ft.)} = 8.5 (\text{default})^{134}$

N = N factor (Table 132)

¹³³ 2013 ASHRAE Handbook of Fundamentals, Chapter 16, pp. 16.18, Figure 12.

¹³⁴ Typical ceiling height of 8 feet adjusted to account for greater ceiling heights in some areas of a typical residence.

	Number of Stories					
Wind Shielding	Single Story	Two Story	Three + Story			
Well Shielded	25.8	20.6	18.1			
Normal	21.5	17.2	15.1			
Exposed	19.4	15.5	13.5			

Table 132	: Air Infiltration	– N Factor ¹³⁵
-----------	--------------------	---------------------------

Well Shielded is defined as urban areas with high buildings or sheltered areas, and buildings surrounded by trees, bermed earth, or higher terrain.

<u>Normal</u> is defined as buildings in a residential neighborhood or subdivision setting, with yard space between buildings. Approximately 80-90 percent of houses fall in this category.

Exposed is defined as buildings in an open setting with few buildings or trees around and buildings on top of a hill or ocean front, exposed to winds.

Maximum CFM₅₀ per square foot values are available in Table 133. Pre-retrofit leakage rates are limited to a maximum per square foot value specified in the table, as this generally indicates severe structural damage not repairable by typical infiltration reduction techniques.

Table 133: Pre-Retrofit Infiltration Cap (CFM50/ft2)

	Number of Stories					
Wind Shielding	Single Story	Two Story	Three + Story			
Well Shielded	11.0	8.8	7.7			
Normal	9.1	7.3	6.4			
Exposed	8.2	6.6	5.7			

Estimated Useful Life (EUL)

The Estimated Useful Life for air infiltration is 20 years.¹³⁶

Deemed Savings Values

The following formulas shall be used to calculate deemed savings for infiltration efficiency improvements. The formulas apply to all building heights and shielding factors.

$$kWh_{savings} = CFM_{50} \times ESF$$

(80)

¹³⁵ Krigger, J. & Dorsi, C. 2005, *Residential Energy: Cost Savings and Comfort for Existing Buildings, 4th Edition.* Version RE. Appendix A-11: Zone 3 Building Tightness Limits, p. 284, December 20.

¹³⁶ As recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

$$kW_{savings} = CFM_{50} \times DSF$$

$$therms_{savinas} = CFM_{50} \times GSF$$

(82)

(81)

$$peak therms_{savings} = CFM_{50} \times GPSF$$

(83)

Where:

 CFM_{50} = Air infiltration reduction in Cubic Feet per Minute at 50 pascals, as measured by the difference between pre- and post-installation blower door air leakage tests

ESF = corresponding energy savings factor Table 134-137

DSF = corresponding demand savings factor Table 134-137

GSF = corresponding gas savings factor Table 134-137

GPSF = corresponding gas peak savings factor Table 134-137

Electrical energy savings for Gas Heat (no AC) are the reduction in electricity used by the furnace's air handler during the heating season.

Table 134: Air Infiltration Reduction – Deemed Savings Values - Zone 9 Northern Region

Equipment Type	kWh Savings per CFM ₅₀ (ESF)	kW Savings per CFM ₅₀ (DSF)	Therm Savings per CFM ₅₀ (GSF)	Peak Therms per CFM ₅₀ (GPSF)
AC with Gas Heat	0.166	0.000098	0.095	0.002529
Gas Heat (no AC)	0.073	n/a	0.099	0.002529
AC with Electric Resistance	2.344	0.000098	n/a	n/a
Heat Pump	1.099	0.000098	n/a	n/a

Table 135: Air Infiltration Reduction – Deemed Savings Values - Zone 8 Northeast/N	orth Central
Region	

Equipment Type	kWh Savings per CFM50 (ESF)	kW Savings per CFM ₅₀ (DSF)	Therm Savings per CFM ₅₀ (GSF)	Peak Therms per CFM ₅₀ ¹³⁷ (GPSF)
AC with Gas Heat	0.188	0.00014	0.0825	0.002325
Gas Heat (no AC)	0.062	n/a	0.0863	0.002325

¹³⁷ Data in table are for Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.792. For Fort Smith, m = 0.752.

AC with Electric Resistance	2.079	0.00014	n/a	n/a
Heat Pump	0.942	0.00014	n/a	n/a

Table 136: Air Infiltration Reduction – Deemed Savings Values - Zone 7 Central Region

Equipment Type	kWh Savings per CFM50 (ESF)	kW Savings per CFM ₅₀ (DSF)	Therm Savings per CFM ₅₀ (GSF)	Peak Therms per CFM ₅₀ (GPSF)
AC with Gas Heat	0.190	0.00016	0.0707	0.002181
Gas Heat (no AC)	0.053	n/a	0.0747	0.002181
AC with Electric Resistance	1.812	0.00016	n/a	n/a
Heat Pump	0.818	0.00016	n/a	n/a

Equipment Type	kWh Savings per CFM ₅₀ (ESF)	kW Savings per CFM ₅₀ (DSF)	Therm Savings per CFM ₅₀ (GSF)	Peak Therms per CFM ₅₀ (GPSF)	
AC with Gas Heat	0.255	0.00017	0.0604	0.001812	
Gas Heat (no AC)	0.046	n/a	0.0639	0.001812	
AC with Electric Resistance	1.641	0.00017	n/a	n/a	
Heat Pump	0.756	0.00017	n/a	n/a	

Calculation of Deemed Savings

BEoptTM was used to estimate energy savings for a series of models using the US DOE EnergyPlus simulation engine. Since infiltration savings are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype home characteristics used in the BEopt^{TM building} model are outlined in Appendix A.

Deemed savings values have been calculated for each of the four weather zones. The deemed savings are dependent on the pre- and post- CFM_{50} leakage rates of the home and are presented as annual savings / CFM_{50} reduction. A series of model runs was completed in order to establish the relationship between various CFM_{50} leakage rates and heating and cooling energy consumption. The resulting analysis of model outputs was used to create the deemed savings tables of kWh, kW, and therm savings per CFM_{50} of air infiltration reduction.

2.2.10 Low-Emissivity (Low-E) Storm Windows

Measure Description

Storm windows are a secondary window that attaches to the interior or exterior of a primary window. Lowemissivity (Low-E) storm windows have a thin, transparent metal oxide coating that minimizes the amount of infrared and ultraviolet light that come through the glass. The low-emissivity coating on these "modern" storm windows reduces heat loss in the winter and heat gain in the summer by insulating and air sealing. Due to the year-round benefit, unlike traditional storm windows, low-E storm windows are permanently installed and left in place the entire year. This measure is applicable for new and existing installations in residential and low-rise multifamily buildings.

Baseline and Efficiency Standards

The baseline condition is an existing single-pane or double-pane window assembly according to manufacturer specifications with no storm window. The efficient case is a storm window that meets the ENERGY STAR® Storm Windows criteria. ENEGRY STAR® U-factor and Solar Heat Gain Coefficient (SHGC) qualification criteria vary based on climate zone. For the south-central zone, qualifying ENERGY STAR® Storm Windows must meet the criteria in Table 138.

Emissivity	Solar Transmission	Air Leakage
<= 0.22	<=0.55	<= 1.5 cfm/ft ² (exterior) <= 0.5 cfm/ft ² (interior)

Estimated Useful Life (EUL)

The average lifetime of this measure is 20 years, according to the U.S. Department of Energy.¹³⁸

Deemed Savings Values

The deemed savings are calculated per square foot of window for single-pane and double-pane windows by city and zone.¹³⁹ The following savings apply to qualified ENERGY STAR® Low-E Storm Windows installed over single-paned or double-paned, clear glass that are either aluminum framed, or wood framed.

Baseline infiltration values were modeled as 2 cfm/ft² based on "*AERD 1.2: Physical Test Methods for Measuring Energy Performance Properties of Fenestration Attachments.*" The infiltration values for low-e storm windows were modeled using the average values found in the ENERGY STAR® and AERD product databases.

¹³⁸ U.S. Department of Energy. Database of Low-e E Storm Window Energy Performance across U.S. Climate Zones. September 2013. <u>https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-22864rev2.pdf</u>

¹³⁹ Based on United States Census county-level data and IECC assignments of climate zone by county, 76.4% of Arkansas residents are in Climate Zone 3 and 23.6% of Arkansas residents are in Climate Zone 4. Savings from Fort Smith (CZ 3), Little Rock (CZ 3) and Springfield (MO - CZ 4) were used as proxies for Arkansas Climate Zones 3 and 4.

Weather Zone/ City	Window FrameSingle-PaneMaterialBaseline		Double-Pane Baseline	Weighted Baseline	
Zone 9 - Rogers	Aluminum	0.078	0.052	0.067	
	Wood	0.058	0.028	0.045	
Zone 8 - Fort Smith	Aluminum	0.065	0.042	0.055	
	Wood	0.047	0.022	0.036	
Zone 7 - Little Rock	Aluminum	0.062	0.041	0.053	
	Wood	0.046	0.021	0.035	
Zone 6 - El Dorado	Aluminum	0.048	0.032	0.041	
	Wood	0.036	0.017	0.028	

Table 139: Square Foot of Gas Heating Savings (SFGasHeat) per zone, MBtu per square foot

 Table 140: Square Foot of Cooling Savings (SFCool) per zone, kWh per square foot

Weather Zone/ City	Window Frame Material	Single-Pane Baseline	Double-Pane Baseline	Weighted Baseline	
	Aluminum	0.826	0.966	0.887	
Zone 9 - Rogers	Wood	0.944	1.033	0.983	
Zone 8 - Fort Smith	Aluminum	1.045	1.184	1.106	
	Wood	1.170	1.221	1.192	
Zone 7 - Little Rock	Aluminum	1.058	1.156	1.101	
	Wood	1.143	1.196	1.167	
Zone 6 - El Dorado	Aluminum	1.565	1.601	1.581	
	Wood	1.587	1.553	1.572	

	Electric Resistance Heating			Air Source Heat Pump		
Weather Zone/ City	Single- Pane Baseline	Double-Pane Baseline	Weighted Baseline	Single-Pane Baseline	Double-Pane Baseline	Weighted Baseline
Window Frame Material: Aluminum						
Zone 9 - Rogers	18.135	12.038	15.465	6.515	4.440	5.606
Zone 8 - Fort Smith	14.998	9.783	12.714	5.083	3.349	4.324
Zone 7 - Little Rock	14.448	9.517	12.288	6.044	3.208	4.802
Zone 6 - El Dorado	11.044	7.433	9.463	3.699	2.592	3.214
Window Frame Material: Wood						
Zone 9 -Rogers	13.450	6.385	10.356	4.914	2.463	3.840
Zone 8 - Fort Smith	10.958	5.122	8.402	3.767	1.845	2.925
Zone 7 - Little Rock	10.655	4.973	8.166	3.544	1.776	2.770
Zone 6 -El Dorado	8.294	4.007	6.416	2.863	1.475	2.255

Table 141: Square Foot of Electric Heating Savings (SFElecHeat) per zone, kWh per square foot

Calculation of Deemed Savings

Annual kWh Savings = $kWh_{Cool} + kWh_{Heat}$

(84)

$$kWh_{Cool} = SF_{Cool} \times Area$$

(85)

 $kWh_{Heat} = SF_{ElecHeat} \times Area$

(86)

$$kW Savings = \frac{kWh_{Cool}}{EFLH_{Cool}} \times CF$$

(87)

Annual MBtu Savings =
$$SF_{GasHeat} \times Area$$

(88)

Where:

$SF_{GasHeat}$	= Average MBtu gas heating savings per square foot, based on RESFEN ¹⁴⁰
$SF_{ElecHeat}$	= Average electric gas heating savings per square foot, based on RESFEN
SF _{Cool}	= Average kWh cooling savings per square foot, based on RESFEN
Area	= size of low-E window in square feet = default value is 10.7 square feet
EFLH _{Cool}	= Equivalent full load cooling hours
CF	= Coincidence factor = 0.87

Table 142 - Effective Full Load Cooling Hours, EFLH_Cool

Weather Zone and Location	EFLH _{Cool}
Zone 9 - Rogers	1,305 ¹⁴¹
Zone 8 - Fort Smith	1,432
Zone 7 - Little Rock	1,583
Zone 6 -El Dorado	1,738 ¹⁴²

¹⁴⁰ RESFEN is a computer modeling tool created by Lawrence Berkeley National Laboratories. Modeling was performed by D+R using assumptions from Appendix A of the Arkansas TRM. The modeled savings are based on two types of homes; one-story existing (1,700 sq ft) and two-story new construction (2,800 sq ft) with a 15% window-to-floor-area ratio.

¹⁴¹ Rogers, AR not listed. Used average of Springfield, MO and Fort Smith, AR.

¹⁴² El Dorado, AR not listed. Used average of Little Rock, AR and Shreveport, LA.

2.3 Domestic Hot Water Measures 2.3.1 Water Heater Replacement

Measure Description

This measure involves:

- Replacement of electric storage water heaters by either high efficiency electric storage tank water heaters or electric tankless water heaters
- Replacement of electric water heaters by heat pump water heaters (HPWH)
- Replacement of gas water heaters by more efficient gas storage tank water heaters or gas tankless (instantaneous) water heaters
- Replacement of either electric or gas water heaters by ENERGY STAR® certified solar water heaters

Water heating deemed savings values are measured on an annual per-unit basis. Deemed savings variables include tank volume, estimated water usage, weather zone, and rated energy factor. Fuel substitution is not eligible for deemed savings. This measure applies to all residential applications.

Baseline and Efficiency Standards

The current baseline for electric and gas water heaters is the US DOE energy efficiency standard (10 CFR Part 430), which is consistent with the IECC 2009. Residential water heaters manufactured on or after April 16, 2015 must comply with the amended standards found in the Code of Federal Regulations, 10 CFR 430.32(d), as found in Table 143.

Table 143: Title 10: 430.32 (d) Water Heater Standards¹⁴³

¹⁴³ <u>https://energy.gov/energysaver/sizing-new-water-heater</u>. Accessed August 7, 2017

Product class	Rated storage volume and input rating (if applicable)	Draw pattern	Uniform energy factor (UEF) ¹⁴⁴
		Very Small	$0.3456 - (0.0020 \times Vr)$
		Low	0.5982 - (0.0019 × Vr)
	\geq 20 gal and \leq 55 gal	Medium	0.6483 – (0.0017 × Vr)
Gas-fired		High	0.6920 - (0.0013 × Vr)
Storage Water Heater		Very Small	$0.6470 - (0.0006 \times Vr)$
		Low	$0.7689 - (0.0005 \times Vr)$
	> 55 gal and ≤ 100 gal	Medium	$0.7897 - (0.0004 \times Vr)$
	-	High	$0.8072 - (0.0003 \times Vr)$
		Very Small	$0.2509 - (0.0012 \times Vr)$
Oil-fired		Low	$0.5330 - (0.0016 \times Vr)$
Storage Water Heater	≤ 50 gal	Medium	$0.6078 - (0.0016 \times Vr)$
		High	$0.6815 - (0.0014 \times Vr)$
	\geq 20 gal and \leq 55 gal	Very Small	$0.8808 - (0.0008 \times Vr)$
		Low	$0.9254 - (0.0003 \times Vr)$
		Medium	$0.9307 - (0.0002 \times Vr)$
Electric Storage		High	$0.9349 - (0.0001 \times Vr)$
Water Heaters		Very Small	$1.9236 - (0.0011 \times Vr)$
meaters	> 55 gal and ≤ 120 gal	Low	2.0440 - (0.0011 × Vr)
		Medium	2.1171 – (0.0011 × Vr)
		High	$2.2418 - (0.0011 \times Vr)$
	er ≥ 20 gal and ≤ 120	Very Small	$0.6323 - (0.0058 \times Vr)$
Tabletop		Low	$0.9188 - (0.0031 \times Vr)$
Water Heater		Medium	$0.9577 - (0.0023 \times Vr)$
		High	$0.9884 - (0.0016 \times Vr)$
		Very Small	0.80
Instantaneous		Low	0.81
Gas-fired Water Heater	< 2 gal and > 50,000 Btu/h	Medium	0.81
		High	0.81

Product class	Rated storage volume and input rating (if applicable)	Draw pattern	Uniform energy factor (UEF) ¹⁴⁴
		Very Small	0.91
Instantaneous	< 2 gal	Low	0.91
Electric Water Heater		Medium	0.91
		High	0.92
Grid-Enabled Water Heater	>75 gal	Very Small	$1.0136 - (0.0028 \times Vr)$
		Low	$0.9984 - (0.0014 \times Vr)$
		Medium	$0.9853 - (0.0010 \times Vr)$
		High	$0.9720 - (0.0007 \times Vr)$

The new code requires that a draw pattern be determined in order to calculate the correct energy factor. The draw pattern is calculated based on the first hour rating (FHR) of the installed water heater and is defined as the number of gallons of hot water the heater can supply per hour. ¹⁴⁵

For heat pump water heaters, the AHRI Directory of Certified Product Performance (www.ahridirectory.org) includes Usage Bin for Heat Pump Water Heaters. The AHRI database should be referenced to determine the usage bin, and therefore the draw volume. If a model is not in the AHRI Directory, then the First Hour Rating (FHR) can be used to determine Draw Pattern Table 144, Table 145 and Table 146 provide the FHR ranges and corresponding draw pattern designation.

 Table 144: Tank Water Heater Draw Pattern¹⁴⁶

New FHR greater than or equal to:	and new FHR less than:	Draw pattern
0 gallons	18 gallons	Very Small
18 gallons	51 gallons	Low
51 gallons	75 gallons	Medium
75 gallons	No upper limit	High

¹⁴⁴ Vr presented in this table is rated storage volume (in gallons) of water heater determined pursuant to 10 CFR 429.17.

¹⁴⁵ https://energy.gov/energysaver/sizing-new-water-heater. <<Accessed August 7, 2017>>

¹⁴⁶ <u>https://www.regulations.gov/document?D=EERE-2015-BT-TP-0007-0042</u>. Accessed August 7, 2017

New max GPM greater than or equal to:	And new max GPM rating less than:	Draw pattern
0 gallons/minute	1.7 gallons/minute	Very Small
1.7 gallons/minute	2.8 gallons/minute	Low
2.8 gallons/minute	4 gallons/minute	Medium
4 gallons/minute	No upper limit	High

Table 145: Instantaneous Water Heater Draw Pattern¹⁴⁷

Table 146: Heat Pump Water Heater Draw Pattern¹⁴⁸

Draw pattern	DV
Very Small	10 gallons
Low	38 gallons
Medium	55 gallons
High	84 gallons

Estimated Useful Life (EUL)

The average lifetime of this measure is dependent on the type of water heating. Unless noted otherwise, all EULs are based on DEER 2008.

- 13 years for electric storage tank water heaters
- 20 years for tankless gas or electric water heaters
- 15 years for HPWH¹⁴⁹
- 25 years for gas storage tank water heaters¹⁵⁰
- 15 years for solar water heaters

Calculation of Deemed Savings – Electric Water Heating

Energy Savings – Electric Storage Tank Water Heater Replacement

$$kWh_{Savings} = \frac{\rho \times C_p \times V \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{post}}\right)}{3412}$$

147 Ibid.

148 Ibid.

¹⁴⁹ Connecticut Measure Life/EUL Update Study-Residential and Commercial HVAC, X2001, Evergreen Economics & Michaels Energy, May 11, 2023

¹⁵⁰ DNV. Residential HVAC and DHW Measure Effective Useful Life Study Report. California Public Utility Commission. February 9, 2024.

(89)

Where:

- ρ = Water density = 8.33 lb/gal
- C_p = Specific heat of water = 1 BTU/lb. °F
- V = Estimated annual hot water use (gal) from 147
- $T_{SetPoint}$ = Water heater set point (default value = 124°F)
- T_{Supply} = Average supply water temperature from Table 148
- UEF_{base} = Baseline Uniform Energy Factor, Calculated from Table 143 If draw pattern is unknown, assume medium
- UEF_{post} =Uniform Energy Factor of new water heater
- 3412 = Conversion constant from BTU to kWh

 Table 147: Estimated Annual Hot Water Use (gal)

	Tank Size (gal) of Replaced Water Heater				
Weather Zone and Location	40	50	65	80	
Zone 9 - Fayetteville	18,401	20,911	25,093	30,111	
Zone 8 -Fort Smith	18,331	20,831	24,997	29,996	
Zone 7 -Little Rock	18,267	20,758	24,910	29,892	
Zone 6 -El Dorado	17,815	20,245	24,293	29,152	

The values in Table 147 are calculated according to guidance in the Building America Research Benchmark Definition,¹⁵¹ December 2009, using tank size as a proxy for the number of bedrooms, and incorporating average water main temperatures per weather zone (Table 148). Average water main temperature affects the ratio of hot water (120°F) and "cold water" needed to achieve the end-use water temperature, estimated to be 105°F.

Table 148: Average Water Main Temperature

Weather Zone and Location	Average Water Main Temperature (°F)
Zone 9 - Fayetteville	65.6
Zone 8 - Fort Smith	66.1
Zone 7 - Little Rock	67.8
Zone 6 - El Dorado	70.1

¹⁵¹ Available at: <u>www.nrel.gov/docs/fy10osti/47246.pdf</u>

As an example, for the current year, the following deemed electricity savings are applicable for a 50-gallon electric storage tank high-efficiency water heater replacement using a model with a UEF of 0.95 for a household in weather zone 9 and a medium draw pattern:

$$kWh_{savings} = \frac{8.33 \times 1 \times 20911 \times (124 - 65.6) \times \left(\frac{1}{0.92} - \frac{1}{0.95}\right)}{3412} = 102.3 \frac{kWh}{vr}$$

Demand Savings - Electric Storage Tank Water Heater Replacement

$$kW_{savings} = kWh_{savings} \times Ratio(Peak \ kW)$$
 (Annual kWh)

(90)

Where:

$$Ratio(Peak \, kW)$$
 (Annual kWh) = 0.0000877

Demand savings were calculated using the US DOE's *"Building America Performance Analysis Procedures for Existing Homes"* combined domestic hot water use profile.¹⁵² Based on this profile, the ratio of Peak kW to Annual kWh for domestic hot water usage was estimated to be 0.0000877 kW per annual kWh savings.

For the above example, peak demand savings are $102.3 \text{ kWh} \times 0.0000877 = 0.009 \text{ kW}$.

Energy Savings - Electric Tankless Water Heater Replacement

The following deemed savings apply to electric instantaneous (tankless) water heating systems for residential applications. To qualify for deemed savings, a tankless electric water heater must be the sole source of hot water and designed to serve the entire household.

Deemed savings apply to the household, not the unit(s), and are based on the estimated water usage from Table 147 and baseline storage tank Uniform Energy Factor from

Table 143. In the case of multiple tankless systems being installed, the deemed savings will be based on the least efficient tankless system installed. The Uniform Energy Factor accepted as readily available for the best performing tankless electric water heaters is 0.99.¹⁵³

If a tankless water heater (UEF = 0.99) were used in the previous example, annual deemed savings would be 264.8 kWh/yr.

$$kWh_{savings} = \frac{8.33 \times 1 \times 20911 \times (124 - 65.6) \times \left(\frac{1}{0.91} - \frac{1}{0.99}\right)}{3412} = 264.8 \frac{kWh}{yr}$$

Demand Savings - Tankless Electric Water Heater Replacement

$$kW_{savings} = kWh_{savings} \times Ratio(Peak \ kW)$$
 (Annual kWh)

(91)

Where:

 $Ratio(Peak \, kW)$ ¦(Annual kWh)= 0.0000877

¹⁵³ AHRI Directory: <u>www.ahridirectory.org</u>.

¹⁵² U.S. DOE "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile.

For the above tankless water heater example, peak demand savings is $264.8 \text{ kWh} \times 0.0000877 = 0.023 \text{ kW}$.

Calculation of Deemed Savings – Heat Pump Water Heater (HPWH)

Energy Savings – HPWH

The residential heat pump water heater measure involves the installation of an integrated ENERGY STAR® HPWH. The HPWHs available through ENERGY STAR®¹⁵⁴ must meet the following requirements noted below.

- UEF \geq 3.30 for Integrated HPWH
- UEF >= 2.20 for Integrated HPWH, 120 volt/ 15 Amp circuit
- UEF >= 2.20 for Split System HPWH

The variables affecting deemed savings are: storage tank volume, HPWH Uniform Energy Factor (UEF), HPWH installation location (in conditioned or unconditioned space), and weather zone. This measure takes into account an air-conditioning energy savings ("Cooling Bonus") and an additional space heating energy requirement ("Heating Penalty") associated with the HPWH when it is installed inside conditioned space.

$$kWh_{Saving} = \rho \times C_p \times V \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{UEF_{base}} - \left(\frac{Adj}{UEF_{post}} \times (1 + PA\%)\right)\right) \times \frac{1}{3412}$$
(92)

Where:

 ρ = Water density = 8.33 lb/gal

 C_p = Specific heat of water = 1 BTU/lb. °F

V = Estimated annual hot water use (gal) from Table147

 $T_{SetPoint}$ = Water heater set point (default value = 124°F)

 T_{Supply} = Average supply water temperature from Table 148

*UEF*_{base} = Baseline Uniform Energy Factor from Tabke 143

UEF_{post} = Uniform Energy Factor of new HPWH

- PA% = Performance Adjustment to adjust the HPWH UEF relative to ambient air temperature per DOE guidance ¹⁵⁵ = 0.00008 × T_{amb}^3 + 0.0011 × T_{amb}^2 0.4833 × T_{amb} + 0.0857
- T_{amb} = Ambient temperature dependent on location of HPWH (Conditioned or Unconditioned Space) and Weather Zone from Table 149
- *Adj* =HPWH-specific adjustment factor to account for Cooling Bonus and Heating Penalty on an annual basis, as well as backup electrical resistance heating which is estimated at 0.92 EF. Adjustment factors are listed in Table 150
- 3,412 =Conversion constant from BTU to kWh

¹⁵⁴ <u>https://www.energystar.gov/products/heat_pump_water_heaters</u>

¹⁵⁵ Kelso, J. 2003. *Incorporating Water Heater Replacement into The Weatherization Assistance Program*, May. D&R International, Ltd. Information Tool Kit.

The average air ambient temperatures listed in Table 149 are applicable to the installation locations for the HPWH. Unconditioned space is considered to be an unheated garage-like environment. This data is based on local ambient temperatures for each weather zone calculated from TMY3 weather data. The conditioned space temperatures assume thermostat settings of 78F (cooling season) and 70F (heating season), and a "balance point temperature"¹⁵⁶ of 65F. Unconditioned space ambient temperatures are adjusted from the local temperatures by seasonal factors¹⁵⁷ to account for a garage-like setting.

Weather Zone and Location	Conditioned Space	Unconditioned Space
Zone 9 - Fayetteville	72.2	69.1
Zone 8 - Fort Smith	73.4	69.4
Zone 7 - Little Rock	73.4	71.1
Zone 6 - El Dorado	72.9	73.3

¹⁵⁶ "Average daily outside temperature at which a building maintains a comfortable indoor temperature without heating or cooling"; <u>https://www.degreedays.net/base-temperature</u>

¹⁵⁷ ASHRAE: Standard 152-2004 Table 6.1b and 6.2b

Table 150: HPWH Adjustment¹⁵⁸

	Weather Zone 9 -	- Fayetteville	;		
		HPWH Tank Size Range (gal)			
Water Heater Location	Furnace Type	40	50	65	80
	Gas	1.02	1.02	1.03	1.04
Conditioned Space	Heat Pump	1.46	1.42	1.37	1.33
	Elec. Resistance	2.04	1.94	1.82	1.71
Unconditioned Space	N/A	1.06	1.06	1.06	1.06
	Weather Zone 8	- Fort Smith			
	D T	HP	WH Tank S	Size Range (g	gal)
Water Heater Location	Furnace Type	40	50	65	80
	Gas	1.02	1.03	1.03	1.04
Conditioned Space	Heat Pump	1.43	1.39	1.35	1.31
	Elec. Resistance	1.95	1.86	1.75	1.66
Unconditioned Space	N/A	1.06	1.06	1.06	1.06
	Weather Zone 7	- Little Rock			
	F	HP	WH Tank S	Size Range (gal)
Water Heater Location	Furnace Type	40	50	65	80
	Gas	0.99	1.00	1.01	1.02
Conditioned Space	Heat Pump	1.41	1.38	1.34	1.30
	Elec. Resistance	1.96	1.87	1.76	1.66
Unconditioned Space	N/A	1.07	1.07	1.07	1.07
	Weather Zone 6	- El Dorado			
	E	HP	HPWH Tank Size Range (gal)		
Water Heater Location	Furnace Type	40	50	65	80
	Gas	0.95	0.96	0.98	0.99
Conditioned Space	Heat Pump	1.34	1.31	1.28	1.25
	Elec. Resistance	1.84	1.76	1.66	1.58
Unconditioned Space	N/A	1.07	1.07	1.07	1.07

¹⁵⁸ In order to facilitate an algorithmic approach: a spreadsheet model was created which modeled savings accounting for Cooling Bonus and Heating Penalty on an annual basis, as well as backup electrical resistance heating; HPWH Adjustment factors were derived to equate the results of this more extensive model to a simpler algorithm.

As an example, the following deemed electricity savings are applicable for the replacement of a 50-gallon electric storage tank water heater and a medium draw pattern with a 50-gallon heat pump water heater using a model with an UEF of 3.3 in conditioned space for a household using a gas furnace in weather zone 9:

$$kWh_{Savings} = \frac{8.33 \times 1 \times 20,911 \times (124 - 65.6) \times \left(\frac{1}{0.92} - \left(\frac{1.02}{3.3 \times (1 + 0.01035)}\right)\right)}{3,412}$$

Demand Savings – HPWH

$$kW_{savings} = kWh_{savings} \times Ratio(Peak \ kW)$$
 (Annual kWh)

(93)

Where:

$$Ratio(Peak \, kW)$$
 (Annual kWh) = 0.0000877

For the HPWH example shown in Equation above, peak demand savings is $2,328.58 \text{ kWh} \times 0.0000877 = 0.204 \text{ kW}$.

Calculation of Deemed Savings – Gas Water Heating

Energy Savings – Gas Storage Tank Water Heater Replacement

Annual Therms_{Savings} =
$$\frac{\rho \times C_p \times V \times (T_{SetPoint} - T_{Supply}) \times (\frac{1}{UEF_{base}} - \frac{1}{UEF_{post}})}{100000}$$
(94)

Where:

 ρ = Water density = 8.33 lb/gal

 C_p = Specific heat of water = 1 BTU/lb. °F

V = Estimated annual hot water use (gal per year) from Table 147

 $T_{SetPoint}$ = Water heater set point (default value = 124°F)

 T_{Supply} = Average supply water temperature from Table 148

*UEF*_{base} = Baseline Uniform Energy Factor from Table 143

UEF_{post} = Uniform Energy Factor of new water heater

100,000 =Conversion constant for BTU to therms

For example, deemed savings for replacement of a 50-gallon gas water heater and a medium flow pattern with a high-efficiency gas water heater with UEF = 0.70 for a household in weather zone 9 (e.g., Fayetteville) would be:

Annual Therms_{savings} =
$$\frac{8.33 \times 1 \times 20911 \times (124 - 65.6) \times \left(\frac{1}{0.58} - \frac{1}{0.70}\right)}{100000} = 30.1 \frac{\text{therms}}{\text{yr}}$$

Peak Day Therm Savings – Gas Storage Tank Water Heater Replacement

$$Peak Therms_{savings} = Annual Therm_{savings} \times Ratio(Peak kW) | (Annual kWh)$$

Where:

 $Ratio(Peak \ kW)$ (Annual kWh)= 0.0024

The ratio of Peak Day Therms to Annual Therms was calculated using the U.S. DOE's "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile.¹⁵⁹

For the example above, peak day therm savings would be 30.1 therms \times 0.0024 = 0.072 therms.

Annual Therm Savings - Gas Tankless Water Heater Replacement

The following deemed savings calculation method applies to gas tankless water heating systems for residential applications. To qualify for tankless water heating system deemed savings, the tankless system(s) must be the sole source of hot water and designed to serve the entire household.

Deemed savings apply to the household, not the unit(s), and are based on the assumed water usage and baseline storage tank EFs indicated in the table. In the case of multiple tankless systems being installed, the deemed savings will be based on the least efficient tankless system installed. Indicated Energy Factors correspond to currently available systems listed in the AHRI directory.

Annual Therms_{Savings} =
$$\frac{\rho \times C_P \times V \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{post}}\right)}{100000}$$

Where:

 ρ = Water density = 8.33 lb/gal

 C_P = Specific heat of water = 1 BTU/lb. °F

V = Estimated annual hot water use (gal per year) from Table 147

 $T_{SetPoint}$ = Water heater set point (default value is 124°F)

 T_{Supply} = Average supply water temperature from Table 148

UEF_{base} = Baseline Uniform Energy Factor from Table 143

UEF_{post} = Uniform Energy Factor of new water heater

100000 = Conversion Factor Btu/Therm

The deemed savings for replacement of a 50-gallon gas storage tank water heater by a tankless gas water heater with an UEF = 0.82 for a household in weather zone 9 (e.g. Fayetteville) would be:

Annual Therms_{savings} = $\frac{8.33 \times 20,911 \times (124-65.6) \times \left(\frac{1}{0.56} - \frac{1}{0.82}\right)}{100000} = 57.6 \ therms/yr$

(95)

(96)

¹⁵⁹ U.S. DOE's "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile. <u>http://www.nrel.gov/docs/fy06osti/38238.pdf</u>.

Peak Day Therm Savings – Gas Tankless Water Heater Replacement

$$Peak Therms_{savings} = Annual Therms_{savings} \times Ratio(Peak kW) | (Annual kWh)$$

Where:

$$Ratio(Peak \, kW)$$
¦(Annual kWh) = 0.0024

For the example above, peak day therm savings would be 57.6 therms x 0.0024 = 0.138 therms.

Calculation of Deemed Savings - Solar Water Heating with Gas or Electric Backup

Energy Savings – Solar Water Heating Systems with Electric Backup

The residential solar water heater measure involves the installation of an ENERGY STAR® certified solar water heater. Solar water heaters available through ENERGY STAR®¹⁶⁰ must have a Solar Uniform Energy Factor (SUEF) \geq 3.0 for electric backup and \geq 1.8 for gas backup.

The variables affecting deemed savings are: SUEF and weather zone.

The SRCC determines SUEF based on standardized 1,500 Btu/ft²-day solar radiation profile across the U.S. As solar insolation varies widely depending on geographic location, in order to derive more accurate estimates for a given locale, Localization Factors (LF) are used to adjust the SUEF. LFs for the four Arkansas weather zones have been calculated. The LFs (Table 152) are based on the daily total insolation (Table 151)), averaged annually, per a Satellite Solar Radiation model developed by the State University of New York (SUNY).

$$kWh_{Savings} = \rho \times C_p \times V \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{UEF_{base}} - \frac{1}{SUEF \ x \ LF}\right) \times \frac{1}{3412}$$
(98)

Where:

 ρ = Water density = 8.33 lb./gal

 C_p = Specific heat of water = 1 BTU/lb. \cdot °F

V = Estimated annual hot water use (gal) from Table 147

 $T_{SetPoint}$ = Water heater set point (default value = 124°F)

 T_{Supply} = Average supply water temperature from Table 148

*UEF*_{base} = Baseline Uniform Energy Factor from Table 143

SUEF = Solar Uniform Energy Factor of new water heater

LF = Localization Factor for SUEF of new water heater Table 152

3,412 =Conversion constant from BTU to kWh

(97)

¹⁶⁰ <u>https://www.energystar.gov/products/solar_water_heaters</u>¹⁶¹ SUNY Satellite Solar Radiation model (Perez, et. al., 2002).

Weather Zone and Location	Daily Total Insolation (BTU/ft2/day)
Zone 9 - Fayetteville	1,591
Zone 8 - Fort Smith	1,597
Zone 7- Little Rock	1,579
Zone 6 - El Dorado	1,601

Table 151: Annual Average Daily Total Insolation¹⁶¹

 Table 152: AR Weather Zone Localization Factor (LF) for SUEF

Weather Zone and Location	LF for SUEF
Zone 9 - Fayetteville	1.06
Zone 8 - Fort Smith	1.06
Zone 7- Little Rock	1.05
Zone 6 - El Dorado	1.07

As an example, the following deemed electricity savings are applicable for replacement of a 50-gallon electric storage tank water heater and medium draw pattern with a 50-gallon solar water heater with electric backup using a model with a SUEF of 3.0 for a household in weather zone 9:

$$kWh_{Savings} = 8.33 \times 1 \times 20,911 \times (124 - 65.6) \times \left(\frac{1}{0.92} - \frac{1}{(3.0 \times 1.06)}\right) \times \frac{1}{3412} = 2,303.1 \frac{kWh}{yr}$$

Demand Savings – Solar Water Heating Systems with Electric Backup

$$kW_{savings} = kWh_{savings} \times Ratio(Peak \ kW)$$
 (Annual kWh)

(99)

Where:

 $Ratio(Peak \, kW)$ (Annual kWh) = 0.0000877

For the above example, peak demand savings is 2,303.1 kWh x 0.0000877 = 0.202 kW.

¹⁶¹ SUNY Satellite Solar Radiation model (Perez, et. al., 2002).

Energy Savings –Solar Water Heating Systems with Gas Backup

$$Therm_{Savings} = \frac{\rho \times C_P \times V \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{UEF_{base}} - \frac{1}{SUEF \times LF}\right)}{100000}$$
(100)

Where:

 ρ = Water density = 8.33 lb./gal.

Cp =Specific heat of water = 1 BTU/lb. \cdot °F

V = Estimated annual hot water use (gal) from Tablr 147

 $T_{SetPoint}$ = Water heater set point (default value = 124°F)

 T_{Supply} = Average supply water temperature from Table 148

*UEF*_{base} = Baseline Uniform Energy Factor from Table 143

SUEF = Solar Energy Factor of new water heater

LF = Localization Factor for SEF of new water heater Table 152

100000 = Conversion Factor, Btu/therm

The deemed gas savings applicable for replacement of a 50-gallon gas storage tank water heater and a medium draw pattern with a 50-gallon solar water heater with gas backup using a model with a SUEF of 1.9 for a household in weather zone 9:

$$Annual Therms_{Savings} = \frac{\left(8.33 \times 1 \times 20911 \times (124 - 65.6) \times \left(\frac{1}{0.56} - \frac{1}{(1.9 \times 1.06)}\right)\right)}{100000}$$
$$= 131.1 therms/yr$$

Demand Savings – Solar Water Heating Systems with Gas Backup

$$Peak Therms_{savings} = Annual Therms_{savings} \times Ratio(Peak kW) | (Annual kWh)$$

(101)

Where:

 $Ratio(Peak \ kW)$ ¦(Annual kWh) = 0.0024

For the example above, peak day therm savings would be 131.1 therms x 0.0024 = 0.315 therms.

2.3.2 Water Heater Jackets

Measure Description

This measure involves water heater jackets (WHJ) installed on water heaters located in an unconditioned space. These estimates apply to all weather regions. This measure applies to all residential applications.

Baseline and Efficiency Standards

Baseline is assumed to be a post-1991, storage-type water heater.

The WHJ must be installed on storage water heaters having a capacity of 30 gallons or greater. The manufacturer's instructions on the WHJ and the water heater itself should be followed. If electric, thermostat and heating element access panels must be left uncovered. If gas, follow WHJ installation instructions regarding combustion air and flue access.

Table 153: Water Heater Jackets – Baseline and Efficiency Standards

Baseline-149	Efficiency Standard		
Uninsulated water heater	Minimum insulation of R-6.7		

Estimated Useful Life (EUL)

The average lifetime of this measure is 13 years, according to NEAT v. 8.6.

Deemed Savings Values

Deemed savings are per installed jacket based on the jacket thickness, the type of water heating and the tank size.

	Electric Water Heating					
	kWh Savings			kW Savings		
Approximate Tank Size (gal)	40	52	80	40	52	80
2" WHJ savings kWh	68	76	101	0.005	0.006	0.008
3" WHJ savings kWh	94	104	139	0.007	0.008	0.011

	Gas Water Heating					
	Therms Savings			Peak Therms		
Approximate Tank Size (gal)	30	40	50	30	40	50
2" WHJ savings Therms	3.38	3.96	4.41	0.006	0.007	0.008
3" WHJ savings Therms	4.67	5.46	6.09	0.009	0.010	0.011

Table 155: Water Heater Jackets – Gas Heating Deemed Savings Values

Calculation of Deemed Savings

Energy consumption for baseline units, with and without insulation jackets, was calculated using industrystandard energy-use calculation methodologies for residential domestic water heating. Variables in the calculations include the following:

- Water heater fuel type (electric or gas/propane)
- Baseline EF
- Estimated U-value of baseline unit
- Ambient temperature
- Tank volume
- Tank surface area
- Tank temperature
- Estimated hot water consumption

To estimate peak energy consumption, a load profile for residential water heating was developed from individual load profiles for the following end-uses:

- Clothes washer
- Dishwasher
- Faucet
- Shower
- Sink-filling
- Bath
- Miscellaneous

This end-use load shape data was calibrated using metered end-used data obtained from several utility end-use metering studies.

2.3.3 Water Heater Pipe Insulation

Measure Description

This measure pertains to water heater pipe insulation. Water heaters plumbed with heat traps are not eligible to receive incentives for this measure. New construction and water heater retrofits are not eligible for this measure, because they must meet current code requirements. This measure applies to all residential applications.

Baseline and Efficiency Standards

Baseline is assumed to be a typical gas or electric water heater with uninsulated hot water supply pipes.

The efficiency case is insulated hot and cold vertical lengths of pipe, including the initial length, up to three feet from the transition, or until wall penetration, whichever is less.

Table 156: Water Heater Pipe Insulation – Baseline and Efficiency Standards

Baseline	Efficiency Standard
Uninsulated hot water pipes	Minimum insulation thickness of ¹ /2"

Estimated Useful Life (EUL)

The average lifetime of this measure is dependent on the type of water heater it is applied to. According to DEER 2008, the following measure lifetimes should be applied:

13 years for electric storage water heating

11 years for gas storage water heating

10 years for heat pump water heaters

Calculation of Deemed Savings

Energy Savings – Water Heater Pipe Insulation for Electric, Gas, or Heat Pump Water Heater (HPWH)

Annual Energy Savings

$$= (U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambient}) \times \frac{1}{RE_t} \times HOU \times \frac{1}{Conversion Factor}$$
(102)

Where:

 $U_{pre} = 1/(2.03^{162}) = 0.49$ BTU/h sq. ft. degree F

 $U_{post} = 1/(2.03 + R_{Insulation})$

 $R_{Insulation}$ = R-value of installed insulation

A = Surface area in square feet (πDL) with L (length) and D pipe diameter in feet

¹⁶² 2.03 is the R-value representing the film coefficients between water and the inside of the pipe and between the surface and air. Mark's Standard Handbook for Mechanical Engineers, 8th edition.

- T_{Pipe} (°F) = Average temperature of the pipe. Default value = 90 °F (average temperature of pipe between water heater and the wall)
- $T_{ambient}$ (°F) = See Table 157; use 78°F if installed in conditioned space
- RE_t = Recovery Efficiency (or in the case of HPWH, UEF); if unknown, use 0.98 as a default for electric resistance water heaters, 0.79 for natural gas water heaters, or 2.2 for heat pump water heaters¹⁶³
- HOU = hours of use = 8,760 hours per year^{164,165}
- *Conversion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating

 Table 157: Average Ambient Temperature by Weather Zone

Weather Zone and Location	Average Ambient Temperature (°F)
Zone 9 - Fayetteville	59.6
Zone 8 - Fort Smith	60.1
Zone 7 - Little Rock	61.8
Zone 6 - El Dorado	64.1

For example, deemed savings for water heater pipe insulation with an R-value of 3 installed on an electric water heater in Zone 8 would be:

$$kWh_{savings} = \frac{(0.49 - 0.20) \times 2.1 \times (90 - 60.1) \times \left(\frac{1}{0.98}\right) \times 8760}{3412} = 48 \, kWh/yr$$

Demand Savings

Peak demand savings for hot water heaters installed in conditioned space can be calculated using the following formula for electric:

$$kW_{savings} = (U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambientMAX}) \times \frac{1}{RE_t} \times \frac{1}{3412}$$
(103)

¹⁶³ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/Search/SearchHome?ReturnUrl=%2f</u>

¹⁶⁴ Ontario Energy's Measures and Assumptions for Demand Side Management (DSM) Planning https://www.oeb.ca/oeb/_Documents/EB-20080346/Navigant_Appendix_C_substantiation_sheet_20090429.pdf

¹⁶⁵ New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs Residential, Multi-Family, and Commercial/Industrial Measures <u>https://dps.ny.gov/system/files/documents/2022/11/technical-resource-manual-version-8-filed-august-11-2020-effective-january-1-2021.pdf</u>

Where:

 $U_{pre} = 1/(2.03) = 0.49$ BTU/h sq ft degree F

 $U_{post} = 1/(2.03 + R_Insulation)$

 $R_{Insulation} =$ R-value of installed insulation

A = Surface area in square feet (πDL) with L (length) and D pipe diameter in feet

- T_{Pipe} (°F) = Average temperature of the pipe. Default value = 90 °F (average temperature of pipe between water heater and the wall)
- $T_{ambientMAX}$ (°F) =For water heaters installed in unconditioned basements, use an average ambient temperature of 75°F; for water heaters inside the thermal envelope, use an average ambient temperature of 78 °F
- RE_t = Recovery efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance or 2.2 for heat pump water heaters
- 3,412 =Conversion constant from BTU to kWh

Table 158: Maximum and Minimum Temperatures per Weather Zone

	Ambient Temperature (°F)					
Weather Zone and Location	TambientN	AAX (Electric)	TambientMIN (Gas)			
weather Zone and Location	Conditioned Space		Conditioned Space	Unconditioned Space		
Zone 9 - Fayetteville	78		70	4.3		
Zone 8 - Fort Smith	78	75	70	13.5		
Zone 7 - Little Rock	78	75	70	12.1		
Zone 6 - El Dorado	78		70	27.8		

For gas, peak day demand savings can be calculated using the following formula:

$$Peak Therms_{savings} = (U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambient,MIN}) \times \frac{1}{RE_t} \times \frac{1}{100000} \times 24$$
(104)

¹⁶⁶ Unconditioned basement temperature calculated from ground temperature data for Arkansas using data from the National Resource Conservation Service <u>http://www.wcc.nrcs.usda.gov/scan/</u>. We took an average of the last 30 Day Daily Table at a depth of 40inches for the representative sites in Arkansas.

Where:

 $U_{pre} = 1/(2.03) = 0.49$

 $U_{post} = 1/(2.03 + R_{Insulation})$

 $R_{Insulation}$ = R-value of installed insulation

A = Surface Area in square feet (for a length of pipe = $2\pi rL$) with L and r in feet

- $T_{Pipe}(^{\circ}F) =$ Average temperature of the pipe; default value = 90°F (average temperature of pipe between water heater and the wall)
- $T_{ambientMIN}$ (°F) =For water heaters not installed in conditioned space, use the minimum annual ambient temperatures in Table 158; for water heaters inside the building envelope, use the conditioned space temperature of 70°F

 RE_t = Recovery efficiency; if unknown, use 0.77 as a default

- 100000 =Conversion constant from BTU to therms
- 24 =Conversion constant from hours to day

2.3.4 Faucet Aerators

Measure Description

This measure involves retrofitting aerators on kitchen and bathroom water faucets. The savings values are per faucet aerator installed. It is not a requirement that all faucets in a home be treated for the deemed savings to be applicable. This measure applies to all residential applications.

Baseline and Efficiency Standards

The 2.2 gpm baseline faucet flow rate¹⁶⁷ is based upon a settlement agreement among the parties in the energy efficiency project before the Arkansas Public Service Commission, Docket 10-100-R, submitted February 22, 2012. The US EPA WaterSense[®] specification for faucet aerators is 1.5 gallons per minute (gpm).¹⁶⁸ Actual flow rates, when available, may be used.

Table 159: Faucet Aerators – Baseline and Efficiency Standards

Baseline	Efficiency Standard
Actual or 2.2 gpm	Actual or 1.5 gpm maximum

The deemed savings values are for residential, retrofit-only installation of kitchen and bathroom faucet aerators.

Additional Requirement for Contractor-Installed Aerators

Aerators that have been defaced so as to make the flow rating illegible are not eligible for replacement. For direct install programs, all aerators removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008.

Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperatures for the four Arkansas weather zones are shown in Table 160. The water main temperature data was approximated using the following formula.¹⁶⁹

T of water main = $T_{avg \ ambient} + R \times \Delta T_{amb}$

(105)

¹⁶⁷ Maximum flow rate federal standard for lavatories and aerators set in Federal Energy Policy Act of 1992 and codified at 2.2 GPM at 60 psi in 10CFR430.32

¹⁶⁸ "High-Efficiency Lavatory Faucet Specification." WaterSense. EPA. October 1, 2007. <u>https://www.epa.gov/sites/production/files/2017-01/documents/ws-products-support-statement-faucets.pdf</u>

¹⁶⁹ Burch, J & Christensen, C. 2007. "*Towards Development of an Algorithm for Mains Water Temperature*." Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

Where:

 $T_{avg ambient}$ = the average annual ambient dry bulb temperature

R = 0.05

 ΔT_{amb} = the average of maximum and minimum ambient air dry bulb temperature for the month (T_{max} + T_{min})/2 where T_{max} = maximum ambient dry bulb temperature for the month, and T_{min} = minimum ambient dry bulb temperature for the month

Table 160: Average Water Main Temperature by Weather Zone

Weather Zone and Location	Average Ambient Temperature (°F)
Zone 9 - Fayetteville	65.6
Zone 8 - Fort Smith	66.1
Zone 7 - Little Rock	67.8
Zone 6 - El Dorado	70.1

Baseline and efficiency-standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.^{170, 171, 172}

Estimated Hot Water Usage Reduction

Water consumption =

Faucet Use per Person per Day × Occupants per Home × 365 Days per Year

Faucets per Home

(106)

¹⁷⁰ Seattle Home Water Conservation Study, 2000. "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes*." December. <u>https://docplayer.net/6217138-Seattle-home-water-conservation-study.html</u>

¹⁷¹ Residential Indoor Water Conservation Study, 2003 "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July. https://www.ebmud.com/about-us/publications

¹⁷² Tampa Water Department Residential Water Conservation Study, 2004, "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes.*", Aquacraft, Inc., Water Engineering and Management, Tampa, 2004.

Applying the formula to the values used for Arkansas from Table 161 returns the following values for baseline and post water consumption.

Baseline (2.2 gpm): 9.7 x 2.53 x 365 / 3.86 = 2,321 gallons per year

Post (1.5 gpm): 8.2 x 2.53 x 365 / 3.86 = 1,962 gallons per year

Post (1.0 gpm): 7.2 x 2.53 x 365 / 3.86 = 1,722 gallons per year

Gallons of water saved per year can be found by subtracting the post consumption in gallons per year per aerator from the baseline consumption.

Gallons of water saved per year (1.5 gpm): 2,321 - 1,962 = 359 gallons per year

Gallons of water saved per year (1.0 gpm): 2,321 - 1,722 = 599 gallons per year

 Table 161: Estimated Aerator Hot Water Usage Reduction

Assumption Type	Seattle Study ¹⁷³	Tampa Study ¹⁷⁴	East Bay Study	Average	Value used for Arkansas
Faucet use gallons/person/day (baseline)	9.2	9.4	10.5	9.7	9.7
Faucet use gallons/person/day (1.5 gpm)	8.0	6.2	10.5	8.2	8.2
Faucet use gallons/person/day (1.0 gpm) ¹⁷⁵					7.2
Occupants per home ¹⁷⁶²	2.54	2.92	2.56	2.67	2.53
Faucets per home ¹⁷⁷³					3.86
Gal./yr./faucet (baseline)					2,321
Gal./yr./faucet (1.5 gpm)					1,962
Gal./yr./faucet (1.0 gpm)					1,722
Percent hot water	76.10%4	Not listed	57.60% ⁵	66.90%	66.9%
Water gallons saved/yr./faucet (1.5 gpm)					359
Water gallons saved/yr./faucet (1.0 gpm)					599

¹⁷³ Average of pre-retrofit percent faucet hot water 72.7% on page 35, and post-retrofit percent faucet hot water 79.5% on page 53.

¹⁷⁴ Average of pre-retrofit percent faucet hot water 65.2% on page 31 and post-retrofit faucet hot water percentage 50.0% on page 54.

¹⁷⁵ This value is a linear extrapolation of gallons per person per day from the baseline (2.2 gpm) and the 1.5 gpm case.

¹⁷⁶ Occupants per home for Arkansas from U.S. Census Bureau 2012-2016 Families & Living Arrangements, <u>https://www.census.gov/quickfacts/ar</u>

¹⁷⁷ Faucets per home assumed to be equal to one plus the number half bathrooms and full bathrooms per home, taken from 2009 RECS, Table HC2.10.

Based on the average percentage hot water shown in Table 161, the average mixed water temperature across all weather zones was determined. The hot water temperature was assumed to be 124°F.¹⁷⁸ The mixed water temperature used in the energy savings calculation can be seen in Table 162.

Weather Zone and Location	Average Water Main Temperature (°F)	Percent Hot Water	Mixed Water Temperature (°F)
Zone 9 - Fayetteville	65.6	66.9%	104.7
Zone 8 - Fort Smith	66.1	66.9%	104.8
Zone 7 - Little Rock	67.8	66.9%	105.4
Zone 6 - El Dorado	70.1	66.9%	106.2
Average for Arkansas (<i>T_{Mixed}</i>)			105.3

Table 162: Mixed Water Temperature Calculation

Calculation of Deemed Savings

Energy Savings – Faucet Aerators

Annual Energy Savings =
$$\rho \times C_P \times V \times (T_{Mixed} - T_{Supply}) \times \frac{1}{RE_t} \times \frac{1}{Conversion Factor}$$
(107)

Where:

 ρ = Water density = 8.33 lb./gal

 C_P = Specific heat of water = 1 BTU/lb. °F

V = gallons of water saved per year per faucet from Table 161 161

 T_{Mixed} = Mixed water temperature, 105.3°F, from Table 162 (average for Arkansas)

 T_{Supply} = Average supply water temperature (Water Main Temperature from Table 160)

 RE_t = Recovery Efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.79 for natural gas water heaters¹⁷⁹

Conversion Factor = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating

¹⁷⁸ Analysis by ADM reported in 2017 EM&V Evaluation Reports for Arkansas utilities . Note that the temperature of the water at faucet is likely to be lower, due to thermal losses in the water pipe system within the home, and tempering of the water temperature by the user.

¹⁷⁹ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/Search/SearchHome?ReturnUrl=%2f</u>

Demand Savings – Faucet Aerators

Demand savings for homes with electric water heating were calculated using the following formula:

$$kW_{savings} = kWh_{savings} \times Ratio(Peak \, kW)$$
 (Annual kWh)

Where:

 $Ratio(Peak \, kW)$ ¦(Annual kWh) = 0.000104

This value is taken from the DOE domestic hot water use study.¹⁸⁰ The DOE domestic hot water use study provided values for the share of daily water use per hour in a profile for shower, bath, and sink hot water use. An average was calculated using peak hours of 3 PM to 6 PM to generate an average hourly share of daily water use during peak hours. That value was divided by 365 to generate a ratio of peak share to annual use.

For homes with gas water heaters, peak day therm savings were calculated as follows:

$$Peak Therms_{savings} = Annual Therm_{savings} \times Ratio(Peak kW) | (Annual kWh)$$

(109)

(108)

Where:

 $Ratio(Peak \ kW)$ (Annual kWh) = 0.003

This value is based on DOE's Domestic Hot Water Event Schedules.¹⁸¹ The ratio was developed by identifying the coldest average water main temperature day for the year. Then the corresponding hot water consumption for that day was used to calculate a ratio related to annual therms consumption.

As an example, the expected energy savings for an aerator replacement in Weather Zone 9 (e.g., Fayetteville) are shown in Table 163.

¹⁸⁰ U.S. DOE's 2006. "Building America Performance Analysis Procedures for Existing Homes". National Renewable Energy Laboratory. May. <u>https://www.nrel.gov/docs/fy06osti/38238.pdf</u> (See Figure 3, page 17.) This TRM looked at hourly share of daily water use at 3pm 4pm, 5pm, and 6pm in Figure 3. The fractions of hourly use derived were 0.022 for 3pm, 0.03 for 4pm, 0.04 for 5pm, and 0.06 for 6pm. The average of these fractions is 0.038, which is the average share of daily water use that falls on a peak hour per day. Dividing that value by 365 days calculates a ratio of 0.000104 as the ratio of peak share to annual use.

¹⁸¹ Burch, J. & Hendron, R. 2007, U.S. DOE "Development of Standardized Domestic Hot Water Event Schedules for Residential Builders, June. <u>https://www.nrel.gov/docs/fy08osti/40874.pdf</u>

Example Calculation of Deemed Savings Values

Deemed savings values are per faucet aerator installed.

Table 163: Example, Replacing 2.2 gpm with 1.5 gpm Faucet Aerator - Deemed Energy and Demand Savings

Faucet Aerator, Fayetteville Weather Zone			
Water Usage Reduction (gal)	359		
T_Supply	65.6°F		
T_Mixed	105.3°F		
Water heater RE_t (excluding standby losses)	0.98 (Electric) / 2.2 (Heat Pump) / 0.79 (Gas)		
Energy Savings	Electric: 36 kWh	Heat Pump: 16 kWh	Gas: 1.5 Therms
Demand Savings	Electric: 0.004 kW	Heat Pump: 0.002 kW	Gas: 0.004 Peak Day Therms

2.3.5 Low-Flow Showerheads

Measure Description

This measure consists of removing existing showerheads and installing low-flow showerheads in residences. This measure applies to all residential applications.

Baseline and Efficiency Standards

The baseline average flow rate of the existing stock of showerheads is based on the current US DOE standard.

The incentive is for replacement of an existing showerhead with a new showerhead rated at 2.0, 1.75 or 1.5 gallons per minute (gpm). The only showerheads eligible for installation are those that are not easily modified to increase the flow rate.

Additional Requirement for Contractor-Installed Showerheads

Existing showerheads that have been defaced so as to make the flow rating illegible are not eligible for replacement. All showerheads removed shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

Measure	New Showerhead Flow Rate ¹⁸² (gpm)	Existing Showerhead Baseline Flow Rate (gpm)
2.0 gpm showerhead	2.0	2.5
1.75 gpm showerhead	1.75	2.5
1.5 gpm showerhead	1.5	2.5

Table 164: Low-Flow Showerhead – Baseline and Efficiency Standards

The U.S. Environmental Protection Agency (EPA) WaterSense Program has implemented efficiency standards for showerheads requiring a maximum flow rate of 2.0 gpm.

https://www.epa.gov/watersense/showerheads

Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008.

Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperatures for the four Arkansas weather zones are shown in Table 165. The water main temperature data was approximated using the following formula.¹⁸³

T of water main =
$$T_{avg ambient} + R \times \Delta T_{amb}$$

(110)

¹⁸² All flow rate requirements listed here are the rated flow of the showerhead measured at 80 pounds per square inch of pressure (psi).

¹⁸³ Burch, J. & Christensen, C. 2007. "*Towards Development of an Algorithm for Mains Water Temperature*" Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

Where:

R = 0.05

 $T_{avg ambient}$ = the average annual ambient dry bulb temperature

 ΔT_{amb} = the average of maximum and minimum ambient air dry bulb temperature for the month (T_{max} + T_{min})/2 where T_{max} = maximum ambient dry bulb temperature for the month and T_{min} = minimum ambient dry bulb temperature for the month

Table 165: Average Water Main Temperature by Weather Zone

Weather Zone and Location	Average Water Main Temperature (°F)
Zone 9 -Fayetteville	65.6
Zone 8- Fort Smith	66.1
Zone 7 -Little Rock	67.8
Zone 6- El Dorado	70.1

Estimated Hot Water Usage Reduction

Baseline and efficiency standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.^{184,185,186} See Table 161 for derivation of water usage values.

To determine water consumption, the following formula was used:

Water Consumption =

Gallons per Shower × Showers per Person per Day × 365 Days per Year × Occupants per Home Showerheads per Home

(111)

Applying the formula to the values for Arkansas from Table 166 returns the following baseline and post water consumption.

Baseline (2.5 gpm): 20.7 x 0.69 x 365 x 2.53 / 1.62 = 8,142 gallons per year

Post (2.0 gpm): 16.5 x 0.72 x 365 x 2.53 / 1.62 = 6,772 gallons per year

Post (1.5 gpm): 12.4 x 0.72 x 365 x 2.53 / 1.62 = 5,089 gallons per year

¹⁸⁴ Seattle Home Water Conservation Study, 2000. "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes.*" December. <u>https://docplayer.net/6217138-Seattle-home-water-conservation-study.html</u>

¹⁸⁵ Residential Indoor Water Conservation Study, 2003 "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July. https://www.ebmud.com/about-us/publications

¹⁸⁶ Tampa Water Department Residential Water Conservation Study, 2004, "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes.*", Aquacraft, Inc., Water Engineering and Management, Tampa, 2004.

Although the referenced studies do not provide data on 1.75 gpm showerheads, the consumption values for 2.5, 2.0, and 1.5 gpm roughly follow a linear pattern. Taking a simple average of the consumption for 2.0 and 1.5 gpm showerheads returns a value for a 1.75 gpm showerhead:

Post (1.75 gpm): (6,772 + 5,089) / 2 = 5,931 gallons per year

Gallons of water saved per year can be found by subtracting the post consumption in gallons per year per showerhead from the baseline consumption. These values are also in Table 166.

Gallons of water saved per year (2.0 gpm): (8,142-6,772) = 1,370 gallons per year

Gallons of water saved per year (1.75 gpm): (8,142-5,931) = 2,212 gallons per year

Gallons of water saved per year (1.5 gpm): (8,142-5,089) = 3,053 gallons per year

 Table 166: Estimated Showerhead Hot Water Usage Reduction

Assumption Type	Seattle Study ¹⁸⁷	Tampa Study	East Bay Study ¹⁸⁸	Average	Value used for Arkansas
Gallons/shower @ 2.5 gpm (baseline)	19.8	20.0	22.3	20.7	20.7
Gallons/shower @ 2.0 gpm	15.8	16.0	17.8	16.5	16.5
Gallons/shower @ 1.5 gpm	11.9	12.0	13.4	12.4	12.4
Showers/person/day (baseline)	0.51	0.92	0.65	0.69	0.69
Showers/person/day (post)	0.59	0.82	0.74	0.72	0.72
Occupants per home ¹⁸⁹	2.54	2.92	2.56	2.67	2.53
Showerheads per home ¹⁹⁰	not listed	not listed	not listed	not listed	1.62
Water gal./yr./showerhead @ 2.0 gpm saved	not listed	not listed	not listed	not listed	1,370
Water gal./yr./showerhead @ 1.75 gpm saved	not listed	not listed	not listed	not listed	2,212
Water gal./yr./showerhead @ 1.5 gpm saved	not listed	not listed	not listed	not listed	3,053
Percent hot water	74.3% ³	not listed	66% ⁴	70.1%	70.1%

¹⁸⁷ Seattle Study: Average of pre-retrofit percent shower hot water 73.1% on page 35, and post-retrofit percent shower hot water 75.5% on p. 53.

¹⁸⁸ East Bay Study: Average of pre-retrofit percent shower hot water 71.9% on page 31 and post-retrofit shower hot water percentage 60.0% on p. 54.

¹⁸⁹ Occupants per home for Arkansas from U.S. Census Bureau 2012-2016 Families & Living Arrangements, <u>https://www.census.gov/quickfacts/ar</u>

¹⁹⁰ Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

Based on the average percentage hot water shown in Table 166, the average mixed water temperature across all weather zones was determined. The hot water temperature was assumed to be 124°F.¹⁹¹ The mixed water temperature used in the energy savings calculation can be seen in Table 167.

Weather Zone and Location	Average Water Main Temperature (°F)	Percent Hot Water	Mixed Water Temperature (°F)
Zone 9 -Fayetteville	65.6	70.1%	106.5
Zone 8 - Fort Smith	66.1	70.1%	106.7
Zone 7 - Little Rock	67.8	70.1%	107.2
Zone 6 - El Dorado	70.1	70.1%	107.9
Average for Arkansas (TMixed)			107.1

Table 167: Mixed Water Temperature Calculation

Calculation of Deemed Savings

Energy Savings

Annual Energy Savings =
$$\rho \times C_P \times V \times (T_{Mixed} - T_{Supply}) \times \frac{1}{RE_t} \times \frac{1}{Conversion Factor}$$
(112)

Where:

 ρ = Water density = 8.33 lb./gallon

 C_P = Specific heat of water = 1 BTU/lb. °F

V = 2.0, 1.75, or 1.5 gpm showerhead water gallons saved per year (from Table 166)

 T_{Mixed} = Mixed water temperature, 107.1°F, from Table 167 (average for Arkansas)

 T_{Supply} = Average supply water temperature (water main temperature), see Table 165

 RE_t = Recovery Efficiency (or in the case of HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.79 for natural gas water heaters¹⁹²

Conversion Factor = 3,412 Btu/kWh for electric water heating or 100,000 Btu/Therm for gas water heating

¹⁹¹ Arkansas specific set-point temperature from ADM EM&V 2017 Evaluation reports of Arkansas Utilities. Note that the temperature of the water at faucet is likely to be lower, due to thermal losses in the water pipe system within the home, and tempering of the water temperature by the user.

¹⁹² Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/Search/SearchHome?ReturnUrl=%2f</u>

Demand Savings

Demand savings were calculated using the US DOE's "Building America Performance Analysis Procedures for Existing Homes"¹⁹³ combined domestic hot water use profile which resulted in a ratio of 0.000104 Peak kW to Annual kWh. The DOE domestic hot water use study provided values for the share of daily water use per hour in a profile for shower, bath, and sink hot water use. An average was calculated using peak hours of 3 p.m. to 6 p.m. to generate an average hourly share of daily water use during peak hours. That value was divided by 365 to generate a ratio of peak share to annual use.¹⁹⁴

$$kW_{savings} = kWh_{savings} \times Ratio(Peak \ kW)$$
 (Annual kWh)

Peak Day Therm Savings

The peak day therm ratio was calculated using the US Department of Energy Domestic Hot Water Event Schedules.¹⁹⁵ The ratio was developed by identifying the coldest average water main temperature day for the year. Then the corresponding hot water consumption for that day (0.361 therms) was used to calculate a ratio related to annual therm consumption (105 therms). The resulting ratio was 0.003 Peak Day Therms to Annual Therms (0.361 coldest main temperature therms \div 105 annual therms = 0.003 therms savings ratio).

 $Peak Therms_{savings} = Annual Therms_{savings} \times Ratio(Peak kW) | (Annual kWh)$

(114)

(113)

The expected energy and demand savings for a showerhead replacement in Weather Zone 9 (e.g. Fayetteville) is shown in the next table. This table is provided merely as an *example*.

¹⁹³ U.S. DOE's 2006, *"Building America Performance Analysis Procedures for Existing Homes"*. National Renewable Energy Laboratory. May. <u>https://www.nrel.gov/docs/fy06osti/38238.pdf</u>

¹⁹⁴ At 3pm, the hourly share of daily water use is 0.022, at 4pm is 0.03, at 5pm is 0.04, and at 6pm is 0.06. The average of these values is 0.038. Divided by 365 days, the result is a 0.000104 ratio of peak share to annual use.

¹⁹⁵ Burch, J. & Hendron, R. 2007, U.S. DOE, 2007. *Development of Standardized Domestic Hot Water Event Schedules for Residential Builders*. June. <u>www.nrel.gov/docs/fy08osti/40874.pdf</u>

Example Calculation of Deemed Savings Values

2.0 GPM Showerhes	ad, Fayetteville Wea	ther Zone		
Water gal. saved /year/showerhead @ 2.0 gpm	1,370			
T _{Supply}	65.6°F			
T _{Mixed}	107.1°F			
Recovery Efficiency, RE_t	0.98 (Electric Resistance) / 2.2 (Heat Pump) / 0.79 (Gas			
Energy Savings	Electric:Heat Pump:142 kWh63 kWh		Gas: 6.0 Therms	
Demand Savings	Electric: 0.015 kW	Heat Pump: 0.007 kW	Gas: 0.018 Day Therms	
1.75 GPM Showerhe	ad, Fayetteville We	ather Zone		
Water gal. saved /year/showerhead @ 1.75 gpm	2,212			
T _{Supply}	65.6°F			
T _{Mixed}	107.1°F			
1.75 GPM Showerhe	ad, Fayetteville We	ather Zone		
Recovery Efficiency, RE _t	0.98 (Electric Resistance) / 2.2 (Heat Pump) / 0.79 (Gas			
Energy Savings	Electric: 229 kWh	Heat Pump: 102 kWh	Gas: 9.7 Therms	
Demand Savings	Electric: 0.024 kW	Heat Pump: 0.011 kW	Gas: 0.029 Peak Therms	
1. 5 GPM Showerhe	ad, Fayetteville We	ather Zone		
Water gal. saved /year/showerhead @ 1.5 gpm	3,053			
T _{Supply}	65.6°F			
T _{Mixed}	107.1°F			
Recovery Efficiency, RE_t	0.98 (Electric Resistance) / 2.2 (Heat Pump) / 0.79 (Gas)			
Energy Savings	Electric:Heat Pump:316 kWh141 kWh1		Gas: 13.4 Therms	
Demand Savings	Electric: 0.033 kW	Heat Pump: 0.015 kW	Gas: 0.04 Peak Therms	

Table 168: Example, 2.0, 1.75, and 1.5 GPM Showerhead Retrofit Deemed Energy Savings

2.3.6 Showerhead Thermostatic Restrictor Valve

Measure Description

This measure consists of installing a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. The valve will reduce behavioral water waste by restricting water flow when the water reaches a set temperature (generally 95°F). Restricting the flow when the water reaches the temperature set point, reduces the amount of water that goes down the drain prior to the user entering the shower.

Baseline and Efficiency Standards

The baseline condition is the residential shower arm and standard (2.5 gpm) showerhead without a thermostatic restrictor valve installed.

To qualify for thermostatic restrictor valve deemed savings, the installed equipment must be a thermostatic restrictor valve installed on a residential shower arm and showerhead with either a standard (2.5 gpm) or low-flow (2.0, 1.75, or 1.5 gpm) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-Flow Showerheads measure and claim additional savings as outlined in that measure.

Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008.

This value is consistent with the EUL reported for a low-flow showerhead in the DEER 2014.¹⁹⁶

Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperatures for the four Arkansas weather zones are shown in Table 169. The water main temperature data was approximated using the following formula.¹⁹⁷

$$T of water main = T_{avg \ ambient} + R \times \Delta T_{amb}$$
(115)

Where:

R = 0.05

 $T_{avg ambient}$ = the average annual ambient dry bulb temperature

 ΔT_{amb} = the average of maximum and minimum ambient air dry bulb temperature for the month $(T_{max} + T_{min})/2$ where T_{max} = maximum ambient dry bulb temperature for the month and T_{min} = minimum ambient dry bulb temperature for the month

¹⁹⁶ 2014 California Database for Energy Efficiency Resources. <u>http://www.deeresources.com/index.php/deer-versions/deer2013-update-for-2014-codes.</u>

¹⁹⁷ Burch, J. & Christensen, C. 2007. "*Towards Development of an Algorithm for Mains Water Temperature*" Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

Weather Zone and Location	Average Water Main Temperature (°F)
Zone 9 - Fayetteville	65.6
Zone 8 - Fort Smith	66.1
Zone 7 - Little Rock	67.8
Zone 6 - El Dorado	70.1

 Table 169: Average Water Main Temperature by Weather Zone

Estimated Hot Water Usage Reduction

Baseline and efficiency standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.^{198,199,200}

To determine gallons of behavioral waste (defined as hot water that goes down the drain before the user enters the shower) per year, the following formula was used:

Annual Showerhead Behavioral Waste = SHFR \times BW \times n_s \times 365 days/year \times n₀/n_{sH}

(116)

Where:

SHFR = Showerhead flow rate, gallons per minute (gpm) (see Table 170)

BW = Behavioral waste, minutes per shower (see Table 170)

 n_S = Number of showers per person per day (Table 170)

365 =Constant to convert days to years (see Table 170)

 n_0 = Number of occupants per home (see Table 170)

 n_{SH} = Number of showerheads per home (see Table 170)

¹⁹⁸ Seattle Home Water Conservation Study, 2000. "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes.*" December. <u>https://docplayer.net/6217138-Seattle-home-water-conservation-study.html</u>

¹⁹⁹ Residential Indoor Water Conservation Study, 2003 "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July. https://www.ebmud.com/about-us/publications

²⁰⁰ Tampa Water Department Residential Water Conservation Study, 2004, "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes.*", Aquacraft, Inc., Water Engineering and Management, Tampa, 2004.

Applying the formula to the values used for Arkansas from Table 170 returns the following values for baseline behavioral waste in gallons per showerhead per year:

Showerhead (2.5 GPM):
$$2.5 \times 0.783 \times 0.69 \times 365 \times \frac{2.53}{1.68} = 742$$
 gallons per year
Showerhead (2.0 GPM): $2.0 \times 0.783 \times 0.69 \times 365 \times \frac{2.53}{1.68} = 594$ gallons per year
Showerhead (1.75 GPM): $1.75 \times 0.783 \times 0.69 \times 365 \times \frac{2.53}{1.68} = 520$ gallons per year
Showerhead (1.5 GPM): $1.5 \times 0.783 \times 0.69 \times 365 \times \frac{2.53}{1.68} = 445$ gallons per year

Gallons of hot water saved per year can be found by multiplying the baseline behavioral waste gallons per year by the percent of hot water from Table 170.

(117)

Where:

HW% = Hot water percentage (see Table 170))

Gallons of hot water saved per year (2.5 GPM): $742 \times 0.825 = 613$ gallons per year Gallons of hot water saved per year (2.0 GPM): $594 \times 0.825 = 490$ gallons per year Gallons of hot water saved per year (1.75 GPM): $520 \times 0.825 = 429$ gallons per yeargal Gallons of hot water saved per year (1.5 GPM): $445 \times 0.825 = 368$ gallons per year

Description	2.5 gpm	2.0 gpm	1.75 gpm	1.5 gpm
Average behavioral waste (minutes per shower) ²⁰¹	0.783	0.783	0.783	0.783
Showers/person/day ²⁰²	0.69	0.69	0.69	0.69
Occupants per home ²⁰³	2.53	2.53	2.53	2.53
Showerheads per home ²⁰⁴	1.68	1.68	1.68	1.68

²⁰¹ Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

²⁰² Derivation of value for showers per person per day defined in the Low Flow Showerhead measure, Table 156: Estimated Showerhead Hot Water Usage Reduction

²⁰³ Occupants per home for Arkansas from U.S. Census Bureau 2012-2016 Families & Living Arrangements, <u>https://www.census.gov/quickfacts/ar</u>

²⁰⁴ Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

Description	2.5 gpm	2.0 gpm	1.75 gpm	1.5 gpm
Gallons behavioral waste per showerhead per year	742	594	520	445
Percent hot water ²⁰⁵	82.5%	82.5%	82.5%	82.5%
Gallons hot water saved per year	613	490	429	368

Calculation of Deemed Savings

Energy Savings

Annual Energy Savings = $\rho \times C_P \times V \times (T_{Setpoint} - T_{SupplyAverage}) \times \frac{1}{RE_t} \times \frac{1}{Conversion Factor}$ (118)

Where:

 ρ = Water density = 8.33 lb/gallon

 C_P = Specific heat of water = 1 BTU/lb. °F

V = Gallons of hot water saved per year per shower head, see Table 170.

 $T_{Setpoint}$ = Hot water temperature, assumed to be 124°F

 $T_{SupplyAverage}$ = Average supply water temperature (Water main temperature), see Table 165

 RE_t = Recovery Efficiency (for HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.79 for natural gas water heaters²⁰⁶

Conversion Factor = 3,412 Btu/kWh, electric water heating; 100,000 Btu/Therm, gas water heating

Demand Savings

Demand savings were calculated using the US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes"²⁰⁷ combined domestic hot water use profile which resulted in a ratio of 0.000104 Peak kW to Annual kWh. The DOE domestic hot water use study provided values for the share of daily water use per hour in a profile for shower, bath, and sink hot water use. An average was calculated using peak hours of 3 p.m. to 6 p.m. to generate an average hourly share of daily water use during

²⁰⁵ Average percent hot water from (Lutz 2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

²⁰⁶ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, at <u>http://cafs.ahrinet.org/gama_cafs/sdpsearch/search.jsp?table=CWH</u>

²⁰⁷ U.S. DOE's 2006, "*Building America Performance Analysis Procedures for Existing Homes*". National Renewable Energy Laboratory. May. <u>www.nrel.gov/docs/fy06osti/38238.pdf</u>

peak hours. That value was divided by 365 to generate a ratio of peak share to annual use.²⁰⁸ Note: peak gas saving is not calculated for this measure.

$$kW_{savings} = kWh_{savings} \times Ratio(Peak kW)$$
¦(Annual kWh)

Where:

 $Ratio(Peak \, kW)$ (Annual kWh) = 0.000104²⁰⁹

The expected energy and demand savings for installing a showerhead TRV in Weather Zone 7 (e.g. Little Rock) are shown. This table is provided merely as an *example*.

(119)

 $^{^{208}}$ At 3pm, the hourly share of daily water use is 0.022, at 4pm is 0.03, at 5pm is 0.04, and at 6pm is 0.06. The average of these values is 0.038. Divided by 365 days, the result is a 0.000104 ratio of peak share to annual use.

²⁰⁹ US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile (<u>http://www.nrel.gov/docs/fy06osti/38238.pdf</u>).

Example Calculation of Deemed Savings Values

Table 171: Example, 2.0, 1.75, and 1.5 GPM Showerhead TRV Deemed Energy Saving	25
	. ~

2.0 GPM	Showerhead, Litt	le Rock Weather Zone		
Behavioral Water gal. saved /year/showerhead @ 2.0 gpm	490			
$T_{SupplyAverage}$		67.8°F		
T _{SetPoint}		124°F		
Recovery Efficiency, RE_t	0.98 (Electr	ic Resistance) / 2.2 (Heat	Pump) / 0.79 (Gas)	
Energy Savings	Electric: 68.6 kWh	Heat Pump: 30.6 kWh	Gas: 2.9 Therms	
Demand Savings	Electric: 0.007 kW	Heat Pump: 0.003 kW	Gas: N/A	
1.75 GPM	I Showerhead, Lit	tle Rock Weather Zone		
Water gal. saved /year/showerhead	429			
T _{SupplyAverage}	67.8°F			
T _{SetPoint}	124°F			
Recovery Efficiency, RE_t	0.98 (Electric Resistance) / 2.2 (Heat Pump) / 0.79 (Gas)			
Energy Savings	Electric:Heat Pump:Gas:60.1 kWh26.8 kWh2.5 Therms			
Demand Savings	Electric: 0.006 kW	Heat Pump: 0.003 kW	Gas: N/A	
1. 5 GPM	Showerhead, Lit	tle Rock Weather Zone		
Behavioral Water gal. saved /year/showerhead @ 1.5 gpm	368			
$T_{SupplyAverage}$	67.8°F			
T _{SetPoint}	124°F			
Recovery Efficiency, RE_t	0.98 (Electric Resistance) / 2.2 (Heat Pump) / 0.79 (Gas)			
Energy Savings	Electric:Heat Pump:Gas:51.5 kWh23.0 kWh2.2 Therms			
Demand Savings	Electric: 0.005 kW	Heat Pump: 0.002 kW	Gas: N/A	

2.3.7 Tub Spout and Showerhead Thermostatic Restrictor Valve

Measure Description

This measure consists of replacing existing tub spouts and shower heads with an automatically diverting tub spout and showerhead system with a thermostatic restrictor valve (TRV) between the existing shower arm and showerhead. When the water temperature reaches a set point (generally 95°F), the thermostatic restrictor valve will engage the anti-leak diverter. The water will divert from the spout to a showerhead with a closed valve, which prevents the hot water from flowing down the drain prior to use.

Baseline and Efficiency Standards

The baseline condition is the residential shower arm and standard (2.5 gpm) showerhead without a thermostatic restrictor valve installed.

To qualify for tub spout and showerhead system with thermostatic restrictor technology deemed savings, the installed equipment must be an anti-leak, automatically diverting tub spout system with thermostatic restrictor technology installed on a residential shower arm and showerhead with a standard (2.5 gpm) or low-flow (2.0, 1.75, or 1.5 gpm) showerhead. If this measure is installed in conjunction with a low-flow showerhead, refer to the Low-Flow Showerheads measure and claim additional savings as outlined in that measure.

Estimated Useful Life (EUL)

The average lifetime of this measure is 10 years, according to DEER 2008.

This value is consistent with the EUL reported for a low-flow showerhead in the DEER 2014.²¹⁰

Effect of Weather Zones on Water Usage and Water Main Temperature

Average water main temperatures for the four Arkansas weather zones are shown Table 172. The water main temperature data was approximated using the following formula.²¹¹

T of water main =
$$T_{avg ambient} + R \times \Delta T_{amb}$$

(120)

Where:

R = 0.05

 $T_{avg ambient}$ = the average annual ambient dry bulb temperature

 ΔT_{amb} = the average of maximum and minimum ambient air dry bulb temperature for the month $(T_{max} + T_{min})/2$ where T_{max} = maximum ambient dry bulb temperature for the month and T_{min} = minimum

²¹¹ Burch, J. & Christensen, C. 2007. "*Towards Development of an Algorithm for Mains Water Temperature*" Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

²¹⁰2014 California Database for Energy Efficiency Resources. <u>https://cedars.sound-data.com/deer-resources/deer-versions/archive/</u>

ambient dry bulb temperature for the month

Weather Zone and Location	Average Water Main Temperature (°F)
Zone 9 - Fayetteville	65.6
Zone 8 - Fort Smith	66.1
Zone 7 - Little Rock	67.8
Zone 6 - El Dorado	70.1

 Table 172: Average Water Main Temperature by Weather Zone

Estimated Hot Water Usage Reduction

Baseline and efficiency standard water usages per capita were derived from an analysis of metered studies of residential water efficiency retrofit projects conducted for Seattle, WA.; the East Bay Municipal Utility District (CA); and Tampa, FL.^{212,213,214}

This system provides savings in two parts: elimination of behavioral waste (hot water that goes down the drain prior to the user entering the shower) and elimination of tub spout diverter leakage.

Part 1:To determine gallons of behavioral waste (defined as hot water that goes down the drain before the user enters the shower) per year, the following formula was used:

Annual Showerhead Behavioral Waste = $\%WHUE_{SH} \times SHFR \times BW \times n_S \times 365 \ days/year \times n_0/n_{SH}$

(121)

(122)

Annual Showerhead Behavioral Waste = $\%WHUE_{TS} \times SHFR \times BW \times n_S \times 365 \text{ days/year} \times n_0/n_{SH}$

Where:

 $%WUE_{SH}$ = Showerhead percentage of warm-up events (Table 170)

 WUE_{TS} = Tub spout percentage of warm-up events (see Table 170)

SHFR = Showerhead flow rate, gallons per minute (gpm) (see Table 170)

TSFR = Tub spout flow rate, gallons per minute (gpm) (see Table 170)

BW = Behavioral waste, minutes per shower (see Table 170)

 n_S = Number of showers per person per day (Table 170)

²¹² Seattle Home Water Conservation Study, 2000. "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes.*" December. <u>https://docplayer.net/6217138-Seattle-home-water-conservation-study.html</u>

²¹³ Residential Indoor Water Conservation Study, 2003 "Evaluation of High Efficiency Indoor Plumbing Fixture Retrofits in Single-Family Homes in the East Bay Municipal Utility District Service Area." July. https://www.ebmud.com/about-us/publications

²¹⁴ Tampa Water Department Residential Water Conservation Study, 2004, "*The Impacts of High Efficiency Plumbing Fixture Retrofits in Single-Family Homes.*", Aquacraft, Inc., Water Engineering and Management, Tampa, 2004.

^{2.3.7} Tub Spout and Showerhead Thermostatic Restrictor Valve

365 =Constant to convert days to years (see Table 170)

 n_0 = Number of occupants per home (see Table 170)

 n_{SH} = Number of showerheads per home (see Table 170)

Applying the formula to the values used for Arkansas from returns the following values for baseline behavioral waste in gallons per showerhead and tub spout per year:

Showerhead (2.5 GPM): $0.6 \times 2.5 \times 0.783 \times 0.69 \times 365 \times \frac{2.53}{1.68} = 267$ gallons per year Showerhead (2.0 GPM): $0.6 \times 2.0 \times 0.783 \times 0.69 \times 365 \times 2.53/1.68 = 312$ gallons per year Showerhead (1.75 GPM): $0.6 \times 1.75 \times 0.783 \times 0.69 \times 365 \times 2.53/1.68 = 356$ gallons per year Showerhead (1.5 GPM): $0.6 \times 1.5 \times 0.783 \times 0.69 \times 365 \times 2.53/1.68 = 455$ gallons per year Tub Spout (5.0 GPM): $0.4 \times 5.0 \times 0.783 \times 0.69 \times 365 \times 2.53/1.68 = 594$ gallons per year Part 2: To determine the baseline gallons of diverted leakage per year, the following formula was used:

Annual Diverter Waste =
$$DLR \times t_S \times n_S \times 365 \text{ days/year} \times n_O/n_{SH}$$

(123)

Where:

DLR = Diverter leakage rate (gpm) (see Table 172)

 t_S = Shower time (min/shower) (see Table 170)

Applying the values used for Arkansas from Table 172 returns the following values:

Diverter (0.8 GPM): $0.8 \times 5.68 \times 0.69 \times 365 \times 2.53/1.68 = 1,723$

Part 3: Gallons of hot water saved per year can be found by multiplying the baseline behavioral waste gallons per year by the percent of hot water from Table 170.

Gallons of hot water saved = $(SHBW + TSBW) \times HW\%_{SH,TS} + DW \times HW\%_D$

(124)

Where:

SHBW = Showerhead behavioral waste (gallons per year)

TSBW = Tub spout behavioral waste (gallons per year)

DW = Diverter waste (gallons per year)

HW%_{SH,TS} = Showerheads and tub spout hot water percentage (see Table 173)

 $HW\%_D$ = Diverter hot water percentage (see Table 173)

 $\begin{array}{l} \mbox{Total Gallons Saved Per Year (1.5 gpm): (267 + 594) \times 0.825 + 1,723 \times 0.737 \\ = 1,981 gallons per year \\ \mbox{Total Gallons Saved Per Year (1.75 gpm): (312 + 594) \times 0.825 + 1,723 \times 0.737 \\ = 2,017 gallons per year \\ \mbox{Total Gallons Saved Per Year (2.0 gpm): (356 + 594) \times 0.825 + 1,723 \times 0.737 \\ = 2,054 gallons per year \\ \mbox{Total Gallons Saved Per Year (2.5 gpm): (445 + 594) \times 0.825 + 1,723 \times 0.737 = 2,128 gallons per year \\ \end{array}$

	Part 1- Behavioral Waste		Part 2 –	David 2
Description	Showerhead Warm-up	Tub spout Warm-up	Diverter Leakage	Part 3 – Total
Baseline showerhead flow rate (gpm)	1.5, 1.75, 2.0, or 2.5		N/A	
Tub spout flow rate (gpm) ²¹⁵	N/A	5.0	N /2	4
Percent of warm up events ²¹⁶	60	40	N/A	
Average behavioral waste (minutes per shower) ²¹⁷	0.783	0.783	N /2	4
Average diverter leak rate (gpm) ²¹⁸	N/A		0.80	N/A
Average shower time (minutes) ²¹⁹	N/A		5.68	N/A
Showers/person/day ²²⁰	0.69	0.69	0.69	0.69
Occupants per home ²²¹	2.53	2.53	2.53	2.53
Showerheads per home ²²²	1.68	1.68	1.68	1.68
Gallons behavioral waste per tub spout/showerhead per year (1.5 gpm)	267	594	1,723	2,585
Gallons behavioral waste per tub spout/showerhead per year (1.75 gpm)	312	594	1,723	2,629
Gallons behavioral waste per tub spout/showerhead per year (2.0 gpm)	356	594	1,723	2,674
Gallons behavioral waste per tub spout/showerhead per year (2.5 gpm)	445	594	1,723	2,763

Table 173: Estimated Tub Spout/Showerhead System with TRV Hot Water Usage Reduction

²¹⁵ Assumption from (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

²¹⁶ Percent of warm up events from (Sherman 2014) Disaggregating Residential Shower Warm-Up Waste (Appendix B, Question 8).

²¹⁷ Average behavioral waste from Lutz (2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and Sherman (2014) Disaggregating Residential Shower Warm-Up Waste. Derived by dividing 47 seconds by 60 seconds.

²¹⁸ Average diverter leak rate from (Taitem 2011) Taitem Tech Tip – Leaking Shower Diverters.

²¹⁹ Average shower time from (REUWS 1999) Residential End Uses of Water Study and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

²²⁰ Derivation of value for showers per person per day defined in the Low Flow Showerhead measure, Table 156: Estimated Showerhead Hot Water Usage Reduction

²²¹ Occupants per home for Arkansas from U.S. Census Bureau 2012-2016 Families & Living Arrangements, <u>https://www.census.gov/quickfacts/ar</u>

²²² Showerheads per home assumed to be equal to the number of full bathrooms per home, taken from 2009 RECS, Table HC2.10.

Part 1- Behavioral Waste		Part 2 –	Part 3	
Description	Showerhead Warm-up	Tub spout Warm-up	Diverter Leakage	– Total
Percent hot water ²²³	82.5%	82.5%	73.7%	N/A
Gallons hot water saved per year (1.5 gpm)	N/A			1,981
Gallons hot water saved per year (1.75 gpm)	N/A			2,017
Gallons hot water saved per year (2.0 gpm)	N/A		2,054	
Gallons hot water saved per year (2.5 gpm)	N/A		2,128	

Calculation of Deemed Savings

Energy Savings

Annual Energy Savings =
$$\rho \times C_P \times V \times (T_{Setpoint} - T_{SupplyAverage}) \times \frac{1}{Conversion Factor}$$
(125)

Where:

 ρ = Water density = 8.33 lb/gallon

 C_P = Specific heat of water = 1 BTU/lb. °F

V = Gallons of hot water saved per year per shower head (from Table 172)

), if unknown use the values for a showerhead system with 2.0 gpm

 $T_{Setpoint}$ = Hot water temperature, assumed to be 124°F

- $T_{SupplyAverage}$ = Average supply water temperature (Water main temperature), see Table 172
- RE_t = Recovery Efficiency (for HPWH, EF); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.79 for natural gas water heaters²²⁴
- *Conversion Factor* = 3412 Btu/kWh for electric water heating or 100000 Btu/Therm for gas water heating

²²³ Average percent hot water for warm up events from (Lutz 2004) Feasibility Study and Roadmap to Improve Residential Hot Water Distribution Systems and (Sherman 2015) Calculating Savings For: Auto-Diverting Tub Spout System with ShowerStart TSV.

²²⁴ Default values based on median recovery efficiency of residential water heaters by fuel type in the AHRI database, accessed in 2016 at <u>https://www.ahridirectory.org/NewSearch?programId=24&searchTypeId=3</u>

Demand Savings

Demand savings were calculated using the US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes"²²⁵ combined domestic hot water use profile which resulted in a ratio of 0.000104 Peak kW to Annual kWh. The DOE domestic hot water use study provided values for the share of daily water use per hour in a profile for shower, bath, and sink hot water use. An average was calculated using peak hours of 3pm to 6pm to generate an average hourly share of daily water use during peak hours. That value was divided by 365 to generate a ratio of peak share to annual use.²²⁶ Note: peak gas saving is not calculated for this measure.

$$kW_{savings} = kWh_{savings} \times Ratio(Peak\ kW)$$
 (Annual kWh)

(126)

Where:

$Ratio(Peak \, kW)$ ¦(Annual kWh) = 0.000104²²⁷

The expected energy and demand savings for installing a tub spout/showerhead TRV in Weather Zone 7 (e.g. Little Rock) are shown in Table 174. This table is an example.

Example Calculation of Deemed Savings Values

Table 174: Example, 2.5 GPM Showerhead and 5.0	GPM Tub Spout TRV Deemed Energy Savings

2.5 GPM Showerhead and 5.0 GPM Tub Spout System, Little Rock Weather Zone					
Behavioral Water gal. saved /year/showerhead @ 2.5 gpm		858			
Behavioral Water gal. saved /year/Tub Spout @ 5.0 gpm		1,270			
Total behavioral Water gal. saved /year		2,128			
T _{SupplyAverage}	67.8°F				
T _{Setpoint}	124°F				
Water heater RE_t	0.98 (Electric Resistance) / 2.2 (Heat Pump) / 0.79 (Gas)				
Energy Savings	Electric: 297.9 kWh	Heat Pump: 132.7 kWh	Gas: 12.6 Therms		
Demand Savings	Electric: 0.031 kW	Heat Pump: 0.014 kW	N/A		

²²⁵ U.S. DOE's 2006, "Building America Performance Analysis Procedures for Existing Homes". National Renewable Energy Laboratory. May. <u>www.nrel.gov/docs/fy06osti/38238.pdf</u>

²²⁶ At 3pm, the hourly share of daily water use is 0.022, at 4pm is 0.03, at 5pm is 0.04, and at 6pm is 0.06. The average of these values is 0.038. Divided by 365 days, the result is a 0.000104 ratio of peak share to annual use.

²²⁷ US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes" combined domestic hot water use profile (<u>http://www.nrel.gov/docs/fy06osti/38238.pdf</u>).

2.3.8 Drain Water Heat Recovery

Measure Description

Drain water heat recovery systems utilize heat exchangers to capture waste heat from drain lines to preheat makeup water entering the water heater. Such systems are typically installed on shower drains, but can also be installed to capture other drains such as from kitchen sinks and dishwashers. Drain water heat recovery systems can be equal-flow systems, in which preheated water is routed to both the water heater and the hot water end use (such as a shower), or unequal-flow, in which preheated water is routed to either the water heater or the hot water end use (but not both). Drain water heat recovery systems are only able to recover heat during simultaneous drain and makeup water flow, as is the case with showers. These systems will not capture heat when hot water draining occurs at a separate time from when makeup water enters the water heater, as is the case when taking a bath.

Savings for drain water heat recovery systems are calculated per drain water heat recovery unit, and assume one shower feeds into each drain water heat recovery unit.

This measure is applicable for electric storage tank water heaters, electric on-demand water heaters, natural gas storage tank water heaters, and natural gas on-demand water heaters.

Baseline and Efficiency Standards

The baseline conditions are a drain system in a single-family home or multifamily dwelling that does not include any heat recovery.

The efficient system is a drain system that is configured with a drain water heat recovery system that is able to recover heat from at least one shower or tub/shower combo. Equal-flow and unequal-flow systems are both eligible for this measure. This measure can be installed in either single-family homes or multifamily dwellings.

Estimated Useful Life (EUL)

The EUL for drain water heat recovery systems is 30²²⁸ years.

Deemed Savings Value

Table 175: Drain Wate	r Heat Recovery – Electric	Deemed Savings Values	per Heat Recovery Unit
			I

Water Heater Type	kWh savings	kW savings
Electric Resistance	310	0.032
Heat Pump	138	0.014

Table 176: Drain Water Heat Recover	Notural Cas Doomad Saving	a Valuag nan Ugat Dagawang Unit
Table 1/0: Drain water neat Recover	– Natural Gas Deemeu Saving	's values der fieat Recovery Unit

Water Heater Type	Therm savings	
Natural Gas	13.1	

²²⁸ From Codes and Standards Enhancement (CASE) Initiative, 2019 California Building Energy Efficiency Standards, Title 24, Part 6 Report. "Drain Water Heat Recovery – Final Report.", July 2017, p. 19.

Calculation of Deemed Savings

Deemed demand and annual energy savings are based on average occupants per shower, average makeup water temperatures, assumptions about shower water use rates, showering frequency, and shower usage times from other measures in the Arkansas TRM, energy savings factors from relevant studies, and typical water heater efficiencies based on type.

Annual Energy Savings

$$= \frac{(Shower Temp - Supply Temp) \times 8.33 \frac{Btu}{Gal \cdot {}^{\circ}F} \times \frac{Gal}{shower} \times n_{pps} \times n_{s} \times 365.25 \frac{days}{year} \times ESF}{ConversionFactor \times RE_{t}}$$

Where:

Shower Temp = average shower mixed water temperature (see Table 177)

Supply Temp = average water main temperature (see Table 177)

Weather Zone and Location	Average Water Main Temperature (°F)	Percent Hot Water	Mixed Water Temperature (°F)
Zone 9 - Fayetteville	65.6	70.1%	106.5
Zone 8 - Fort Smith	66.1	70.1%	106.7
Zone 7 - Little Rock	67.8	70.1%	107.2
Zone 6 - El Dorado	70.1	70.1%	107.9
Average f	107.1		

Table 177: Mixed Water Temperature Calculation²²⁹

8.33 =specific heat of water, in Btu/gal·°F

 $\frac{Gal}{shower}$ = typical water use per shower, based on flow rate of showerhead (Table 178), if unknown, use value for 2.0 GPM (16.5 Gallons).

Table 178: Typical Shower Water Use

Showerhead Rated GPM	Gallons per Shower
2.5	20.7
2.0	16.5
1.5	12.4

(127)

²²⁹ Data taken from Section 2.3.5 Low Flow Showerhead, Table 167.

 n_{pps} = Number of persons per shower in the home = 1.56^{230}

 n_S = Number of showers per person per day = 0.72^{231}

365.25 =days per average year

 $ESF = Energy Savings Factor = 0.466^{232}$

ConversionFactor

= 3,412 for electric or heat pump water heaters (3,412 Btu is equal to 1 kWh)

= 100,000 for natural gas water heaters (100,000 Btu is equal to 1 therm)

 RE_t = recovery efficiency of water heater. (see Table 179)

Table 179: Water Heater Recovery Efficiency (REt)

Water Heater Type	Recovery Efficiency (RE _t) ²³³
Electric Resistance	0.98
Heat Pump	2.20
Natural Gas	0.79

Demand Savings

Demand savings were calculated using the US Department of Energy's "Building America Performance Analysis Procedures for Existing Homes"²³⁴ combined domestic hot water use profile which resulted in a ratio of 0.000104 Peak kW to Annual kWh. The DOE domestic hot water use study provided values for the share of daily water use per hour in a profile for shower, bath, and sink hot water use. An average was calculated using peak hours of 3 p.m. to 6 p.m. to generate an average hourly share of daily water use during peak hours. That value was divided by 365 to generate a ratio of peak share to annual use. Note: peak gas savings is not calculated for this measure.

$$kW_{savings} = kWh_{savings} \times Ratio(Peak kW)$$
 (Annual kWh)

Where:

 $Ratio(Peak \ kW)$!(Annual kWh) = 0.000104²³⁵

Renewable Energy Laboratory, May 2006. www.nrel.gov/docs/fy06osti/38238.pdf

²³⁵ ibid.

(128)

²³⁰ Based on average occupants per home and number of showerheads per home, from 2.3.5 Low Flow Showerhead measure, Table 166.

²³¹ ibid

²³² From Codes and Standards Enhancement (CASE) Initiative, 2019 California Building Energy Efficiency Standards, Title 24, Part 6 Report. "Drain Water Heat Recovery – Final Report.", July 2017, p. 19.

²³³ Data taken from Section 2.3.5 Low Flow Showerhead, Table 168.

²³⁴ U.S. DOE's 2006, "Building America Performance Analysis Procedures for Existing Homes". National

2.4 Appliances 2.4.1 Clothes Washers

Measure Description

This measure involves the installation of a residential ENERGY STAR® clothes washer > 2.5 ft³ in a new construction or replacement-on-burnout application. This measure applies to all residential applications.

Baseline and Efficiency Standards²³⁶

The baseline standard for deriving savings from this measure is the current federal minimum efficiency levels.

The efficiency standard is the ENERGY STAR® Version 8.1 (effective February 5, 2018) or ENERGY STAR® Most Efficient (effective January 1, 2024) requirements for clothes washers.

Efficiency performance for clothes washers are characterized by Integrated Modified Energy Factor (IMEF) and Integrated Water Factor (IWF). The units for IMEF are ft³/kWh/cycle. Units with higher IMEF values are more efficient. The units for IWF are gallons/cycle/ft³. Units with lower IWF values will use less water and are therefore more efficient.

 Table 180: ENERGY STAR® Clothes Washer – Baseline and Efficiency Levels

Clothes Washer Configuration	Baseline Efficiency	ENERGY STAR® Efficiency Level	ENERGY STAR® Most Efficient Level
Top Loading (> 2.5 cu-ft)	$\begin{array}{l} \mathrm{IMEF} \geq 1.57 \\ \mathrm{IWF} \leq 6.5 \end{array}$	$IMEF \ge 2.06$ $IWF \le 4.3$	$IMEF \ge 2.92$ $IWF \le 3.2$
Front Loading (> 2.5 cu-ft)	$\begin{split} IMEF &\geq 1.84 \\ IWF &\leq 4.7 \end{split}$	$IMEF \ge 2.76$ $IWF \le 3.2$	$IMEF \ge 2.92$ $IWF \le 3.2$

Estimated Useful Life (EUL)

The average lifetime of this measure is 14 years.²³⁷

²³⁶ Current federal standards for clothes washers can be found on the DOE website at: <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=68&action=viewlive</u>

ENERGY STAR® Most Efficient criteria for clothes washers can be found at:

https://www.energystar.gov/products/most_efficient

²³⁷ U.S. DOE "Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Clothes Washers" Section 8.2.3 Product Lifetimes. April 2012. https://www.regulations.gov/document/EERE-2008-BT-STD-0019-0047

Deemed Savings Values

For retrofit situations, baseline and efficiency case energy consumption is based on the configuration of the replaced unit and new unit (top loading or front loading). For new construction applications, a top loading clothes washer is assumed as the baseline and the efficient equipment is either top loading or front loading.

Baseline Configuration	Efficient Configuration	Water Heater Fuel Type	Dryer Fuel Type	kW Savings	kWh Savings	Therms Savings
		Gas	Gas	0.005	23	5.5
Tan Landing	Tan Landing	Gas	Electric	0.015	62	4.1
Top Loading	Top Loading	Electric	Gas	0.027	114	1.3
		Electric	Electric	0.036	153	0.0
		Gas	Gas	0.009	38	9.8
Ton Looding	Encoding	Gas	Electric	0.029	122	7.0
Top Loading	Front Loading	Electric	Gas	0.045	191	2.9
		Electric	Electric	0.065	275	0.0
		Gas	Gas	0.002	6	6.0
Front Loading	Enert Looding	Gas	Electric	0.035	148	1.2
	Front Loading	Electric	Gas	0.008	32	4.8
		Electric	Electric	0.041	173	0.0

Table 181: ENERGY STAR® Clothes Washer – Deemed Savings

Baseline Configuration	Efficient Configuration	Water Heater Fuel Type	Dryer Fuel Type	kW Savings	kWh Savings	Therms Savings
		Gas	Gas	0.005	23	10.0
Ten Leeding	Tan Landing	Gas	Electric	0.047	196	4.1
Top Loading	Top Loading	Electric	Gas	0.027	114	5.9
		Electric	Electric	0.068	287	0.0
		Gas	Gas	0.009	38	10.5
Tenteri	En et La d'an	Gas	Electric	0.033	141	7.0
Top Loading	Front Loading	Electric	Gas	0.045	191	3.5
		Electric	Electric	0.070	294	0.0
		Gas	Gas	0.002	6	6.0
Front Loading	En et Les l'es	Gas	Electric	0.039	166	1.2
	Front Loading	Electric	Gas	0.008	32	5.5
		Electric	Electric	0.045	192	0.0

Calculation of Deemed Savings

Energy savings for this measure were derived using the ENERGY STAR® Clothes Washer Savings Calculator.²³⁸ Unless otherwise specified, all savings assumptions are extracted from the ENERGY STAR® calculator. The baseline and ENERGY STAR® efficiency levels are set to those matching Table 180. The ENERGY STAR® calculator determines savings based on whether or not an electric or gas water heater is used. Calculations are also conducted based on whether or not the dryer is electric or gas.

For applications using an electric water heater and an electric dryer, the savings are calculated as follows:

$$kWh_{savings} = (E_{conv,machine} + E_{conv,WH} + E_{conv,dryer}) - (E_{ES,machine} + E_{ES,WH} + E_{ES,dryer})$$
(129)

Where:

 $E_{conv,machine}$ = Conventional machine energy (kWh)

 $E_{conv,WH}$ = Conventional water heating energy (kWh)

 $E_{conv.drver}$ = Conventional dryer energy (kWh)

 $E_{ES,machine}$ = ENERGY STAR® machine energy (kWh)

 $E_{ES,WH}$ = ENERGY STAR® water heating energy (kWh)

 $E_{ES,dryer}$ = ENERGY STAR® dryer energy (kWh)

Energy consumption for the above factors can be determined using the following algorithms.

$$E_{conv,machi} = \frac{MCF \times RUEC_{conv} \times LPY}{RLPY}$$
(130)

$$E_{conv,WH} = \frac{WHCF \times RUEC_{conv} \times LPY}{RLPY}$$

(131)

$$E_{conv,dryer} = \left(\frac{CAP \times LPY}{IMEF_{FS}} - \frac{RUEC_{FS} \times LPY}{RLPY}\right) \times DUF$$
(132)

$$E_{ES,machi} = \frac{MCF \times RUEC_{ES} \times LPY}{RLPY}$$

(133)

$$E_{ES,WH} = \frac{WHCF \times RUEC_{ES} \times LPY}{RLPY}$$
(134)

²³⁸ The ENERGY STAR® Appliance Savings Calculator accessed in 2016 is no longer available on the ENERGY STAR® website.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

$$E_{ES,dryer} = \left(\frac{CAP \times LPY}{IMEF_{ES}} - \frac{RUEC_{ES} \times LPY}{RLPY}\right) \times DUF$$
(135)

If the water heater is gas, the following equation is used to determine therms savings from water heating.

$$therms_{savings,WH} = \frac{WHCF \times LPY}{RLPY \times \eta_{gas WH}} \times 0.03412 \times (RUEC_{conv} - RUEC_{ES})$$
(136)

If the dryer is gas, then the following equation is used to determine therms saved from reduced time for drying.

 $therms_{savings,dryer} =$

$$\left(\left(\frac{CAP \times LPY}{IMEF_{FS}} - \frac{RUEC_{FS} \times LPY}{RLPY}\right) - \left(\frac{CAP \times LPY}{IMEF_{ES}} - \frac{RUEC_{ES} \times LPY}{RLPY}\right)\right) \times 0.03412 \times DUF$$
(137)

Demand savings are calculated using the following equation:

$$kW_{savings} = \frac{kWh_{savings}}{HOU} \times CF$$
(138)

Where:

MCF = Machine electricity consumption factor = 20%

WHCF = Water heating electricity consumption factor = 80%

RUEC_{conv} = Rated unit electricity consumption (kWh/year) = 381 (Top Loading); 169 (Front Loading)

RUEC_{ES} = Rated unit electricity consumption (kWh/year) = 230 (Top Loading); 127 (Front Loading)

CAP = Clothes washer capacity = 3.5 (ft³)

 $IMEF_{FS}$ = Federal Standard Integrated Modified Energy Factor (ft³/kWh/cycle)

 $IMEF_{ES}$ = ENERGY STAR® Integrated Modified Energy Factor (ft³/kWh/cycle)

LP = Loads per year = 295

RLPY= Reference loads per year = 392

$$DUF$$
 = Dryer use factor = 91%

- d = Average wash cycle duration = 1 hour^{239,240}
- HOU = annual hours of use = LPY × d = 295 hours
- CF = Coincidence factor = 0.029²⁴¹
- $\eta_{gas WH}$ = Gas water heater efficiency = 75%
- 0.03412 = Conversion Factor, therms/kWh

²³⁹ Weighted average of Consumer Reports Cycle Times for Top and Front-Loading Clothes Washers. www.consumerreports.org/cro/washing-machines.htm. Information available for subscribers only.

²⁴⁰ Consumer Reports. "Top-loading washers remain more popular with Americans". April 13, 2010. Weighted average of 75% Top-Loading Clothes Washers and 25% Front-Loading Clothes Washers.

www.consumerreports.org/cro/news/2010/04/top-loading-washers-remain-more-popular-with-americans/index.htm.

²⁴¹ data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Appliance Rebate Program." March 21, 2014, p. 36.

2.4.2 Dishwashers

Measure Description

This measure involves the installation of an ENERGY STAR® dishwasher in a new construction or replacement-on-burnout situation. This measure applies to all residential applications.

Baseline and Efficiency Standards

The baseline for this measure is the current federal standard as displayed in Table 183.

Table 183: Residential	Dishwasher – Federal	Standard Efficiency ²⁴²

	Federal Standard as of May 30, 2013 Capacity KWh/Year Gallons/Cycle				
Standard Model Size	= 8 place settings	<u><</u> 307	<u>≤</u> 5.0		
Compact Model Size	< 8 place settings	<u>< 222</u>	<u><</u> 3.5		

ENERGY STAR® and ENERGY STAR® Most Efficient (effective January 1, 2024) eligible standard and compact dishwashers must meet the criteria displayed in Table 184.

	Capacity	ENERGY STAR®		ENERGY STAR® Most Efficient	
		Annual Energy Consumption (AEC) kWh/Year	Gallons per Cycle	Annual Energy Consumption (AEC) kWh/Year	Gallons per Cycle
Standard	> 9 place settings	$Aba_{se} + AEC_{adderconnected}$			
Model Size	 2 8 place settings + 6 serving pieces 	$\begin{array}{c} Aba_{se}: 240\\ AEC_{adder connected}: 0.05\\ \times Aba_{se} \end{array}$	<u>≤</u> 3.2	<u>≤</u> 225	<u><</u> 3.2
Compact Model Size	< 8 place settings + 6 serving pieces	<u><</u> 155	<u>≤</u> 2.0	Not Applicable	

Table 184: ENERGY STAR® Criteria for Dishwashers (Effective July 6, 2023)²⁴³

²⁴² Current federal standards for dishwashers can be found on the DOE website at:

²⁴³ ENERGY STAR® and ENERGY STAR Most Efficient criteria for dishwashers can be found on the ENERGY STAR® website at:

https://www.energystar.gov/products/dishwashers/partners, https://www.energystar.gov/products/most_efficient

Estimated Useful Life (EUL)

The average lifetime of this measure is 15 years.²⁴⁴

Deemed Savings Values

Deemed savings are per installed unit based on the water heating fuel type.

	Water Heater Fuel Type	kW Savings	kWh Savings	Therms Savings
Standard Model Size	Gas	0.0014	19	1.1
Standard Model Size	Electric	0.003	44	0.0
Compact Model Size	Gas	0.0006	5	0.3
Compact Model Size	Electric	0.0015	12	0.0

Calculation of Deemed Savings

Energy savings for this measure were derived using the ENERGY STAR® DISHWASHER Savings Calculator.²⁴⁵ The baseline and ENERGY STAR® efficiency levels are set to those matching Table 183 and Talbe 184.

$$kWh_{Savings} = (E_{conv,machine} + E_{conv,WH}) - (E_{ES,machine} + E_{ES,WH})$$

Where:

 $E_{conv.machi}$ = Conventional machine energy (kWh)

 $E_{conv,WH}$ = Conventional water heating energy (kWh)

 $E_{ES,machine}$ = ENERGY STAR® machine energy (kWh)

 $E_{ES,WH}$ = ENERGY STAR® water heating energy (kWh)

Algorithms to calculate the above parameters are defined as:

$$E_{conv,machine} = MCF \times RUEC_{conv}$$

(140)

(139)

²⁴⁴ U.S. DOE, *Technical Support Document: "Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment: Residential Dishwashers, Section 8.2.3 Product Lifetimes."* May 2012. <u>http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0060-0007</u>.

Download TSD at: http://www.regulations.gov/#!documentDetail;D=EERE-2011-BT-STD-0060-0007.

²⁴⁵ The ENERGY STAR® Appliance Savings Calculator, accessed in January 29, 2016, can no longer be found on the ENERGY STAR® website.

$$E_{conv,WH} = WHCF \times RUEC_{conv}$$
(141)

$$E_{ES,machi} = MCF \times RUEC_{ES}$$

$$E_{ES,WH} = WHCF \times RUEC_{ES}$$

(143)

(145)

(142)

For gas water heating applications, therms can be calculated as:

$$therms_{Savings,WH} = (RUEC_{conv} - RUEC_{ES}) \times \frac{WHCF}{\eta_{gas WH}} \times 0.03412$$
(144)

Demand savings can be derived using the following:

$$kW_{Savings} = \frac{kWh_{Savings}}{HOU} \times CF$$

Where:

MCF = Machine electricity consumption factor = 44%

WHCF = Water heating electricity consumption factor = 56%

RUEC_{conv} = Rated unit electricity consumption (kWh/year) = 307 (Standard), 222 (Compact)

 $RUEC_{ES}$ = Rated unit electricity consumption (kWh/year) = 240 (Standard), 155 (Compact)

 $CPY = Cycles per year = 142^{246}$

d = Average wash cycle duration = 2 hours²⁴⁷

HOU = annual hours of use = CPY × d = 284 hours

CF = Coincidence factor = 0.036^{248}

 $\eta_{gas WH}$ = Gas water heater efficiency = 75%

0.03412 = Conversion Factor, therms/kWh

²⁴⁶ Assuming 142 cycles per year based on a weighted average of dishwasher use in AR, LA, OK from the Residential Energy Consumption 2015 Survey, accessed August 3, 2017.

²⁴⁷ Average of Consumer Reports Cycle Times for Dishwashers. <u>http://www.consumerreports.org/cro/dishwashers.htm</u>. Information available for subscribers only.

²⁴⁸ Hendron, R. & Engebrecht, C. 2010, , National Renewable Energy Laboratory (NREL). "Building America Research Benchmark Definition: Updated December" US U.S. DOE. January 2010. p. 14 (peak hour of 4 PM was applied). http://www.nrel.gov/docs/fy10osti/47246.pdf

2.4.3 Refrigerators

Measure Description

This measure involves replace-on-burnout or early retirement of an existing refrigerator and installation of a new, full-size (7.75 ft³ or greater) ENERGY STAR® refrigerator. This measure applies to all residential or small commercial applications.

To qualify for early retirement, the ENERGY STAR® unit must replace an existing, full-size, working unit that is at least six years old. For early retirement, the maximum lifetime age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Baseline and Efficiency Standards²⁴⁹

For ROB, the baseline for refrigerators is the DOE minimum efficiency standards for refrigerators, effective September 15, 2014.

As specified in Protocol E2 of TRM Volume 1, the enforcement date for a code or standard update is the end of the current program year if the effective date of the code or standard update is before July 1. For code or standard effective dates on or after July 1, the enforcement date is the end of the following program year. The specified lag period is to allow for the sale and/or use of existing equipment inventory. See Protocol E2 for more details.

For an individual refrigerator early retirement program, the baseline for refrigerators is assumed to be the annual unit energy consumption of the refrigerator being replaced, as reported by the Association of Home Appliance Manufacturers (AHAM), adjusted for age according to the formula in the Measure Savings Calculations. AHAM energy use data includes the average manufacturer-reported annual kilowatt hour usage, by year of production. This data dates back to the 1970s.

Alternatively, the baseline annual kilowatt hour usage of the refrigerator being replaced may be estimated by metering for a period of at least three hours using the measurement protocol specified in the US DOE report, *"Incorporating Refrigerator Replacement into the Weatherization Assistance Program.*"²⁵⁰

To determine annual kWh of the refrigerator being replaced, use the formula:

$$kWh/yr = \frac{WH \times 8760}{Hours \times 1000}$$

(146)

https://nascsp.org/wp-content/uploads/2018/02/usdoe_waterheaterinfokit.doc

²⁴⁹ Current federal standards for refrigerators can be found on the DOE website at:

<u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=37&action=viewlive;</u> Current ENERGY STAR® criteria for refrigerators can be found on the ENERGY STAR® website at: <u>https://www.energystar.gov/products/appliances/refrigerators/key_product_criteria</u>

²⁵⁰ Moore, A. 2001, D&R International, Ltd. "Incorporating Refrigerator Replacement into the Weatherization Assistance Program: Information Tool Kit." U.S. DOE. November 19.

Where:

WH = the watt-hours metered during a time period

Hours = measurement time period (hours)

8,760 =hours in a year

1,000 = Conversion constant from watts to kilowatts

For the early retirement application, all new refrigerators must replace refrigerators currently in use, and all replaced refrigerators must be dismantled in an environmentally safe manner in accordance with applicable federal, state, and local regulations. The installer will provide documentation of proper disposal of refrigerators.

Newly-installed refrigerators must meet current ENERGY STAR® efficiency levels. All newly-installed refrigerators must be connected to an adequately-sized electrical receptacle and be grounded in accordance to the National Electric Code (NEC).

Minimum efficiency requirements for ENERGY STAR® refrigerators are set at ten percent more efficient than required by the minimum federal government standard. The standard varies depending on the size and configuration of the refrigerator. Minimum efficiency requirements for ENERGY STAR® Most Efficient refrigerators are set at fifteen percent more efficient than required by the minimum federal government standard and must have an Annual Energy Consumption (AEC) of less than or equal to 637 kWh. See Table 186.

Configuration Codes

- BF: Bottom Freezer
- SD: Refrigerator Only Single Door
- SR: Refrigerator/Freezer Single Door
- SS: Side-by-Side
- TF: Top Freezer
- TTD: Through the Door (Ice Maker)
- A: Automatic Defrost
- M: Manual Defrost
- P: Partial Automatic Defrost
- AV251 = Adjusted Volume

²⁵¹ Adjusted Volume (AV) can be found for ENERGY STAR® certified refrigerators on their website under the "advanced view" option. <u>https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Certified-Residential-Refrigerators/p5st-her9</u>. Scroll to the right until you reach the column named "Adjusted Volume".

Arkansas TRM Version 10.0 Vol. 2

 Table 186: Formulas to Calculate the maximum Annual Energy Consumption (AEC) for each Consumer Refrigeration Product Category by

 Adjusted Volume (Effective September 15, 2014)²⁵²

Product Category	Federal Standard Sept 15, 2014 (kWh/year)	Maximum ENERGY STAR® Energy Usage (kWh/year) ²⁵³	Maximum ENERGY STAR® Most Efficient Energy Usage kWh/year) ²⁵⁴	Configuration(s)	Ice (Y/N)	Defrost
Refrigerator-only-manual defrost	$6.79 \times \mathrm{AV} + 193.6$	$6.111 \times AV + 174.24$	N/A	SD	Y, N	М
Refrigerator-freezers—manual or partial automatic defrost	$7.99 \times AV + 225.0$	$7.191 \times AV + 202.5$	$AV \leq \underline{6.79} \times AV + 191.3$ $AV \leq \underline{65.6}$	SS, TF, BF, SR	Y, N	M, P
Refrigerator-only-automatic defrost	$7.07 \times AV + 201.6$	$6.363 \times AV + 181.44$	N/A	SD	Y, N	А
Built-in refrigerator-only—automatic defrost	$8.02 \times AV + 228.5$	$7.218 \times AV + 205.65$	N/A	SD	Y, N	А
Refrigerator-freezers—automatic defrost with bottom- mounted freezer without an automatic icemaker	8.85 × AV + 317.0	$7.965 \times AV + 285.3$	$AV \leq 7.52 \times AV + 269.5$ $AV \leq 48.8$	BF	N	А
Built-in refrigerator-freezers—automatic defrost with bottom-mounted freezer without an automatic icemaker	9.40 × AV + 336.9	$8.46 \times AV + 378.81$	$AV \leq 7.52 \times AV + 269.5$ $AV \leq 48.8$	BF	N	А
Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker without TTD ice service	$8.85 \times AV + 401.0$	$7.965 \times AV + 360.9$	$AV \leq 7.52 \times AV + 353.5$ $AV \leq 37.7$	BF	N	А
Built-in refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker without TTD ice service	$9.40 \times AV + 420.9$	$8.46 \times AV + 378.81$	$AV \leq 7.52 \times AV + 353.5$ $AV \leq 37.7$	BF	Ν	А

²⁵² Available for download at <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43</u>.

²⁵³ Ten percent more efficient than baseline, as specified in the ENERGY STAR® appliance calculator.

²⁵⁴ ENERGY STAR Most Efficient Criteria (Effective 1/1/18) which can be found at: <u>https://www.energystar.gov/index.cfm?c=partners.most_efficient_criteria</u>

Arkansas TRM Version 10.0 Vol. 2

Product Category	Federal Standard Sept 15, 2014 (kWh/year)	Maximum ENERGY STAR® Energy Usage (kWh/year) ²⁵³	Maximum ENERGY STAR® Most Efficient Energy Usage kWh/year) ²⁵⁴	Configuration(s)	Ice (Y/N)	Defrost
Refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	$9.25 \times AV + 475.4$	8.325× AV + 427.86	$AV \leq \underline{7.86} \times AV + 416.7$ $AV \leq \underline{28.0}$	BF	Y	A
Built-in refrigerator-freezers—automatic defrost with bottom-mounted freezer with an automatic icemaker with TTD ice service	9.83 × AV + 499.9	$8.847 \times AV + 449.91$	$AV \leq \underline{7.86} \times AV + 416.7$ $AV \leq \underline{28.0}$	BF	Y	А
Refrigerator-freezers—automatic defrost with side-mounted freezer without an automatic icemaker	8.51 × AV + 297.8	7.659 × AV + 268.02	$AV \leq 7.23 \times AV + 253.1$ $AV \leq 53.0$	SS	Ν	А
Built-in refrigerator-freezers—automatic defrost with side-mounted freezer without an automatic icemaker	$10.22 \times AV + 357.4$	9.198 × AV + 321.66	$AV \leq 7.23 \times AV + 253.1$ $AV \leq 53.0$	SS	N	A
Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker without TTD ice service	8.51 × AV + 381.8	7.659 × AV + 343.62	$AV \leq 7.23 \times AV + 337.1$ $AV \leq 41.4$	SS	Ν	А
Built-in refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker without TTD ice service	$10.22 \times AV + 441.4$	9.198 × AV + 397.26	$AV \leq \underline{7.23} \times AV + 337.1$ $AV \leq \underline{41.4}$	SS	Ν	А
Refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	8.54 × AV + 432.8	7.686 × AV + 389.52	$AV \leq 7.26 \times AV + 380.5$ $AV \leq 35.3$	SS	Y	А
Built-in refrigerator-freezers—automatic defrost with side-mounted freezer with an automatic icemaker with TTD ice service	$10.25 \times AV + 502.6$	9.225 × AV + 452.34	$AV \leq 7.26 \times AV + 380.5$ $AV \leq 35.3$	SS	Y	А
Refrigerator freezers—automatic defrost with top-mounted freezer without an automatic icemaker	8.07 × AV + 233.7	7.263 × AV + 210.33	N/A	TF	N	А

Arkansas TRM Version 10.0 Vol. 2

Product Category	Federal Standard Sept 15, 2014 (kWh/year)	Maximum ENERGY STAR® Energy Usage (kWh/year) ²⁵³	Maximum ENERGY STAR® Most Efficient Energy Usage kWh/year) ²⁵⁴	Configuration(s)	Ice (Y/N)	Defrost
Built-in refrigerator-freezers—automatic defrost with top-mounted freezer without an automatic icemaker	$9.15 \times AV + 264.9$	8.235 × AV + 238.41	N/A	TF	Ν	А
Refrigerator-freezers—automatic defrost with top-mounted freezer with an automatic ice maker without TTD ice service	8.07 × AV + 317.7	7.263 × AV + 285.93	N/A	TF	N	А
Built-in refrigerator-freezers—automatic defrost with top-mounted freezer without an automatic ice maker with TTD ice service	$9.15 \times AV + 348.9$	8.235 × AV + 238.41	N/A	TF	N	А
Refrigerator-freezers—automatic defrost with top-mounted freezer with TTD ice service	$8.40 \times AV + 385.4$	7.56 × AV + 346.86	N/A	TF	Y	А

Estimated Useful Life (EUL)

According to the Department of Energy Technical Support Document,²⁵⁵ the Estimated Useful Life of High Efficiency Refrigerators is 17 years.

Measure Savings Calculations

Deemed peak demand and annual energy savings should be calculated as shown below. Note that these savings calculations are different depending on whether the measure is replace-on-burnout or early retirement.

Replace-on-Burnout

$$kWh_{savings} = kWh_{baseline} - kWh_{ES}$$

(147)

Where:

 $kWh_{baseline}$ = Federal standard baseline average energy usage (Table 186)

 kWh_{ES} = ENERGY STAR® average energy usage (Table 186)

Early Retirement

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (17 RUL)

For the RUL (Table 187):

$$kWh_{savings} = kWh_{pre} - kWh_{ES}$$

(148)

 kWh_{pre} refers to manufacturer data or a measured consumption that is adjusted using applicable degradation factors.

$$kWh_{pre} = kWh_{manf} \times (1 + PDF)^n \times SLF$$

(149)

²⁵⁵ U.S. DOE 2011, Technical Support Document: "Residential Refrigerators, Refrigerator-Freezers, and Freezers, 8.2.3 Product Lifetimes." September 15. Download TSD at: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128</u>.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

For the remaining time in the EUL period:

Calculate annual savings as you would for a replace-on-burnout project using Equation (147). Lifetime kWh savings for Early Retirement Projects is calculated as follows:

$$Lifetime \ kWh_{savings} = (kwh_{savings,ER} \times RUL) + kWh_{savings,ROB} \times (EUL - RUL)$$

Where:

*kWh*_{baseline} = NAECA baseline average energy usage (Table 186)

 kWh_{pre} = Adjusted manufacturer energy usage Equation (149)

 kWh_{ES} = ENERGY STAR® average energy usage (Table 186)

 kWh_{manf} = annual unit energy consumption²⁵⁶ (or from metering, using Equation (146)

PDF = Performance Degradation Factor 0.0125/year. Refrigerator energy use is expected to increase at a rate of 1.25% per year as performance degrades over time²⁵⁷

n = age of replaced refrigerator (years)

SLF = Site/Lab Factor = 0.81 to account for the difference between DOE laboratory testing and actual conditions²⁵⁸

RUL = Remaining Useful Life (Table 187)

EUL = Estimated Useful Life = 17 years

(150)

²⁵⁶ Office of State & Community Energy Programs. <u>https://www.energy.gov/scep/wap/articles/refrigerator-and-freezer-energy-rating-database-search-tool</u>

²⁵⁷ 2009 Second Refrigerator Recycling Program NV Energy – Northern Nevada Program Year 2009; M&V, ADM, Feb 2010, referencing Cadmus data on a California program, February 2010.

²⁵⁸ Peterson, J, et. al., 2007, "Gross Savings Estimation for Appliance Recycling Programs: The Lab Versus In Situ Measurement Imbroglio and Related Issues" International Energy Program Evaluation Conference (IEPEC). Cadmus, et. al. "Residential Retrofit High Impact Measure Evaluation Report." February 8, 2010.

Age of Replaced Refrigerator (years)	RUL (years)	Age of Replaced Refrigerator (years)	RUL (years)
6	10.3	15	6.0
7	9.6	16	5.8
8	8.9	17	5.5
9	8.3	18	5.3
10	7.8	19	5.1
11	7.4	20	4.9
12	7.0	21	4.8
13	6.6	22	4.6
14	6.3	23 +	0.0

Table 187: Remaining Useful Life (RUL) of Replaced Refrigerator²⁵⁹

Average Demand Savings

Since refrigerators operate around the clock, average kW reduction is equal to annual kWh divided by 8,760 hours per year. As shown below, this average kW reduction is multiplied by temperature and load shape adjustment factors to derive peak period kW reduction.

$$kW_{savings} = \frac{kWh_{savings}}{Hours_{annual}} \times TAF \times LSAF$$

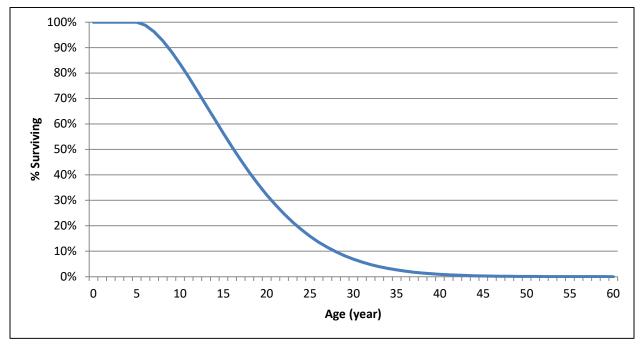
Where:

TAF = Temperature Adjustment Factor²⁶⁰ = 1.188

LSAF = Load Shape Adjustment Factor²⁶¹ = 1.074

 $Hours_{annual} = 8760$

(151)


²⁵⁹ Use of the early retirement baseline is capped at 22 years, representing the age at which 75 percent of existing equipment is expected to have failed. Equipment older than 22 years should use the ROB baseline.

²⁶⁰ Proctor Engineering Group, Michael Blasnik & Associates, and Conservation Services Group, 2004, "*Measurement & Verification of Residential Refrigerator Energy Use: Final Report – 2003-2004 Metering Study*". July 29. Factor to adjust for varying temperature based on site conditions, p. 47.

²⁶¹ Proctor Engineering Group, Michael Blasnik & Associates, and Conservation Services Group, 2004, "Measurement & Verification of Residential Refrigerator Energy Use: Final Report – 2003-2004 Metering Study". July 29. Used load shape adjustment for "hot days" during the 4PM hour, pp. 45-48.

Derivation of RULs

ENERGY STAR® Refrigerators have an estimated useful life of 17 years. This estimate is consistent with the age at which 50 percent of the refrigerators installed in a given year will no longer be in service, as described by the survival function in Figure 8.

Figure 8: Survival Function for ENERGY STAR® Refrigerators²⁶²

The method for estimating the RUL of a replaced system uses the age of the existing system to re-estimate the projected unit lifetime based on the survival function shown in Figure 8. The age of the refrigerator being replaced is found on the horizontal axis, and the corresponding percentage of surviving refrigerators is determined from the chart. The surviving percentage value is then divided in half, creating a new estimated useful lifetime applicable to the current unit age. The age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43.

Download TSD at: http://www.regulations.gov/#!documentDetail;D=EERE-2008-BT-STD-0012-0128.

²⁶² U.S. DOE, Technical Support Document, 2011, "Residential Refrigerators, Refrigerator-Freezers, and Freezers, 8.2.3 Product Lifetimes." September 15.

2.4.4 Dehumidifier

Measure Description

This measure includes installing a dehumidifier meeting the efficiency standard set forth by the current ENERGY STAR® Version 5.0 (effective 10/31/2019) and ENERGY STAR® Most Efficient 2024 Criteria (effective 1/1/24) in place of a unit that meets the minimum federal standard efficiency.

Baseline and Efficiency Standards

The baseline condition for this measure is a new dehumidifier that meets the federal efficiency standards. Table 188 and Table 189 provides the Federal Standards for Portable and Whole-Home Dehumidifiers as of June 13, 2019 and the ENERGY STAR standard, including ENERGY STAR Most Efficient.

Capacity (pints/day)	Federal Standard Criteria (L/kWh)	ENERGY STAR® (L/kWh)	ENERGY STAR® Most Efficient: Stand Alone (L/kWh)
≤ 25	≥ 1.30	≥ 1.57	≥ 1.75
> 25 to ≤ 50	≥ 1.60	≥ 1.80	≥ 2.01
> 50	≥ 2.80	≥ 3.30	≥ 3.40

Table 188: Federal Standard and ENERGY STAR® Standard for Portable Dehumidifiers

Size	Federal Standard (L/kWh) ²⁶³	Energy Factor (L/kWh)	ENERGY STAR® Most Efficient: Stand Alone (L/kWh)
Volume <= 8.0 cu-ft	≥ 1.77	≥ 2.09	≥ 2.22
Volume > 8.0 cu-ft	≥ 2.41	≥ 3.30	≥ 3.81

Table 189: Federal Standard and ENERGY STAR® Standard for Whole-Home Dehumidifiers

Estimated Useful Life (EUL)

The assumed lifetime for Portable Dehumidifiers is 12 years²⁶⁴ and for Whole Home Humidifiers is 17 years.²⁶⁵

Calculation of Deemed Savings

Energy Savings

Annual Energy Savings =
$$\frac{Avg \ Cap \ x \ 0.473}{24} \times HOU \times \left(\frac{1}{L/kWh_{Base}} - \frac{1}{L/kWh_{Eff}}\right)$$

²⁶³ ENERGY STAR Dehumidifiers Key Efficiency Criteria.

https://www.energystar.gov/products/appliances/dehumidifiers/key_efficiency_criteria

²⁶⁴ EPA Research, 2012; ENERGY STAR Dehumidifier Calculator

²⁶⁵ Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Dehumidifiers, October 2023. <u>https://www.regulations.gov/document/EERE-2019-BT-STD-0043-0023</u>, Appendix 8C. Lifetime is assumed to be the age at which there is an 80% cumulative probability that the unit has failed.

(152)

Where:

- Avg Cap = Average capacity of unit (pints/day) = Actual, if unknown assume capacity in each capacity range as provided in table below, or if capacity range unknown assume average
- 0.473 = conversion factor to covert Pints to Liters
- 24 = conversion factor from hours to day to convert Liters/day to Liters/hour

HOU = hours of use per year = $1,632^{266}$

 L/kWh_{Base} = Liters of water per kWh consumed (see Table 188)

L/kWh_{Eff} = Liters of water per kWh consumed. Actual (if known). If unknown, see Table 189

Annual energy consumption and savings for each capacity class are shown in Table 190.

Table 190: Annual Energy Savings by Capacity Range

Capacity Range (pints/day)	Capacity Used (pints/day)	Federal Standard (kWh)	ENERGY STAR (kWh)	ENERGY STAR Most Efficient (kWh)	ENERGY STAR Savings (kWh)	Most Efficient Savings (kWh)
≤ 25	22	544	451	416	94	128
> 25 to ≤ 50	35	704	625	592	78	111
> 50	100	1149	975	946	174	203
Average	39	784	697	660	87	124

Demand Savings

$$kW_{savings} = \frac{kWh_{Savings}}{HOU} \times CF$$

(153)

Where:

 $HOU = Hours of Use = 1,632^{267}$

 $CF = Summer Peak Coincidence Factor for measure = 0.37^{268}$

Summer coincident peak demand savings for each capacity class is shown in Table 191.

²⁶⁶ ENERGY STAR® calculator; 24 hour operation over 68 days of the year. Effective October 25, 2016

²⁶⁷ ENERGY STAR® calculator; 24 hour operation over 68 days of the year. Effective October 25, 2016

 $^{^{268}}$ Assume usage is evenly distributed day vs. night, weekend vs. weekday and is used between April through September (4,392 possible hours). 1,632 operating hours from ENERGY STAR Dehumidifier Calculator. Coincidence peak during summer is therefore 1,632/4,392 = 37.2%.

Capacity Range (pints/day)	ENERGY STAR® Annual Summer Peak Demand Savings (kW)	ENERGY STAR® Most Efficient Annual Summer Peak Demand Savings (kW)
≤ 25	0.019	0.026
> 25 to \le 50	0.019	0.027
> 50	0.040	0.047
Average	0.020	0.028

Table 191: Summer Peak Coincident Demand Savings

2.4.5 Room Air Purifier/Cleaner

Measure Description

This measure involves the installation of an ENERGY STAR® certified room air cleaner. An air purifier, also known as an air cleaner, is defined as a portable electric appliance that removes dust and fine particles from indoor air.

Baseline and Efficiency Standards

The baseline for this measure is a new air cleaner that meets the federal efficiency standards that went into effect on December 31, 2023. The efficient equipment is an ENERGY STAR rated air cleaner that must produce a minimum of 30 Clean Air Delivery Rate (CADR) for smoke.

The baseline and efficient performance requirements for air cleaners is shown below.

 Table 192: Federal Standard and ENERGY STAR criteria for Air Cleaners

CADR Range	Federal Standard ²⁶⁹		ENERGY STAR		GY STAR Efficient
	Eff 12/31/23		Eff 12/31/25		
	CADR/W	CADR/W	CADR/W	CADR/W	I
30 ≤ Smoke CADR < 100	1.7	1.9	1.9	5.4	
100 ≤ Smoke CADR < 150	1.9	2.4	2.4	6.6	
150 ≤ Smoke CADR < 200	2.0	2.9	2.9	7.6	
Smoke CADR ≥ 200	2.0		2.9	2.9	7.6

Estimated Useful Life (EUL)

The estimated useful life for an air purifier is 9 years.²⁷⁰

²⁶⁹ DOE Energy Conservation Standards for Air Cleaners, EERE–2021–BT–STD–0035, Federal Register, vol. 88, no.168, published August 31, 2023, effective December 31, 2023. Federal standard efficiency is measured in IEF, PM_{2.5} (particulate matter) clean air delivery rate per watt (CADR/W). CADR is measured in cubic feet per minute.

²⁷⁰ ENERGY STAR® qualified Room Air Cleaner Calculator citing Appliance Magazine, Portrait of the US Appliance Industry, 1998

Calculation of Deemed Savings

Energy Savings

Annual Energy Savings =
$$\Delta kWh_{base} - \Delta kWh_{ee}$$

Where:

$$kWh_{ee} = \left[Hours_{standby} \times \frac{PartialOnMode_{ee}}{1000}\right] + \left[HOU \times \frac{CADR_{ee}}{(CADR/W)_{ee} \times 1000}\right]$$
(155)

$$kWh_{base} = \left[Hours_{standby} \times \frac{PartialOnMode_{base}}{1000}\right] + \left[HOU \times \frac{CADR_{base}}{(CADR/W)_{base} \times 1000}\right]$$
(156)

CADR = Clean Air Delivery Rate = Actual, if unknown assume CADR in each range as provided Partial On Mode, conventional unit = 1.0 Watt²⁷¹

CADR/watt, conventional unit = look up from Table 192 based on CADR range

CADR/watt, efficient unit = Actual, if unknown, use ENERGY STAR minimum requirement

Partial On Mode, efficient unit = Actual from manufacture rating (Watts), if unknown use 0.57 Watts²⁷²

HOU (annual hours of use) = 16 hours/day, 365 days a year = 5840 hours

 $Hours_{standby} = 8760 - 5840 = 2920$ hours

Demand Savings

$$kW_{savings} = \frac{kWh_{savings}}{HOU} \ x \ CF$$
(157)

Where:

HOU = Hours of Use = 5840 hours

CF = Coincidence Factor, assumes equal use throughout the year, 5840 hours divided by 8760 = 0.67Annual energy consumption and savings for each capacity class are shown in

(154)

²⁷¹ Conventional model information from ENERGY STAR v.1.2 Room Air Cleaners appliance calculator.

²⁷² Average standby power usage based on ENERGY STAR qualifying products listing accessed in July 2024.

Table 193.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Clean Air Delivery Rate	CADR	ENERGY STAR		ENERGY STAR Most Efficient	
(CADR) Range	CILDIN	kWh	kW	kWh	kW
30-99	70.7	123	0.014	168	0.019
100 - 149	129.6	218	0.025	285	0.032
150 — 199	173.3	300	0.034	374	0.043
>200	316.4	547	0.063	682	0.078

Table 193: Annual Energy Savings by Capacity Range

2.4.6 Clothes Dryer

Measure Description

This measure involves the installation of a residential clothes dryer meeting the ENERGY STAR® criteria or the ENERGY STAR® Most Efficient criteria. Clothes dryers that certify under the ENERGY STAR® requirement save energy through efficiencies in drying such as increased insulation and improved air circulation. Dryer runtime is also reduced through automatic termination of the dryer cycles based on temperature and moisture sensors.

Baseline and Efficiency Standards

The clothes dryer efficiency requirements are the ENERGY STAR® Clothes Dryer Requirements Version 1.1, effective May 5, 2017 and the ENERGY STAR® Clothes Dryer Most Efficient Requirements, effective January 1, 2024²⁷³. DOE has published two testing options for determining the Combined Energy Factor (CEF) value²⁷⁴. The Federal Minimum standard allows for both test methods while the ENERGY STAR® requirements only specify one. The baseline standard for this measure is the federal minimum criteria which applies for units manufactured on or after January 1, 2015²⁷⁵ that has been adjusted to reflect the test method used for reporting ENERGY STAR® efficiency requirements.²⁷⁶

Product Class	Federal Minimum	Adjusted Federal Minimum	ENERGY STAR®	ENERGY STAR® Most Efficient
	CEF _{federal} (lbs/kWh)	CEF _{base} (lbs/kWh)	CEF _{ee} (lbs/kWh)	CEF _{ee} (lbs/kWh)
Vented Electric, Standard (\geq 4.4 ft ³)	3.73	3.11	3.93	5.2
Vented Electric, Compact, 120V (< 4.4 ft ³)	3.61	3.01	3.80	6.3
Vented Electric, Compact, 240V (< 4.4 ft ³)	3.27	2.73	3.45	Not Applicable
Ventless Electric, Compact, 240V (< 4.4 ft ³)	2.55	2.13	2.68	5.5
Vented Gas	3.30	2.84	3.48	Not Applicable

Table 194: Baseline.	Efficient and Most	+ Efficient CEE V	Values for i	Clothes Druers
Table 194: Dasenne	, Efficient and Mos		v alues lor	Clothes Dryers

²⁷³ ENERGY STAR Most Efficient Criteria, https://www.energystar.gov/products/most_efficient

²⁷⁴ To determine that Residential Clothes Dryers that are currently manufactured or distributed into commerce are in compliance with DOE standards, manufacturers must follow the test procedure methods specified at 10 CFR 430, Subpart B, Appendix D1.

²⁷⁵ Residential Clothes Dryers manufactured and distributed in commerce after January 1, 2015, as defined by <u>42 U.S.C.</u> <u>6291(16)</u>, must meet the energy conservation standards specified in the Code of Federal Regulations at <u>10 CFR</u> <u>430.32(h)</u>.

²⁷⁶ ENERGY STAR® Residential Clothes Dryer Data and Analysis - August 5, 2013

Estimated Useful Life

The expected useful life of this equipment is 14 years.²⁷⁷

Calculation of Deemed Savings²⁷⁸

Energy Savings

$$\Delta kWh = Annual Cycles \times \% Electric \times \left[\frac{Load_{weigh}}{CEF_{base}} - \frac{Load_{weight}}{CEF_{ee}}\right]$$
(158)
$$\Delta Therms = Annual Cycles \times \% Gas \times \left[\frac{Load_{weig}}{CEF_{base}} - \frac{Load_{weight}}{CEF_{ee}}\right]$$
(159)

Where:

Annual Cycles = 283^{279}

Load_{weight} (in lbs) = 8.45 (Standard Size), 3 (Compact Size)

Table 195: %Electric and %Gas values based on Clothes Dryer Fuel Type²⁸⁰

Clothes Dryer Fuel Type	%Gas	%Electric
Electric	0%	100%
Gas	84%	16%

Demand Savings

$$\Delta kW = \frac{\Delta kWh}{HOU} \times CF$$

(160)

Where:

Coincidence Factor = $CF = 0.029^{281}$

²⁷⁷ ENERGY STAR® Market & Industry Scoping Report: Residential Clothes Dryer, November 2011.

²⁷⁸ ENERGY STAR® Appliance Calculator, updated October 2016.

²⁸⁰ 84% was determined using a ratio of the gas to total savings from gas dryers given by ENERGY STAR Draft 2 Version 1.0 Clothes Dryers Data and Analysis.

²⁸¹ Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Appliance Rebate Program." March 21, 2014, p. 36.

Hours of Use (HOU) = 283^{282}

Clothes Dryer	ENERGY STAR® Unit Savings			ENERGY STAR® Most Efficient Unit Savings		
Product Class Type	kWh Savings	kW Savings	Therm Savings	kWh Savings	kW Savings	Therm Savings
Vented Electric, Standard	159	0.016	0	480	0.049	0
Vented Electric, Compact, 120V	59	0.006	0	81	0.008	0
Vented Electric, Compact, 240V	64	0.007	0			
Ventless Electric, Compact, 240V	81	0.008	0	135	0.014	0
Vented Gas	25	0.003	4.4			

Table 196: Annual Energy Savings by Clothes Dryer Type

²⁸² ENERGY STAR® qualified dryers have a maximum test cycle time of 80 minutes. Assume one hour per dryer cycle.

2.4.7 Electric Cooktops

Measure Description

This measure involves the installation of a residential ENERGY STAR® Electric Cooking Product in a new construction or replacement-on-burnout application. This measure applies to all residential applications.

Baseline and Efficiency Standards

The baseline standard for deriving savings from this measure is based on a DOE Cooking Top Test Sample which includes data on energy consumption of different cooktop products provided by the Association of Home Appliance Manufacturers (AHAM) and Pacific Gas & Electric (PG&E)²⁸³.

The efficiency standard is the ENERGY STAR® Version 1.0 requirements for Residential Electric Cooking Products²⁸⁴. The specification does not require units to be a certain technology type. As of July 2024, no coil cooktops meet the IAEC criteria, and the passing products include both induction and radiant products.

Efficiency performance for electric cooking products is characterized by their Integrated Annual Energy Consumption (IAEC) in kWh/year. Table 197 shows the baseline IAEC levels determined from the DOE dataset as well as the IAEC level to meet ENERGY STAR® criteria.

Electric Cooking Product Category	IAEC (kWh/year)
Smooth Cooktop Baseline	250
Coil Cooktop Baseline	199
Weighted Average Cooktop Baseline	237
ENERGY STAR Version 1.0	195

Table 197: ENERGY STAR® Electric Cooking Products – Baseline and Efficiency Levels

Estimated Useful Life (EUL)

The average lifetime of this measure is 16 years, based on the U.S. Department of Energy (DOE) Energy Conservation Program, Energy Conservation Standards for Residential Conventional Cooking Products as part of the 2016Supplemental Notice of Proposed Rulemaking (SNOPR).

²⁸³ U.S. Department of Energy, Energy Efficiency and Renewable Energy Office, Updated Cooking Top Test Sample. August 2023. Accessed July 2024. <u>https://www.regulations.gov/document/EERE-2014-BT-STD-0005-10090</u>

²⁸⁴ ENERGY STAR Version 1.0 Program Requirements for Residential Electric Cooking Products. <u>https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Residential%20Electric%20C</u> <u>ooking%20Products%20V1.0%20Final%20Specification%20%28Rev.%20October%20-%202023%29.pdf</u>

Deemed Savings Values

For replace-on-burnout scenarios where the cooking product being replaced is electric or gas, or for new construction scenarios, the baseline is a weighted average of the baseline electric cooking top types, coil and smooth. There are no deemed savings for early replacement scenarios. Table 198 shows the baseline and efficient IAEC values used to determine the deemed savings that corresponds to a weighted average baseline and a minimally compliant ENERGY STAR certified product.

Baseline Type	Efficient Type	Baseline IAEC (kWh/year)	Efficient IAEC (kWh/year)	kWh Savings (kWh/year)
Smooth	ENERGY STAR® v1.0	250	195	55
Coil	ENERGY STAR® v1.0	199	195	4
Weighted Average	ENERGY STAR® v1.0	237	195	42

The resulting deemed savings of 42 kWh/year should be used in cases where the ENERGY STAR-compliant make and model, and therefore the actual associated IAEC of the efficient unit, are not known. In cases where the make and model are known, the associated IAEC value can be discovered and used to calculate the savings with the formula in the section below.

No demand savings is associated with this measure.

Calculation of Deemed Savings

Energy savings for this measure were derived using the ENERGY STAR® Electric Cooking Top Data Analysis Package.²⁸⁵ The calculation of savings is as follows:

$$kWh_{savings} = IAEC_{baseline} - IAEC_{post}$$

(161)

Where:

- *IAEC*_{baseline} = The annual energy consumption associated with the baseline cooking top type (kWh/year), default value: 237 kWh/year.
- *IAEC*_{post} = The annual energy consumption associated with the efficient cooking top provided with ENERGY STAR® certification; if unknown, use ENERGY STAR® efficient criteria of 195 kWh/year IAEC.

²⁸⁵ ENERGY STAR® Electric Cooking Top Data Analysis Package. Accessed July 2024. <u>https://www.energystar.gov/sites/default/files/asset/document/ENERGY%20STAR%20Residential%20Electric%20C</u> <u>ooking%20Products%20V1.0%20Data%20%20Analysis%20Package_FINAL.xlsx</u>

2.5 Lighting

Note that with v9.1 of the TRM, two CFL measures were removed.

2.5.1 Specialty LEDs

Measure Description

This measure provides a method for calculating savings for replacing an incandescent or halogen reflector or other specialty lamp with an ENERGY STAR® QUALIFIED LED lamp. These lamp shapes include PAR, R, BR, MR, and similar lamp shapes, as well as other specialty lamps such as three-way lamps, globes and candelabra base lamps.

Baseline

The baseline equipment is assumed to be a general service lamp (GSL) compliant with, and as defined by, Tier 2 of the EISA 2007 regulations. A Final Rule issued by the DOE effective July 8, 2022 requires efficacy of 45 lumens per watt for GSLs and expands the definition of GSLs to encompass a wide range of lamp types.²⁸⁶

Enforcement for the new standards is effective for manufacturers on January 1, 2023 and for retailers on July 1, 2023. Retailers may be expected to sell backstock of lamps that do not meet the new EISA requirement up to the July 1, 2023 enforcement date. For PY2023, energy savings for this measure may be calculated using the prior baseline for projects installed before July 1, 2023. For projects installed on or after July 1, 2023, energy savings should be calculated using the baseline from the new EISA requirements.

In the case of early retirement of in-situ lamps meeting the pre-2023 standards, the in-situ baseline may be used if photographic verification is captured.

Efficiency Standard

LEDs must be ENERGY STAR® qualified for the relevant lamp shape being removed.

Exceptions to the ENERGY STAR® label are allowed for unlisted lamps, fixtures or other lighting-related devices that have been submitted to ENERGY STAR® for approval. If the lamp or fixture does not achieve ENERGY STAR® approval within the Arkansas DSM program year, however, then the lamp or fixture would have to be immediately withdrawn from the program.

Estimated Useful Life (EUL)

The estimated useful life for indoor and outdoor LED omni-directional lamps is equal to the technical measure life of 12.5 years.²⁸⁷

²⁸⁶ <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=4</u>

²⁸⁷ The EUL value was updated based on the findings from the Arkansas Shelf-Stocking Study completed in July 2021. The PWC discussed these findings during its meeting on July 29, 2021.

Daily Hours of Use

These deemed savings assume an average daily use of 2.17 blended²⁸⁸ hours for indoor/outdoor applications.

Coincidence Factor

Cadmus performed a residential light logging study in 2013 in Arkansas on behalf of Entergy. This study estimated a mean coincidence factor of 10 percent for non-holiday summer weekdays from 3:00 p.m. to 7:00 p.m.²⁸⁹

Residential CFLs installed outdoors are not expected to be on during summer peak demand hours. Outdoor LEDs will have a coincidence factor of 0 percent.

Calculation of Deemed Savings

For retail (time of sale) programs, increased savings may be claimed based on sales to nonresidential customers.²⁹⁰ Based on a review of 23 utility programs across 10 states, 6.7 percent of installed lamps may be allocated to the commercial program. To implement, multiply the total number of fixtures by 6.7 percent and apply the savings methodologies described in the Commercial Lighting Efficiency measure. Since no building type will have been identified, apply the weighted average annual operating hours and coincidence factor based on a review of the building types that participating in commercial lighting programs during the current program year.

Calculate savings for the remaining 93.3% of fixtures using the residential savings calculations described next. If it is not possible to apply the commercial allocation strategy described above, a program may calculate savings for all fixtures using the residential savings calculations described below. This will result in a conservative estimate for upstream programs.

Note: This strategy should only be applied to retail (time of sale) programs. For all other programs, use the residential savings calculations exclusively.

Energy Savings

$$kWh_{savings} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times HOU \times ISR \times IEF_E$$
(162)

Where:

 W_{base} = Baseline lamp wattage of equivalent lumens; for directional (reflector) lamps, use the default baseline wattages (Column C) in Table 199 for replacements prior to July 1, 2023 (exempt reflector lamps should use the manufacturer rated equivalent wattage as the baseline) and use the 45 lumen/watt EISA Tier 2 requirement for replacements on or after July 1, 2023

 W_{post} = Actual wattage of LED purchased/installed

HOU = Average hours of use per year

²⁸⁸ Residential light logging study by Cadmus - Entergy Arkansas, Inc. 2013 EM&V Evaluation Report.

²⁸⁹ Ibid.

²⁹⁰ Dimetrosky, S. et al, 2017. "Residential Lighting Evaluation Protocol – The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." October.

- *ISR* = In Service Rate, or percentage of rebate units that get installed, to account for units purchased but not immediately installed
- IEF_E = Interactive Effects Factor to account for cooling energy savings and heating energy penalties; this factor also applies to outdoor and unconditioned spaces

Lamp Type (a)	Incandescent Equivalent (Pre-EISA) (b)	Watts _{Base} (Before 7/1/2023) (c)	Watts _{Base} (On or after 7/1/2023) (d)
PAR20	50	35	
PAR30	50	35	
R20	50	45	
PAR38	60	55	
BR30	65	EXEMPT	
BR40	65	EXEMPT	
ER40	65	EXEMPT	
BR40	75	65	
BR30	75	65	Watts _{Base} = Lumens / 45 Lumens/watt
PAR30	75	55	
PAR38	75	55	Where:
R30	75	65	Lumens = the rated lumen output of the lamp
R40	75	65	
PAR38	90	70	
PAR38	120	70	
R20	≤ 45	EXEMPT	
BR30	≤ 50	EXEMPT	1
BR40	≤ 50	EXEMPT	1
ER30	≤ 50	EXEMPT	1
ER40	≤ 50	EXEMPT]

Table 199: ENERGY STAR® Directional LEDs – Default Baseline Wattage for Reflector Lamps²⁹¹

²⁹¹ Based on manufacturer available reflector lighting products.

For other specialty, EISA Tier 1 exempt lamps²⁹², use the baseline wattage in Table 200. Commonly used EISA Tier 1 exempt lamps include 3-way lamps, globes with \geq 5" diameter or \leq 749 lumens, and candelabra base lamps with \leq 1049 lumens. See EISA legislation for full list of exemptions. If rated lumen values fall above or below these values, use manufacturer rated equivalent incandescent wattage when identifying baselines prior to July 1, 2023.

Each of the specific bulb types recommended baseline equivalencies is provided below:

- a. **BR20**: use the current R20 assumption in Table 199.
- b. PAR16: use the current PAR20 assumption in Table 199.
- c. **PAR30S/L**: use the current PAR30 assumption in Table 199.
- d. MR bulbs: use equivalent wattage PAR bulb assumption in Table 199.
- e. **PAR38 150W equivalent**: The TRM specifically states: As noted above, *if rated lumen values fall above or below these values, use manufacturer rated equivalent incandescent wattage when identifying baselines prior to July 1, 2023.*
- f. Lumen Ranges for Exempt lamps <310 Lumens: As noted above, *if rated lumen values fall above or below these values, use manufacturer rated equivalent incandescent wattage when identifying baselines prior to July 1, 2023.*

Table 200: ENERGY STAR® Directional LEDs – Default Baseline Wattage for Specialty, EISA Tier 1 Exempt Lamps for replacements prior to July 1, 2023²⁹³

Minimum Lumens	Maximum Lumens	Incandescent Equivalent (W _{base})
310	749	40
750	1,049	60
1,050	1,489	75
1,490	2,600	100

 Table 201: ENERGY STAR® Directional LEDs – Reflector and Decorative Lamps Average Hours of Use per Year

Installation Location	Hours
Blended Indoor/Outdoor ²⁹⁴	792.6

²⁹² A complete list of the 22 incandescent lamps exempt from EISA 2007 is listed in the United States U.S. DOE Impact of EISA 2007 on General Service Incandescent Lamps: FACT SHEET. https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=20

²⁹³ Note that ENERGY STAR® has recently assigned new incandescent equivalent wattage lumen bins for the ENERGY STAR® v2.0 lighting standards (see <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR %20Lamps%20V2_0%20Revised%20OCT-2016_1.pdf</u>, page 13). This TRM maintains the EISA lumen bins for assigning baseline wattage. Future TRM iterations of the AR TRM, however, may incorporate these new lumen bins for baseline wattage estimates.

²⁹⁴ Annual Hours of Use = 2.17 Average Daily Hours of Use * 365.25 Days per Year

Table 202: ENERGY STAR® Directional LEDs – Reflector and Decorative Lamps In-Service Rates

Program	ISR
Retail (Time of Sale) and Direct Install ²⁹⁵	0.97

Table 203: ENERGY STAR® Directional LEDs – Reflector and Decorative Lamps Interactive Effects for Cooling Energy Savings and Heating Energy Penalties

Heating Type	Interactive Effects Factor (IEF _E) ²⁹⁶
Gas Heat with AC	1.10
Gas Heat with no AC	1.00
Electric Resistance Heat with AC	0.83
Electric Resistance Heat with no AC	0.73
Heat Pump	0.96
Heating/Cooling Unknown ²⁹⁷	0.97

Summer Peak Demand Savings

$$kW_{savings} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times CF \times ISR \times IEF_D$$
(163)

Where:

CF = Summer Peak Coincidence Factor for measure

 IEF_D = Interactive Effects Factor to account for cooling demand savings; this factor also applies to outdoor and unconditioned spaces

Table 204: ENERGY STAR® Directional LEDs – Reflector and Decorative Lamps Summer Peak Coincidence Factor

Lamp Location	CF
Indoor ²⁹⁸	10%
Outdoor	0%

²⁹⁵ Reflects best-available information in Arkansas for first-year installation rates, applying a four-year trajectory of installation and a discounting based on Uniform Methods Project residential lighting protocol. The first year ISR for retail is 92.6% based on 2014 Entergy evaluation for retail CFLs. In 2016, SWEPCO evaluated direct install LEDs and found a 95% first-year ISR, which results in similar result once trajectory and discounting are conducted.

²⁹⁶ Refer to Appendix I, Arkansas Volume 3.

²⁹⁷ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. http://www.eia.gov/consumption/residential/data/2009/.

²⁹⁸ Residential light logging study by Cadmus - Entergy Arkansas, Inc. 2013 EM&V Evaluation Report.

Table 205: ENERGY STAR® Directional LEDs – Reflector and Decorative Lamps Interactive Effects Factor for Cooling Demand Savings

Heating Type	Interactive Effects Factor (IEF _D) ²⁹⁹
Gas Heat with AC	1.29
Gas Heat with no AC	1.00
Electric Resistance Heat with AC	1.29
Electric Resistance Heat with no AC	1.00
Heat Pump	1.29
Heating/Cooling Unknown ³⁰⁰	1.25

Heating Penalty for Natural Gas Heated Homes

$$Therms_{penalty} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times HOU \times ISR \times IEF_{G}$$

(164)

Where:

 IEF_G = Interactive Effects Factor to account for gas heating penalties (Δ therm/kWh); this factor also applies to outdoor and unconditioned spaces

Note that the interactive effects for demand (kW), energy (kWh) and natural gas (therms) should be calculated for all programs and installations of lamps covered by this measure, including single fuel, electric-only programs.

Table 206: ENERGY STAR® Directional LEDs – Reflector and Decorative Lamps Interactive Effects Factor for Gas Heating

Heating Type	Interactive Effects Factor (IEF _G) ³⁰¹
Gas Heat with AC	-0.011
Gas Heat with no AC	-0.011
Electric Resistance Heat with AC	0
Electric Resistance Heat with no AC	0
Heat Pump	0
Heating/Cooling Unknown ³⁰²	-0.0063

²⁹⁹ Refer to Appendix I, Arkansas TRM Volume 3.

³⁰⁰ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. <u>http://www.eia.gov/consumption/residential/data/2009/</u>.

 $^{^{301}}$ The IEF_G factor was weighted by those lamps installed in and out of conditioned space, and thus should be applied to all lamps Refer to Appendix I, Arkansas TRM Volume 3

³⁰² Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. http://www.eia.gov/consumption/residential/data/2009/.

2.5.2 Omni-Directional LEDs

Measure Description

This measure provides a method for calculating savings for replacing an incandescent or halogen lamp with an omni-directional LED in residential applications. The applicable lamp types that are omni-directional LEDs are the following shapes, using ANSI C79.1-2002 nomenclature: A, BT, P, PS, S, and T.³⁰³

Baseline

The baseline equipment is assumed to be a general service lamp (GSL) compliant with, and as defined by, Tier 2 of the EISA 2007 regulations. A Final Rule issued by the DOE effective July 8, 2022 requires efficacy of 45 lumens per watt for GSLs and expands the definition of GSLs to encompass a wide range of lamp types.³⁰⁴

Enforcement for the new standards is effective for manufacturers on January 1, 2023 and for retailers on July 1, 2023. Retailers may be expected to sell backstock of lamps that do not meet the new EISA requirement up to the July 1, 2023 enforcement date. For PY2023, energy savings for this measure may be calculated using the prior baseline for projects installed before July 1, 2023. For projects installed on or after July 1, 2023, energy savings should be calculated using the baseline from the new EISA requirements.

In the case of early retirement of in-situ lamps meeting the pre-2023 standards, the in-situ baseline may be used if photographic verification is captured.

Efficiency Standard

Omni-directional LEDs must be a standard ENERGY STAR® qualified omni-directional LED.

Exceptions to the ENERGY STAR® label are allowed for unlisted lamps, fixtures or other lighting-related devices that have been submitted to ENERGY STAR® for approval. If the lamp or fixture does not achieve ENERGY STAR® approval within the Arkansas DSM program year, however, then the lamp or fixture would have to be immediately withdrawn from the program.

Estimated Useful Life (EUL)

The estimated useful life for indoor and outdoor LED omni-directional lamps is equal to the technical measure life of 12.5 years.³⁰⁵

Daily Hours of Use

These deemed savings assume an average daily use of 2.17 blended³⁰⁶ hours for indoor/outdoor applications.

http://www.energystar.gov/ia/partners/product_specs/program_reqs/Integral_LED_Lamps_Program_Requirements.pdf.

³⁰³ According to ENERGY STAR®, omni-directional LED products "…shall have an even distribution of luminous intensity (candelas) within the 0° to 135° zone (vertically axially symmetrical). Luminous intensity at any angle within this zone shall not differ from the mean luminous intensity for the entire 0° to 135° zone by more than 20%. At least 5% of total flux (lumens) must be emitted in the 135°-180° zone. Distribution shall be vertically symmetrical as measured in three vertical planes at 0°, 45°, and 90°."

³⁰⁴ <u>https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=4</u>

³⁰⁵ The EUL value was updated based on the findings from the Arkansas Shelf-Stocking Study completed in July 2021.

³⁰⁶ Residential light logging study by Cadmus - Entergy Arkansas, Inc. 2013 EM&V Evaluation Report.

Coincidence Factor

Cadmus performed a residential light logging study in 2013 in Arkansas on behalf of EAI. This study estimated a mean coincidence factor of 10 percent for non-holiday summer weekdays from 3:00 p.m. to 7:00 p.m.³⁰⁷ Residential omni-directional LEDs installed outdoors are not expected to be on during summer peak demand hours. Outdoor omni-directional LEDs will have a coincidence factor of 0 percent.

Calculation of Savings

For retail (time of sale) programs, increased savings may be claimed based on sales to nonresidential customers.³⁰⁸ Based on a review of 23 utility programs across 10 states, 6.7 percent of installed lamps may be allocated to the commercial program. To implement, multiply the total number of fixtures by 6.7 percent and apply the savings methodologies described in the Commercial Lighting Efficiency measure. Since no building type will have been identified, apply the weighted average annual operating hours and coincidence factor based on a review of the building types that participating in commercial lighting programs during the current program year.

Calculate savings for the remaining 93.3 percent of fixtures using the residential savings calculations described below. If it is not possible to apply the commercial allocation strategy described above, a program may calculate savings for all fixtures using the residential savings calculations described below. This will result in a conservative estimate for upstream programs.

Note: This strategy should only be applied to retail (time of sale) programs. For all other programs, use the residential savings calculations exclusively.

Energy Savings

$$kWh_{savings} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times HOU \times ISR \times IEF_E$$
(165)

Where:

- W_{base} = Based on wattage equivalent of the lumen output of the purchased LED omni-directional lamp and the program year purchased/installed; for omni-directional LEDs, use the following base and post case wattages
- W_{post} = Wattage of LED purchased/installed. Use above table for post-wattages
- *HOU* = Average hours of use per year
- *ISR* = In Service Rate, or percentage of rebate units that get installed, to account for units purchased but not immediately installed
- IEF_E = Interactive Effects Factor to account for cooling energy savings and heating energy penalties; this factor also applies to outdoor and unconditioned spaces

³⁰⁷ Ibid.

³⁰⁸ Dimetrosky, S. et al, 2015, "Residential Lighting Evaluation Protocol – The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." January.

Minimum Lumens	Maximum Lumens	Incandescent EISA Tier 1 (W _{base}) (Before 7/1/2023)	EISA Tier 2 (W _{base}) (7/1/2023 and later)
310	749	29	$W_{base} = Lumens / 45$
750	1,049	43	Lumens/watt
1,050	1,489	53	Where:
1,490	2,600	72	Lumens = the rated lumen output
2,601	3,300	Exempt	of the lamp

Table 207: ENERGY STAR® Omni-Directional LEDs – EISA Baselines³⁰⁹

Table 208: ENERGY STAR® Omni-Directional LEDs – Average Hours of Use per Year

Installation Location	Hours
Indoor/Outdoor ³¹⁰	792.6

Table 209: ENERGY STAR® Omni-Directional LEDs – In-Service Rates

Program	ISR
Retail (Time of Sale) and Direct Install ³¹¹	0.97

Table 210: ENERGY STAR® Omni-Directional LEDs – Interactive Effects Factor for Cooling Energy Savings and Heating Energy Penalties

Heating Type	Interactive Effects Factor (IEF _E) ³¹²
Gas Heat with AC	1.10
Gas Heat with no AC	1.00
Electric Resistance Heat with AC	0.83
Electric Resistance Heat with no AC	0.73
Heat Pump	0.96

³⁰⁹ Note that ENERGY STAR® has assigned new incandescent equivalent wattage lumen bins for the ENERGY STAR® v2.0 lighting standards (see <u>https://www.energystar.gov/sites/default/files/ENERGY%20STAR %20Lamps%20V2_0%20Revised%20OCT-2016_1.pdf</u>, page 13)). This TRM maintains the EISA lumen bins for assigning baseline wattage. Future TRM iterations of the AR TRM, however, may incorporate these new lumen bins for baseline wattage estimates.

 $^{^{310}}$ Annual Hours of Use = 2.17 Average Daily Hours of Use * 365.25 Days per Year

³¹¹ Reflects best-available information in Arkansas for first-year installation rates, applying a four-year trajectory of installation and a discounting based on Uniform Methods Project residential lighting protocol. The first year ISR for retail is 92.6% based on 2014 Entergy evaluation for retail CFLs. In 2016, SWEPCO evaluated direct install LEDs and found a 95% first-year ISR, which results in similar result once trajectory and discounting are conducted.

³¹² Refer to Appendix I, Arkansas TRM Volume 3.

Heating/Cooling Unknown ³¹³	0.97
--	------

Summer Peak Demand Savings

$$kW_{savings} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times CF \times ISR \times IEF_D$$

Where:

CF = Summer Peak Coincidence Factor for measure

 IEF_D = Interactive Effects Factor to account for cooling demand savings and heating demand penalties; this factor also applies to outdoor and unconditioned spaces

Table 211: ENERGY STAR® Omni-Directional LEDs – Summer Peak Coincidence Factor

Lamp Location	CF
Indoor ³¹⁴	10%
Outdoor	0%

Table 212: ENERGY STAR® Omni-Directional LEDs – Interactive Effects for Cooling Demand Savings and Heating Demand Penalties

Heating Type	Interactive Effects Factor (IEF _D) ³¹⁵
Gas Heat with AC	1.29
Gas Heat with no AC	1.00
Electric Resistance Heat with AC	1.29
Electric Resistance Heat with no AC	1.00
Heat Pump	1.29
Heating/Cooling Unknown ³¹⁶	1.25

(166)

³¹³ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data.

http://www.eia.gov/consumption/residential/data/2009/.

³¹⁴ Residential light logging study by Cadmus - Entergy Arkansas, Inc. 2013 EM&V Evaluation Report.

³¹⁵ Refer to Appendix I, Arkansas TRM Volume 3.

³¹⁶ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. <u>http://www.eia.gov/consumption/residential/data/2009/</u>.

Heating Penalty for Natural Gas Heated Homes

$$Therms_{penalty} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times HOU \times ISR \times IEF_G$$
(167)

Where:

 IEF_G = Interactive Effects Factor to account for gas heating penalties (Δ therm/kWh); this factor also applies to outdoor and unconditioned spaces

Note that the interactive effects for demand (kW), energy (kWh) and natural gas (therms) should be calculated for all programs and installations of lamps covered by this measure, including single fuel, electric-only programs.

Table 213: ENERGY STAR® Omni-Directional LEDs – Interactive Effects for Gas Hea	ating Penalties
---	-----------------

Heating Type	Interactive Effects Factor (IEF _G) ³¹⁷
Gas Heat with AC	-0.011
Gas Heat with no AC	-0.011
Electric Resistance Heat with AC	0
Electric Resistance Heat with no AC	0
Heat Pump	0
Heating/Cooling Unknown ³¹⁸	-0.0063

³¹⁷ Refer to Appendix I, current Arkansas TRM Volume 3

³¹⁸ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. <u>http://www.eia.gov/consumption/residential/data/2009/</u>.

2.5.3 Indoor/Outdoor Linear Fluorescents

Measure Description

This measure provides a method for calculating savings for replacing indoor/outdoor linear fluorescents or outdoor high-intensity discharge (HID) lamps with a T5 or T8 indoor/outdoor linear fluorescent lamp and ballast combination.

Baseline

For indoor/outdoor linear fluorescents, the baseline equipment will be an indoor/outdoor electronic T8 or T12 linear fluorescent or an outdoor HID lamp. As a result of increased federal efficiency standards for general service fluorescent lamps, as published in the Energy Policy Act (EPAct) of 2005, 4-foot and 8-foot T12s and 2-foot U-Shaped T12s are no longer an eligible baseline. If these types of fixtures are replaced, an assumed electronic T8 baseline should be used in place of the existing T12 equipment. T12 fixtures not specified above will remain an eligible baseline technology.

Efficiency Standard

For indoor/outdoor linear fluorescents, the replacement lamp and ballast combination should be a T5 or T8 lamp or ballast combination.

Estimated Useful Life (EUL)

The measure life for indoor/outdoor linear fluorescents is 15 years.³¹⁹

Daily Hours of Use

These deemed savings assume an average daily use of 2.17 blended³²⁰ hours for indoor/outdoor applications.

Coincidence Factor

In California's CFL Metering Study, seasonal and hourly use profiles indicate that during the summer months, an average of 9% of residential CFLs installed indoors may be expected to be operating on summer weekdays between the hours of 1500-1900.³²¹ This value will be used for linear fluorescents.

Residential linear fluorescent fixtures installed outdoors are not expected to be on during summer peak demand hours and will have a coincidence factor of 0%.

³¹⁹ DEER. "EUL/RUL Values." 2008

³²⁰ Residential light logging study by Cadmus - Entergy Arkansas, Inc. 2013 EM&V Evaluation Report.

 ³²¹ KEMA, *CFL Metering Study.*, 2005. Prepared for Pacific Gas & Electric (PG&E), San Diego Gas & Electric (SDG&E), and Southern California Edison (SCE) February.
 24.http://www.calmac.org/publications/2005 Res CFL Metering Study Final Report.pdf.

Calculation of Deemed Savings

Energy Savings

$$kWh_{savings} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times HOU \times ISR \times IEF_E$$
(168)

Where:

 W_{base} = Baseline lamp wattage of equivalent lumens; use wattages specified in Appendix E

 W_{post} = Actual wattage of linear fluorescent lamp and ballast combination that is purchased/installed

HOU = Average hours of use per year

ISR = In Service Rate, or percentage of rebate units that get installed, to account for units purchased but not immediately installed = 1.0 (default)³²²

Table 214: Residential Lighting Efficiency – Linear Fluorescents Average Hours of Use per Year

Installation Location	Hours
Indoor/Outdoor ³²³	792.6

 IEF_E = Interactive Effects Factor to account for cooling energy savings and heating energy penalties; this factor also applies to outdoor and unconditioned spaces

 Table 215: Residential Lighting Efficiency – Linear Fluorescents Interactive Effects for Cooling Energy Savings and Heating Energy Penalties

Heating Type	Interactive Effects Factor (IEF _E) ³²⁴
Gas Heat with AC	1.10
Gas Heat with no AC	1.00
Electric Resistance Heat with AC	0.83
Electric Resistance Heat with no AC	0.73
Heat Pump	0.96
Heating/Cooling Unknown ³²⁵	0.97

³²² Because this measure requires the installation of a T8 or T5 ballast, assume that 100% of the measure is installed immediately.

³²³ Annual Hours of Use = 2.17 Average Daily Hours of Use * 365.25 Days per Year

³²⁴ Refer to Appendix I, Arkansas TRM Version 8.1 Volume 3.

³²⁵ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. <u>http://www.eia.gov/consumption/residential/data/2009/</u>.

Summer Peak Demand Savings

$$kW_{savings} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times CF \times ISR \times IEF_D$$
(169)

Where:

CF = Summer Peak Coincidence Factor for measure

 IEF_D = Interactive Effects Factor to account for cooling demand savings; this factor also applies to outdoor and unconditioned spaces

 Table 216: Residential Lighting Efficiency – Linear Fluorescents Summer Peak Coincidence Factor

Bulb Location	CF
Indoor ³²⁶	10%
Outdoor	0%

Table 217: Residential Lighting Efficiency – Linear Fluorescents Interactive Effects Factor for Cooling Demand Savings

Heating Type	Interactive Effects Factor (IEF _D) ³²⁷
Gas Heat with AC	1.29
Gas Heat with no AC	1.00
Electric Resistance Heat with AC	1.29
Electric Resistance Heat with no AC	1.00
Heat Pump	1.29
Heating/Cooling Unknown ³²⁸	1.25

³²⁶ Residential light logging study by Cadmus - Entergy Arkansas, Inc. 2013 EM&V Evaluation Report.

³²⁷ Refer to Appendix I, Arkansas Volume 3.

³²⁸ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. <u>http://www.eia.gov/consumption/residential/data/2009/</u>.

Heating Penalty for Natural Gas Heated Homes

$$Therms_{penalty} = \left(\frac{W_{base} - W_{post}}{1000}\right) \times HOU \times ISR \times IEF_G$$
(170)

Where:

 IEF_G = Interactive Effects Factor to account for gas heating penalties (Δ therm/kWh); this factor also applies to outdoor and unconditioned spaces

Note that the interactive effects for demand (kW), energy (kWh) and natural gas (therms) should be calculated for all programs and installations of lamps covered by this measure, including single fuel, electric-only programs.

 Table 218: Residential Lighting Efficiency – Linear Fluorescents Interactive Effects for Gas Heating Penalties

Heating Type	Interactive Effects Factor (IEF _G) ³²⁹
Gas Heat with AC	-0.011
Gas Heat with no AC	-0.011
Electric Resistance Heat with AC	0
Electric Resistance Heat with no AC	0
Heat Pump	0
Heating/Cooling Unknown ³³⁰	-0.0063

 $^{^{329}}$ The IEF_G factor was weighted by those lamps installed in and out of conditioned space, and thus should be applied to all lamps Refer to Appendix I, Arkansas Volume 3

³³⁰ Weighted average based on Residential Energy Consumption Survey (RECS) 2009 data. <u>http://www.eia.gov/consumption/residential/data/2009/</u>.

2.6 Other

2.6.1 Advanced Power Strips

Measure Description

This measure involves the installation of a multi-plug Advanced Power Strip (APS) that has the ability to automatically disconnect specific loads depending on the power draw of a specified or "master" load.

In the case of Tier 1 APS, a load sensor in the strip disconnects power from the control outlets when the master power draw is below a certain threshold. This feature allows for a reduction of power draw from peripheral consumer electronics, which usually maintain some load even when in the off or standby position. Thus, when the master device (i.e. television) is turned off, power supply is cut to other related equipment (i.e., set top boxes, speakers, video game consoles, etc.).

Tier 2 APS use an external sensor paired with a configurable countdown timer to manage both active and standby power loads for controlled devices in a complete system. Tier 2 APS may operate either with or without a master control socket. Those without a master control socket sense power of all devices connected to the controlled sockets; those with a master control socket sense power for the device connected to the control socket. The external sensor of a Tier 2 APS may utilize an infrared-only sensor, or it may utilize a "multi-sensor" which detects both infrared (IR) remote control signals and motion to determine device inactivity and deliver additional savings as compared to a Tier 1 APS device. Both versions of external sensor use IR filtering to prevent inappropriate switching events which may have otherwise resulted from natural interference such as sunlight or CFL light bulbs. Residential deemed savings were developed based on reported plug load electricity consumption and hourly use data. A set of home office and home entertainment system peripheral equipment and related performance data are presented in the following table. "Daily Standby Hours" and "Daily Off Hours" represent the average number of hours the device is left in standby or off mode. For each device, a weighted watt per hour value is calculated based on projected watts consumed in either standby or off mode.

There are three deemed savings paths available for Tier 1: Savings can be estimated 1) by complete system type (Home Entertainment or Home Office), 2) per APS for an average complete system if the type is unknown, or 3) by individual peripheral device(s). Tier 2 deemed savings are determined using the average component uses for a complete system and an energy reduction percentage.

This measure applies to all residential applications.

Arkansas TRM Version 10.0 Vol. 2

System Type	Peripheral Device	Daily Standby Hours	Daily Off Hours	Standby Power (W)	Off Power (W)	Weighted W/hr.	APS Hours of Use
Home Entertainment	Audio Equipment: AV Receiver	0.0	18.0	19.2	3.1	3.1	6,570.0
Home Entertainment	Audio Equipment: Speakers	0.0	18.0	3.0	0.0	0.0	6,570.0
Home Entertainment	Audio Equipment: Subwoofer	0.0	18.0	7.8	0.6	0.6	6,570.0
Home Entertainment	Media Player: Blu-Ray	2.5	20.8	7.0	0.1	0.8	8,504.5
Home Entertainment	Media Player: DVD	2.5	20.8	5.0	2.0	2.3	8,504.5
Home Entertainment	Media Player: DVD-R	2.5	20.8	7.0	3.0	3.4	8,504.5
Home Entertainment	Media Player: DVD/VCR	2.5	20.4	8.0	4.0	4.4	8,358.5
Home Entertainment	Media Player: VCR	2.2	21.4	6.0	3.0	3.3	8,614.0
Home Entertainment	Set-Top Box: Cable	0.0	16.5	25.0	16.0	16.0	6,022.5
Home Entertainment	Set-Top Box: Cable with DVR	0.0	16.5	45.0	43.0	43.0	6,022.5
Home Entertainment	Set-Top Box: Satellite	0.0	15.1	10.0	15.0	15.0	5,511.5
Home Entertainment	Set-Top Box: Satellite with DVR	0.0	15.1	27.0	28.0	28.0	5,511.5
Home Entertainment	Set-Top Box: Stand Alone DVR	0.0	18.3	27.0	27.0	27.0	6,679.5
Home Entertainment	Television: CRT	0.0	18.7	5.3	1.6	1.6	6,825.5
Home Entertainment	Television: LCD	0.0	18.7	2.2	0.5	0.5	6,825.5
Home Entertainment	Television: Plasma	0.0	18.7	0.9	0.6	0.6	6,825.5
Home Entertainment	Television: Projection	0.0	18.7	4.4	7.0	7.0	6,825.5
Home Entertainment	Video Game Console: Nintendo Wii	1.5	21.4	10.5	1.9	2.5	8,358.5

Table 219: Peripheral Watt Consumption Breakdown³³¹

³³¹ Hours Standby, Hours Off, and Watt Consumption derived from: New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report, "August 2011.

Arkansas TRM Version 10.0 Vol. 2

System Type	Peripheral Device	Daily Standby Hours	Daily Off Hours	Standby Power (W)	Off Power (W)	Weighted W/hr.	APS Hours of Use
Home Entertainment	Video Game Console: PlayStation 2	1.5	21.4	17.0	0.2	1.3	8,358.5
Home Entertainment	Video Game Console: PlayStation 3	1.5	21.4	152.9	1.1	11.0	8,358.5
Home Entertainment	Video Game Console: XBOX	1.5	21.4	68.0	2.0	6.3	8,358.5
Home Entertainment	Video Game Console: XBOX 360	1.5	21.4	117.5	3.1	10.6	8,358.5
Home Office	Computer: Desktop	4.1	16.7	11.6	3.3	4.9	7,592.0
Home Office	Computer: Laptop	4.1	16.7	7.6	4.4	5.0	7,592.0
Home Office	Computer Monitor: CRT	2.4	16.5	7.6	1.5	2.3	6,898.5
Home Office	Computer Monitor: LCD	2.4	16.5	1.9	1.1	1.2	6,898.5
Home Office	Computer Speakers	0.0	18.7	3.7	2.3	2.3	6,825.5
Home Office	Copier	0.0	23.5	2.8	1.5	1.5	8,577.5
Home Office	Fax Machine: Inkjet	0.5	23.3	6.0	5.3	5.3	8,687.0
Home Office	Fax Machine: Laser	0.5	23.3	5.3	2.2	2.3	8,687.0
Home Office	Printer: Inkjet	4.4	19.5	2.5	1.3	1.5	8,723.5
Home Office	Printer: Laser	4.4	19.5	9.0	3.3	4.3	8,723.5
Home Office	Scanner	0.0	23.5	3.6	2.1	2.1	8,577.5

Baseline & Efficiency Standard

For both Tier 1 and Tier 2 APS, the baseline case is the absence of an APS, where peripherals are plugged in to a traditional surge protector or wall outlet.

The efficiency standard case for Tier 1 is the presence of an APS, with all peripherals plugged into the APS.

The efficiency standard case for Tier 2 APS includes control of at least 2 audio visual devices.

Estimated Useful Life (EUL)

For Tier 1 and Tier 2 advanced power strips, the measure life is 10 years.³³²

Calculation of Deemed Savings

Energy Savings

Tier 1

Energy and demand savings for a 5-plug APS in use in a home office or for a home entertainment system are calculated where kWh saved are summed for all peripheral devices:

$$\Delta kWh = \frac{\sum(W_i \times HOU_i)}{1000}$$

Where:

W = Weighted watts per hour consumed in standby/off mode for each peripheral device (Table 219)

HOU = hours per year controlled by APS (Table 219)

1,000 =Conversion constant from watts to kilowatts

ISR = In-Service Rate, the percentage of units that are installed by program delivery (

(171)

³³² New York State Energy Research and Development Authority (NYSERDA), *Advanced Power Strip Research Report*, p. 30. August 2011.

Table 220)

Table 220: APS Tier 1 In Service Rates by Delivery Type ³³³	Table 220:	APS Tier 1	In Service	Rates by	Delivery Type ³³³
--	-------------------	-------------------	------------	----------	-------------------------------------

Delivery Type	In Service Rate
Direct Install	100%
Kit Program/Giveaway ³³⁴	67%
Time of Sale ³³⁵	83%

Tier 2

The energy and demand savings for Tier 2 APS are obtained using the average household entertainment center and home office component usages, multiplied by an energy reduction percentage.

$$\Delta kWh_{Entertainment \ Center} = kWh_{TV} \times ERP \times ISR$$
(172)

$$\Delta kWh_{Computer \ System} = kWh_{Comp} \times ERP \times ISR$$

$$\Delta kWh_{Unspecified Use} = \frac{kWh_{TV} + kWh_{Comp}}{2} \times ERP \times ISR$$
(173)

Where:

- kWh_{TV} = Average annualized energy consumption of Tier 2 qualifying TV systems, default value of 602.8³³⁶
- kWh_{Comp} = Average annualized energy consumption of Tier 2 qualifying computer systems, default value of 197.9³³⁷
- ISR = In-Service Rate, the percentage of units rebated that are installed, default value of 0.83^{338}
- ERP = Energy Reduction Percentage of qualifying Tier 2 APS product range, estimated at an average of 51%³³⁹

337 ibid.

(174)

³³³ AR PY2023 EM&V Annual Report findings from EAL, OG&E and SWEPCO. Evaluator findings included field verification, desk reviews and participant surveys.

³³⁴ NMR Group, Inc. *RLPNC 17-4 and 17-5: Products Impact Evaluation of In-service and Short-Term Retention Rates Study*, p. 7, Table 5: In-Service Rate (ISR) Comparison.

³³⁵ NMR Group, Inc. and Massachusetts Electric Program Administrators and Energy Efficiency Advisory Council Consultants 2018, *RLPNC 17-4 and 17-5: Products Impact Evaluation of In-service and Short-Term Retention Rates Study*, p. 7, Table 5: In-Service Rate (ISR) Comparison.

³³⁶ New York State Energy Research and Development Authority (NYSERDA) 2011, *Advanced Power Strip Research Report*, p. 30. August.

³³⁸ NMR Group, Inc. and Massachusetts Electric Program Administrators, *RLPNC 17-4 and 17-5: Products Impact Evaluation of In-service and Short-Term Retention Rates Study*, p. 7, Table 5: In-Service Rate (ISR) Comparison.

³³⁹ Average of ERP from NEEP Case Study: Tier 2 Advanced Power Strips and Efficiency Programs

Demand Savings

Tier 1

$$\Delta kW = \sum \frac{\Delta kWh_i}{HOU_i} \times CF$$
(175)

Where:

 ΔkWh = Annual energy savings (kWh) for each peripheral device (Table 219)

HOU = hours per year controlled by Tier 1 APS

CF = Coincidence Factor ³⁴⁰ = 0.80

Tier 2

$$\Delta kW = \frac{\sum \Delta kWh}{HOU} \times CF \tag{176}$$

Where:

 $\Delta kWh =$ Annual energy savings (kWh) for each system as calculated above

HOU = Number of hours of use during which the Tier 2 APS provides savings = 4,380³⁴¹

CF = Coincidence Factor ³⁴² = 0.80

³⁴⁰ Given an absence of empirical data sources, this assumption was based on typical TV/PC use patterns during the peak hour.

³⁴¹ Estimate based on assumption that approximately half of savings are during active hours (assumed to be 5.3 hrs/day, 1936 per year (NYSERDA 2011. "*Advanced Power Strip Research Report*")) and half during standby hours (8760-1936 = 6824 hours). The weighted average is 4380.

³⁴² Given an absence of empirical data sources, this assumption was based on typical television and computer use patterns in the home.

Deemed Savings Values

System Type	Peripheral Device	kW Savings	kWh Savings
Home Entertainment	Audio Equipment: AV Receiver	0.002	20.4
Home Entertainment	Audio Equipment: Speakers	0.000	0.0
Home Entertainment	Audio Equipment: Subwoofer	0.000	3.9
Home Entertainment	Media Player: Blu-Ray	0.001	7.1
Home Entertainment	Media Player: DVD	0.002	19.7
Home Entertainment	Media Player: DVD-R	0.003	29.2
Home Entertainment	Media Player: DVD/VCR	0.004	37.1
Home Entertainment	Media Player: VCR	0.003	28.3
Home Entertainment	Set-Top Box: Cable	0.013	96.4
Home Entertainment	Set-Top Box: Cable with DVR	0.034	259.0
Home Entertainment	Set-Top Box: Satellite	0.012	82.7
Home Entertainment	Set-Top Box: Satellite with DVR	0.022	154.3
Home Entertainment	Set-Top Box: Stand Alone DVR	0.022	180.3
Home Entertainment	Television: CRT	0.001	10.9
Home Entertainment	Television: LCD	0.000	3.4
Home Entertainment	Television: Plasma	0.000	4.1
Home Entertainment	Television: Projection	0.006	47.8
Home Entertainment	Video Game Console: Nintendo Wii	0.002	20.6
Home Entertainment	Video Game Console: PlayStation 2	0.001	10.9
Home Entertainment	Video Game Console: PlayStation 3	0.009	92.3
Home Entertainment	Video Game Console: XBOX	0.005	52.9
Home Entertainment	Video Game Console: XBOX 360	0.008	88.5
Home Office	Computer: Desktop	0.004	37.5
Home Office	Computer: Laptop	0.004	38.2
Home Office	Computer Monitor: CRT	0.002	15.7
Home Office	Computer Monitor: LCD	0.001	8.3
Home Office	Computer Speakers	0.002	15.7
Home Office	Copier	0.001	12.9
Home Office	Fax Machine: Inkjet	0.004	46.2
Home Office	Fax Machine: Laser	0.002	19.7

Table 221: Deemed Savings for Tier 1 Residential APS

System Type	Peripheral Device	kW Savings	kWh Savings
Home Office	Printer: Inkjet	0.001	13.3
Home Office	Printer: Laser	0.003	37.9
Home Office	Scanner	0.002	18.0
Home Entertainment	Whole System Average ³⁴³	0.030	252.2
Home Office	Whole System Average ³⁴⁴	0.008	82.5
Average APS	Whole System Average ³⁴⁵	0.019	167.4

³⁴³ Assuming Audio Equipment: AV Receiver, Media Player: Average, Set-Top Box: Average, and Video Game Console: Average. kW savings = $0.002 + [(0.001 + 0.002 + 0.003 + 0.004 + 0.003) \div 5] + [(0.013 + 0.034 + 0.012 + 0.022 + 0.022) \div 5] + [(0.002 + 0.001 + 0.009 + 0.005 + 0.008) \div 5] = 0.030$ kW; kWh savings = $20.4 + [(7.1 + 19.7 + 29.2 + 37.1 + 28.3) \div 5] + [(96.4 + 259.0 + 82.7 + 154.3 + 180.3) \div 5] + [(20.6 + 10.9 + 92.3 + 52.9 + 88.5) \div 5] = 252.2$ kWh.

³⁴⁴ Assuming Computer Monitor: LCD, Computer Speakers, Fax Machine: Average, and Printer: Average. kW savings = $0.001 + 0.002 + [(0.004 + 0.002) \div 2] + [(0.001 + 0.003) \div 2] = 0.008$ kW; kWh savings = $8.3 + 15.7 + [(46.2 + 19.7) \div 2] + [(13.3 + 37.9) \div 2] = 82.5$ kWh.

³⁴⁵ Average of Home Entertainment System and Home Office system averages. kW savings = $(0.030 + 0.008) \div 2 = 0.019$ kW; kWh savings = $(252.2 + 82.5) \div 2 = 167.4$ kWh.

Example Calculation for Tier 2 Power Strip

 $\Delta kWh_{Entertainment \ Center} = kWh_{TV} \times \ ERP \times ISR = 602.8 \ \times 0.51 \times 1.0 = 307.4 \ kWh$

$$\Delta kW = \frac{\sum \Delta kWh}{HOU} \times CF = \left(\frac{307.4}{4,380}\right) \times 0.80 = 0.056 \ kW$$

Table 222: Deemed Savings for Tier 2 Residential APS

System Type	kW Savings	kWh Savings
Entertainment Center	0.056	307.4
Computer System	0.018	100.9
Unspecified Usage	0.037	204.2

2.6.2 Pool Pumps

Measure Description

This measure involves the replacement of a single speed or dual speed pool pump with an ENERGY STAR® certified variable speed or multi-speed pool pump. This measure applies to all residential applications; however, pools that serve multiple tenants in a common area are not eligible for this measure.

Multi-speed pool pumps are an alternative to variable speed pumps. The multi-speed pump uses an induction motor that is basically two motors in one, with full-speed and half-speed options. Multi-speed pumps may enable significant energy savings. However, if the half-speed motor is unable to complete the required water circulation task, the larger motor will operate exclusively. Having only two speed-choices limits the ability of the pump motor to fine-tune the flow rates required for maximum energy savings.³⁴⁶ Therefore, only variable speed pumps are eligible for this measure.

Baseline and Efficiency Standards

The baseline equipment for early replacement retrofit projects is a single-speed residential pool pump. For replace-on-burnout or new construction projects, the baseline is a dual-speed residential pool pump meeting the Federal Standard effective July 19, 2021³⁴⁷.

The high efficiency equipment is a variable speed pump that is ENERGY STAR® certified. ENERGY STAR® products are defined by size class in hydraulic horsepower (hhp) with an associated weighted energy factor (WEF) efficiency level. For dual-speed and variable-speed pumps, WEF is determined by the pump performance on the energy factor (EF) at two operating points, one at high flow and the other at low flow.

³⁴⁶ Hunt, A. & Easley, S., 2012, "*Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings.*" Building America Retrofit Alliance (BARA), U.S. U.S. DOE. May/. http://www.nrel.gov/docs/fy12osti/54242.pdf.

³⁴⁷ Code of Federal Regulations. Review of Title 10, Chapter II, Subchapter D, Part 431, Subpart Y, 431.465 f). ECFR. September 19, 2022. <u>https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-Y</u>.

Pump Sub-Type	Size Class	Federal Standard (Effective 7/19/2021)	ENERGY STAR Version 3.0 (Effective 7/19/2021)
Self Priming (Inground) Pool Pumps	Extra Small (hhp ≤ 0.13)	WEF ≥ 5.55	WEF ≥ 13.40
	Small (hhp > 0.13 to < 0.711)	$WEF \ge -1.30 \text{ x In (hhp)} + 2.90$	$WEF \ge -2.45 \text{ x In}$ (hhp) + 8.40
	Standard (hhp≥ 0.711)	WEF \ge -2.30 x In (hhp) + 6.59	$WEF \ge -2.45 \text{ x In}$ (hhp) + 8.40
Non-Self Priming (Aboveground) Pool Pumps	Extra Small (hhp \leq 0.13)	WEF ≥ 4.60	WEF \geq 4.92
	Standard Size (hhp > 0.13)	$WEF \ge -0.85 \text{ x In (hhp)} + 2.87$	$WEF \ge -1.00 \text{ x In}$ $(hhp) + 3.85$

 Table 223: Baseline and Efficient Criteria for Pool Pumps

Estimated Useful Life (EUL)

The estimated useful life for this measure is 10 years.³⁴⁸

Deemed Savings Values

Deemed savings are per installed unit based on the pump horsepower for self priming (inground) and nonself priming (aboveground) pool pumps.

³⁴⁸ Database for Energy Efficient Resources (2014). http://www.deeresources.net/workpapers

	Early Replacement		Replace on Burnout (ROB) / N	
Pump HP	kW Savings	kWh Savings	kW Savings	kWh Savings
1.0 to < 1.5	0.49	2,733	0.027	382
>= 1.5 to <2	0.56	2,655	0.030	426
>= 2 to < 2.5	0.65	3,213	0.036	512
>= 2.5 to < 3	0.70	3,242	0.028	390
>= 3	0.86	4,109	0.022	313

 Table 224: ENERGY STAR® Self Priming Pool Pumps – Deemed Savings Values

Table 225: ENERGY STAR® Non-Self Priming Pool Pumps – Deemed Savings Values

Pump HP	Early Replacement		Replace on Bu N	
	kW Savings	kWh Savings	kW Savings	kWh Savings
<= 1.5	0.18	771.2	0.016	222
> 1.5	0.33	978.5	0.031	435

Calculation of Deemed Savings

Energy savings for this measure are shown below for variable speed pool pumps for early replacement or replace on burnout.

$$kWh_{Savings} = kWh_{conv} \text{ or } kWh_{ds} - kWh_{vs}$$
(177)

Where:

 kWh_{conv} = Conventional single-speed pool pump energy (kWh), baseline case for early replacement

 kWh_{ds} = Conventional dual-speed pool pump energy (kWh), baseline case for replace on burnout

 kWh_{vs} = ENERGY STAR® variable speed pool pump energy (kWh), efficient case

Algorithms to calculate the above parameters are defined as:

$$kWh_{conv} = \frac{PFR_{conv} \times 60 \times hours_{conv} \times PT \times days}{WEF_{conv} \times 1000}$$
(178)

$$kWh_{vs} = Wh_{vs,hs} + kWh_{vs,ls}$$

(179)

$$kWh_{vs,hs} = \frac{PFR_{vs,hs} \times 60 \times hours_{hs} \times PT \times days}{WEF_{vs} \times 1000}$$

$$kWh_{vs,ls} = \frac{PFR_{ls} \times 60 \times hours_{ls} \times PT \times days}{WEF_{vs} \times 1000}$$
(181)

$$PFR_{ls} = \frac{V_{pool}}{t_{turnover} \times 60}$$

(182)

$$kWh_{ds} = kWh_{ds,hs} + kWh_{ds,ls}$$

(183)

(184)

(185)

$$kWh_{ds,hs} = \frac{PFR_{ds,hs} \times 60 \times hours_{hs} \times PT \times days}{WEF_{ds} \times 1000}$$

$$kWh_{ds,ls} = \frac{PFR_{ls} \times 60 \times hours_{ls} \times PT \times days}{WEF_{ds} \times 1000}$$

Where:

 $kWh_{vs,hs}$ = ENERGY STAR® variable speed pool pump energy at high speed (kWh)

 $kWh_{vs,ls}$ = ENERGY STAR® variable speed pool pump energy at low speed (kWh)

 $kWh_{ds,hs}$ = Conventional dual-speed pool pump energy at high speed (kWh)

 $kWh_{ds,ls}$ = Conventional dual-speed pool pump energy at low speed (kWh)

60 =Constant to convert between minutes and hours

1,000 = Conversion constant from watts to kilowatts

Parameter	Description	Source
PFR _{conv}	Conventional single-speed pump flow rate (gal/min)	
		Table 227, Table 228
hours _{conv}	Conventional single-speed pump daily operating hours	
		Table 227, Table 228
EF _{conv}	Conventional single-speed pump energy factor (gal/W·hr)	
		Table 227, Table 228
PFR _{ds,hs}	Dual-speed pump, high speed flow rate	65 (inground)
		44 (aboveground)
WEF _{ds}	Dual-speed pump, weighted energy factor	
	Daar speed pamp, "eighted energy rates"	Table 227, Table 228
PFR _{vs,hs}	Variable speed pump, high speed flow rate	50 (inground)
		28 (aboveground)
PFR _{ls}	Dual-speed and variable speed, low speed flow rate	30.6 (inground)
111415		17 (aboveground)
WEF _{vs}	Variable speed pump, weighted energy factor	
		Table 227, Table 228
V_{pool}	Pool Volume (gallons)	22,000 (inground)
	(g)	7,540 (aboveground)
PT ³⁵⁰	Pool Turnovers per Day	1.2 (conv)
		1.0 (vs, ds)
hours _{hs}	Daily operating hours at high speed	2.0
hours _{1s}	Daily operating hours at low speed	10.0
t _{turnover}	Time to filter entire pool water	12.0
days	Operating Days per Year	365

 Table 226: Residential Pool Pumps Calculation Parameters³⁴⁹

³⁴⁹ Values from ENERGY STAR Pool Pump Calculator, dated 05/05/20 for inground pumps, Illinois TRM v9.0 for aboveground pumps. <u>https://basc.pnnl.gov/library/energy-star-pool-pump-calculator</u>

³⁵⁰ Pool turnover rate assumed at 1.2 for single-speed pumps and 1.0 for dual-speed and variable speed based on a review of other research efforts in California and the Regional Technical Forum (RTF).

Pump HP	hours _{conv}	PFR _{conv} (gal/min)	EF _{conv} (gal/W·h)	WEF _{ds} (gal/W·h)	WEF _{vs} (gal/W·h)
1.0 to < 1.5	4.7	76	2.5	6.8	8.7
>= 1.5 to < 2.0	4.1	78	2.3	6.7	8.9
>= 2.0 to < 2.5	4.1	89	2.3	6.5	9.3
>=2.5 to < 3.0	4.0	93	2.2	6.0	7.4
>= 3.0	4.0	102	2.0	6.1	7.1

Table 227: Self-Priming Conventional, Dual-Speed and Variable-Speed Pool Pumps Assumptions

 Table 228: Non-Self Priming Conventional, Dual-Speed and Variable-Speed Pool Pumps

 Assumptions³⁵¹

Pump HP	hours _{conv}	PFR _{conv} (gal/min)	WEF _{conv} (gal/W·h)	WEF _{ds} (gal/W·h)	WEF _{vs} (gal/W·h)
<= 1.5	4.2	36	2.5	4.6	4.92
> 1.5	3.0	50	2.1	2.57	4.2

Demand savings can be derived using the following equation for early replacement or replace-on-burnout. *For Early Replacement,*

$$kW_{Savings} = \left[\frac{kWh_{conv}}{hours_{conv}} - \left(\frac{kWh_{vs}}{hours_{hs} + hours_{ls}}\right)\right] \times \frac{CF}{Days}$$
(186)

For Replace-on-Burnout,

$$kW_{Savings} = \left[\frac{kWh_{ds} - kWh_{vs}}{hours_{hs} + hours_{ls}}\right] \times \frac{CF}{Days}$$
(187)

Where:

 $CF = \text{Coincidence factor}^{352} = 0.31$

³⁵¹ Assumptions for non-self priming pumps taken from Illinois TRM v9.0 and Regional Technical Forum workpapers on pool pumps.

³⁵² Southern California Edison (SCE) Design & Engineering Services, 2008., "Pool Pump Demand Response Potential, DR 07.01 Report." June 2008. Derived from Table 16 assuming a peak period of 2-6 PM.

2.6.3 Electric Vehicle Charging Systems (EV Chargers)

Measure Description

Electric passenger vehicles and plug-in hybrid vehicles use battery charging systems to convert AC source power into DC power required to charge the vehicle batteries. These charging systems vary in charging rate, and are categorized as:

- Level 1 (up to 16 Amps AC), which typically plugs into a standard 3-prong 120V outlet
- Level 2 (16 80 Amps AC), which operates on 240V split-phase power
- Level 3 (greater than 80 Amps AC), which operates on 480V 3-phase power.

Electric Vehicles have on-board transformers that can convert incoming AC power to DC power. If an EV Charger outputs DC power, the vehicle's on-board transformer is bypassed. EV Chargers with DC output are typically Level 3 chargers, and are not eligible for this measure. Most Level 1 and Level 2 chargers output AC power. All chargers will have standby power losses and operational power losses, but the loss rates can vary between chargers, the most efficient chargers having the lowest standby and operational losses. This measure is for the purchase and installation of Level 2 AC output chargers that exceed the efficiency standards outlined next.

Networked electric vehicle chargers are connected to the internet so they can be remotely monitored and controlled as part of a charging network. Networked chargers can be equipped to accept payments for charging and can store & transmit usage data, time of use, and other metrics and details. Some networked chargers also can be remotely controlled for time-of-day charging or for demand-limiting purposes.

Baseline and Efficiency Standards

The baseline conditions are a Level 2 AC output EV Charger (networked or non-networked) that meets the efficiency standards outlined in Table 229. The efficient condition is a Level 2 AC output EV Charger (networked or non-networked) with lower standby losses and a higher charging efficiency than what is outlined in Table 229, and/or is ENERGY STAR certified. In Table 229, "Standby Power Losses" refers to the energy consumption of the charger when it is not connected to a vehicle.

Performance Factor	Non-Networked	Networked
Standby Power Losses ³⁵³	< 3.70W	< 9.90W
Charging Efficiency ³⁵⁴	> 99%	> 99%

Table 229: EV Chargers – Baseline Efficiency Requirements

Estimated Useful Life (EUL)

The EUL for High Efficiency Electric Vehicle Chargers is 10³⁵⁵ years.

Deemed Savings Value

Table 230: Level 2 Vehicle Charger - Deemed Savings Values per Charger Port

	Non-Networked		Networked	
Vehicle Type	kWh savings	kW savings	kWh savings	kW savings
EV	13	0.001	50	0.005
PHEV	14	0.001	51	0.005

Calculation of Deemed Savings

Deemed demand and annual energy savings are based on travel statistics for drivers in the state of Arkansas, information from past electric vehicle studies, and Technical Reference Manuals published for other jurisdictions throughout the United States.

$$kWh_{savings_{standby}} = (8,760 - hours_{charge}) \times \frac{(Watts_{Standby_{Baseline}} - Watts_{Standby_{ES}})}{1,000}$$
(188)

 $kWh_{savin} \xrightarrow{charging} = kWh_{per mile} \times Miles_{per year} \times Percent_{L2} \times Percent_{electric} \\ \times \left(\frac{1}{Eff_{Baseline}} - \frac{1}{Eff_{ES}}\right)$ (189)

$$kWh_{savings} = \left(kWh_{savings_{standby}} + kWh_{savin \ charging}\right)$$
(190)

³⁵³ Deemed baseline Standby Power values from 2021 Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 9.0, Volume 3: Residential Measures, September 25, 2020.

³⁵⁴ 99% is the "Standard Model" Level 2 EVSE average efficiency from ENERGY STAR® Market and Industry Scoping Report: Electric Vehicle Supply Equipment, p. 11, September 2013.

³⁵⁵ Based on Northern Power and Conservation Council, Regional Technical Forum workbook for Level 2 Electric Vehicle Charger version 3.1. <u>https://rtf.nwcouncil.org/measure/level-2-electric-vehicle-charger</u>

$$kW_{savings} = kW_{Char} \quad _{Rate} \times CF \times \left(\frac{1}{Eff_{Baseline}} - \frac{1}{Eff_{ES}}\right) + (1 - CF) \times \frac{Watts_{Standby_{Baseline}} - Watts_{Standby_{ES}}}{1,000}$$

Where:

 $kWh_{per mile}$ = vehicle energy use per mile. (see Table 231)

hours_{char} = annual active charging hours =

$$\frac{Miles_{per year} \times Percent_{electric} \times kWh_{per mile}}{kW_{Charge Rate}} \times Percent_{L2}$$

(192)

(191)

 $Miles_{per vear}$ = annual miles driven by EV or PHEV. (see Table 231)

- $Percent_{electric}$ = percentage of vehicle travel done with electric power. (see Table 231)
- $Percent_{L2}$ = percent of vehicle charging done with purchased Level 2 Charger. (see Table 231)
- $kW_{Charge Rate}$ = average vehicle charging rate from Level 2 Charger. (see Table 231)
- $Watts_{Stand}$ = wattage draw of a baseline efficiency charging system when not actively charging, 9.9 for networked chargers, 3.7 for non-networked chargers.
- $Watts_{Standby_{ES}}$ = wattage draw of an energy efficient charging system when not actively charging, 5.5 for networked chargers, 3.44 for non-networked charger.
- $Eff_{Baseline}$ = charging efficiency of a baseline charging system. (see Table 231)
- Eff_{ES} = charging efficiency of an energy efficient charging system. (see Table 231)
- CF = Coincidence Factor. (see Table 231)
- 8,760 = number of hours in a year
- 1,000 =Conversion factor

Variable	Deemed Value
kWh _{Per Mile}	0.30^{356}
$kW_{Charge\ Rate}$	5.50 ³⁵⁷
Eff_{ES} (ENERGY STAR® charger efficiency)	99.5% ³⁵⁸
$Eff_{Baseline}$ (Baseline charger efficiency)	99.0%
CF	0.034359
$Percent_{L2}$	86% ³⁶⁰
Miles _{per year}	7,925 ³⁶¹ EVs 15,850 ³⁶² PHEVs
Percent _{electric}	100% EVs 55% ³⁶³ PHEVs

³⁵⁶ 8 U.S. Department of Energy, Fueleconomy.gov: The Official U.S. Government Source for Fuel Economy Information. <u>http://www.fueleconomy.gov/feg/evsbs.shtml</u>.

³⁵⁷ From Xcel Energy "Electric Vehicle Charging Station Pilot Evaluation Report", May 2015: "*Level 2 charging…could have an electric demand requirement between 3.3 and 7.7 kW during a 3 to 8-hour charging period.*" Midpoint of 5.5 kW assumed to be a reasonable average for this measure.

³⁵⁸ Average steady-state efficiency value from tested energy efficient Level 2 chargers in ENERGY STAR Market and Industry Scoping Report for Electric Vehicle Supply Equipment, September 2013.

³⁵⁹ From Xcel Energy "Electric Vehicle Charging Station Pilot Evaluation Report", May 2015, average charging kW between 3pm and 6pm on summer weekdays is approximately 0.19 kW per charger. With a charging rate of 5.5 kW, this equates to a coincidence factor of 0.034.

³⁶⁰ Assumption consistent with RTF characterization based on 2014 Idaho National Laboratory study.

³⁶¹ Burlig, Fiona, et al. "Low Energy: Estimating Electric Vehicle Electricity Use." NBER Working Paper Series, Feb. 2021, <u>http://www.nber.org/system/files/working_papers/w28451/w28451.pdf</u>. - Electric vehicle miles traveled are "…roughly half as large as official EV driving estimates used in regulatory proceedings…" Miles specified for average vehicle in Arkansas from U.S. DOT FHWA database (15,850 miles) multiplied by 0.5 to approximate EV miles per year.

³⁶² U.S. Department of Transportation Federal Highway Administration – average annual miles per vehicle for Arkansas. <u>www.fhwa.dot.gov/ohim/onh00/onh2p11.htm</u>

³⁶³ From "Data Sources and Assumptions for the Electricity Sources and Emissions Tool." *Alternative Fuels Data Center*, U.S. Department of Energy, <u>http://www.afdc.energy.gov/vehicles/electric emissions sources.html</u>. Percentage of PHEV annual miles driven on electricity is 55%, Estimated based on information in SAE J2841.

3. COMMERCIAL & INDUSTRIAL DEEMED SAVINGS MEASURES

3.1 Heating, Ventilation & Air Conditioning (HVAC) Measures

3.1.1 Boiler Cut-Out Controls

Measure Description

This measure involves the installation of boiler cutout controls, which automatically turn off the natural gas boiler and associated heating system when the outside air reaches a preset temperature. The measure could also include a timer to de-energize the boiler heating equipment based on time of day. There are controllers available that combine boiler reset and cutout controls in one controller.

Baseline and Efficiency Standards

An average baseline boiler combustion efficiency (E_c) of 80 percent is assumed for existing units. The 2012 Federal Standards (CFR 431.87) for boiler efficiency increased baseline boiler efficiency levels to between 77%-84% depending on size and application.³⁶⁴

The minimum efficiency requirements for this measure are clearly defined by the IECC 2009 standard. Refer to the Code Review Section below.

Estimated Useful Life (EUL)

According to the NYSERDA Natural Gas Database, the estimated useful life (EUL) is 20 years.

Measure/Technology Review

Several of the primary data sources reviewed for this effort contained information about boiler cut-out controls. A summary of the key resources is included in Table 232.

Table 232: Boiler Cut-Out Control – Review of Cut-out Information

Resource	Notes
NYSERDA ³¹	Combines boiler cut-out controls and supply water temperature reset as one measure. References life of measure used for analysis.

Note: Italic numbers are endnotes not footnote. (See Section 4.4 Commercial Measure References)

³⁶⁴ New efficiency standards for commercial boilers went into effect January 10, 2023. See <u>10 CFR 431.87(b)</u>. Existing equipment is not expected to reflect these new efficiency standards at this time.

Code Review

Based on review of the IECC 2009 Code, it is assumed the new buildings would have this measure as part of the controls system.

For new construction projects, the IECC 2009 states:

503.4.3 Hydronic systems controls. The heating of fluids that have been previously mechanically cooled and the cooling of fluids that have been previously mechanically heated shall be limited in accordance with Sections 503.4.3.1 through 503.4.3.3. Hydronic heating systems comprising multiple-packaged boilers and designed to deliver conditioned water or steam into a common distribution system shall include automatic controls capable of sequencing operation of the boilers. Hydronic heating systems comprising a single boiler and greater than 500,000 BTU/hr input design capacity shall include either a multi-staged or modulating burner.

503.3.2 Hydronic system controls. Hydronic systems of at least 300,000 British thermal units per hour (BTU/h) (87,930 W) design output capacity supplying heated water to comfort conditioning systems shall include controls that meet the requirements Section 503.4.3.

503.2.2 Equipment and system sizing. Heating and cooling equipment and system capacity shall not exceed the loads calculated in accordance with Section 503.2.1.

Exceptions: 1. Required standby equipment and systems provided with controls and devices that allow such systems or equipment to operate automatically only when the primary equipment is not operating. 2. Multiple units of the same equipment type with combined capacities exceeding the design load and provided with controls that have the capability to sequence the operation of each unit based on load.

503.4.3.4 Part load controls. Hydronic systems greater than or equal to 300,000 BTU/h (87,930 W) in design capacity supplying heated or chilled water to comfort conditioning systems shall include controls that have the capability to: 1. Automatically reset the supply water temperatures using zone return water temperature, building return water temperature, or outside air temperature as an indicator of building heating or cooling demand. The temperature shall be capable of being reset by at least 25 percent of the design supply-to-return water temperature difference; or 2. Reduce system pump flow by at least 50 percent of design flow rate, utilizing adjustable speed drive(s) on pump(s), multiple-staged pumps where at least one-half of the total pump horsepower is capable of being automatically turned off, control valves designed to modulate or step down, and close, as a function of load, or other approved means.

Calculation of Deemed Savings

Unit Electrical Measure Savings

Concerning the application of boiler cut-out control for electric boilers, no information was found concerning deemed savings values.

Unit Natural Gas Measure Savings

Most of the information available for this measure combines cut-out control with boiler reset. The available information does not separate boiler cutout and boiler reset, while estimating average annual energy savings. Nexant recommends a 1.7 percent savings of current use for boiler cut-out controls (CenterPoint Energy). As these savings estimates are based on a single reference, it is recommended that Arkansas work with early program participants to conduct actual pre- and post-measurement of energy use to verify the accuracy of these values.

Deemed annual natural gas savings for a boiler cut-out control project should be calculated by the following formula:

$$Therm_{savings} = Capacity \times EFLH_H \times \%Savings \times \frac{1}{Ec_{Base}} \times \frac{1}{100000}$$
(193)

Where:

Capacity = Rated equipment heating capacity, BTU/hr

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

 Ec_{Base} = Combustion efficiency for boiler, if unavailable, estimate efficiency to 80 percent

%*Savings* = Percent savings (CenterPoint Energy), 1.7 percent

100,000 = Conversion constant from BTU to therms

3.1.2 Boiler or Furnace Vent Dampers

Measure Description

This measure involves the installation of a vent damper, a mechanical device installed in the flue pipe of a fossil fuel-fired furnace or boiler. Its function is to reduce off-cycle heat loss from the boiler. During normal operation, the damper is open and exhaust gases are vented to atmosphere through the flue pipe or chimney. When the boiler or furnace is satisfied and de-energizes, the vent damper closes to reduce off-cycle loss through the flue. Most vent dampers use electric motor actuators to open and close the damper blade. They are normally designed to fail open in the case where electrical power is interrupted, and then the damper opens automatically. Also, some vent dampers have safety switches that prevent the boiler from energizing prior to the vent damper being fully open to the flue duct.

Baseline and Efficiency Standards

An average baseline boiler combustion efficiency (E_c) of 80 percent is assumed for existing units. The 2012 Federal Standards (CFR 431.87) for boiler efficiency increased baseline boiler efficiency levels to between 77%-84% depending on size and application.³⁶⁵

There are no minimum efficiency requirements for this measure as defined by the IECC 2009 standards.

Estimated Useful Life (EUL)

According to the NYSERDA Natural Gas Database, the estimated useful life (EUL) 12 years.

Measure/Technology Review

Several of the primary data sources reviewed for this effort contained information about vent dampers. A summary of the key resources is included in Table 233.

Resource	Notes	
ENERGY STAR® ¹²	Wise Rules for Industrial Energy Efficiency, September 2003 Wise Rule # 10 indicates that Stack dampers prevent heat from being pulled up the stack and can save 5% to 20% of a boiler's fuel use.	
NYSERDA ³¹	Indicates a 7% annual natural gas savings, 20 year useful life, 70% combustion baseline efficiency and various reference literature	

Note: Italic numbers are endnotes not footnote. (See Section 4.4 Commercial Measure References)

³⁶⁵ New efficiency standards for commercial boilers went into effect January 10, 2023. See <u>10 CFR 431.87(b)</u>. Existing equipment is not expected to reflect these new efficiency standards at this time.

Code Review

Based on review of the IECC 2009 Code, boiler flue control is not specified for new boilers; therefore, it is applicable to both new and retrofit boilers. The IECC 2009 Code requires units to have either power venting or a flue damper for new furnaces. A vent damper is an acceptable alternative to a flue damper for those furnaces in which combustion air is drawn from the conditioned space. Based on Code recommendation, the vent damper measure would only be applicable to a retrofit application.

Calculation of Deemed Savings

Unit Electrical Measure Savings

Electrical energy savings are not associated with this measure. An electric actuator will add about 3 watts of power to the boiler controls system.

Unit Natural Gas Measure Savings

Deemed annual natural gas savings for a boiler vent damper project should be calculated by the following formula:

$$Therm_{savings} = Capacity \times EFLH_H \times \%Savings \times \frac{1}{Ec_{Base}} \times \frac{1}{100000}$$
(194)

Where:

Capacity = Rated equipment heating capacity, BTU/hr

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

 Ec_{Base} = Combustion efficiency for boiler, if unavailable, estimate efficiency to 80 percent

%Savings = Percent savings (CenterPoint Energy), 7 percent

100,000 = Converts BTU to therms

3.1.3 Boiler Reset Controls

Measure Description

When considering fossil fuel-fired boilers, lowering hot water boiler control temperatures can save energy because less heat is stored in the boiler vessel and off-cycle heat losses are reduced. The measure includes installing a controller that changes boiler control temperature in response to outdoor air temperature. As the outdoor air temperature increases, the controller automatically resets the boiler control temperature downward to save energy. Some controllers offer a "heat purging" control that allows the pump to continue to operate when the boiler is cycled off, thus removing most of the available heat and supplying it to the heating system. Often, this measure can be combined with the boiler cutout control because modern controller equipment is capable of handling both measures through one controller.

Baseline and Efficiency Standards

An average baseline boiler combustion efficiency (E_c) of 80 percent is assumed for existing units. The 2012 Federal Standards (CFR 431.87) for boiler efficiency increased baseline boiler efficiency levels to between 77%-84% depending on size and application³⁶⁶. The minimum efficiency requirements for this measure are clearly defined by IECC 2009 standard. Refer to the Code Review Section below.

Estimated Useful Life (EUL)

According to the NYSERDA Natural Gas Database,³¹ the estimated useful life (EUL) is 20 years.

Measure/Technology Review

Several of the primary data sources reviewed for this effort contained information about boiler reset controls. A summary of the key resources is included in Table 234.

Resource	Notes		
Utah Natural Gas DSM Advisory Group ⁴⁸	Report: The Maximum Achievable Cost-Effective Potential for the Questar Gas Company Service Area, June 2004 – report indicates a maximum savings potential of 10% energy savings.		
NYSERDA ³¹	Combines boiler cutout controls and boiler water temperature reset as one measure. References life of measure used for analysis. The combination of both measures indicates a 10% energy savings potential.		
American Council for an Energy Efficient Economy (ACEEE) ⁶	ACEEE Emerging Technologies Report: Advanced Boiler Controls, September 2006 – as much as 10% of fuel used for a conventional boiler (existing system).		

Table 234: Boiler Reset Controls – Review of Boiler Reset Control Information	Table 234: Boiler	Reset Controls	- Review of Boiler	Reset Contro	I Information
---	-------------------	----------------	--------------------	--------------	---------------

Note: Italic numbers are endnotes not footnote. (See Section 4.4 Commercial Measure References)

³⁶⁶ New efficiency standards for commercial boilers went into effect January 10, 2023. See <u>10 CFR 431.87(b)</u>. Existing equipment is not expected to reflect these new efficiency standards at this time.

Code Review

Based on review of the IECC 2009 Code, it is assumed the new buildings would have this measure as part of the controls system.

For new construction projects, the IECC 2009 states:

503.4.3 Hydronic systems controls. The heating of fluids that have been previously mechanically cooled and the cooling of fluids that have been previously mechanically heated shall be limited in accordance with Sections 503.4.3.1 through 503.4.3.3. Hydronic heating systems comprising multiple-packaged boilers and designed to deliver conditioned water or steam into a common distribution system shall include automatic controls capable of sequencing operation of the boilers. Hydronic heating systems comprising a single boiler and greater than 500,000 BTU/h input design capacity shall include either a multi-staged or modulating burner.

503.3.2 Hydronic system controls. Hydronic systems of at least 300,000 BTU/h (87,930 W) in design output capacity supplying heated water to comfort conditioning systems shall include controls that meet the requirements Section 803.3.3.7.

503.2.2 Equipment and system sizing. Heating and cooling equipment and system capacity shall not exceed the loads calculated in accordance with Section 503.2.1.

Exceptions: 1. Required standby equipment and systems provided with controls and devices that allow such systems or equipment to operate automatically only when the primary equipment is not operating. 2. Multiple units of the same equipment type with combined capacities exceeding the design load and provided with controls that have the capability to sequence the operation of each unit based on load.

503.4.3.4 Part load controls. Hydronic systems greater than or equal to 300,000 BTU/h (87,930W) in design capacity supplying heated or chilled water to comfort conditioning systems shall include controls that have the capability to: 1. Automatically reset the supply water temperatures using zone return water temperature, building return water temperature, or outside air temperature as an indicator of building heating or cooling demand. The temperature shall be capable of being reset by at least 25 percent of the design supply-to-return water temperature difference; or 2. Reduce system pump flow by at least 50 percent of design flow rate utilizing adjustable speed drive(s) on pump(s), multiple staged pumps where at least one-half of the total pump horsepower is capable of being automatically turned off, control valves designed to modulate or step down, and close, as a function of load, or other approved means.

Calculation of Deemed Savings

Unit Electrical Measure Savings

Concerning the application of boiler reset control for electric boilers, no information was found concerning deemed savings values for the reduction of boiler off-cycle losses.

Unit Natural Gas Measure Savings

The majority information available for this measure combines reset control with boiler cutout. The available information does not separate boiler cutout and boiler reset, while estimating average annual energy savings. Nexant recommends a 3.8 percent savings of current use for boiler reset controls (CenterPoint Energy). As these savings estimates are based on a single reference, it is recommended that Arkansas work with early program participants to conduct actual pre- and post-measurement of energy use to verify the accuracy of these values.

Deemed annual natural gas savings for a boiler reset control project should be calculated by the following formula:

$$Therm_{savings} = Capacity \times EFLH_H \times \%Savings \times \frac{1}{Ec_{Base}} \times \frac{1}{100000}$$
(195)

Where:

Capacity = Rated equipment heating output capacity, BTU/hr

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

 Ec_{Base} = Combustion efficiency for boiler, if unavailable, estimate efficiency to 80 percent

%*Savings* = Percent savings (CenterPoint Energy), 3.8 percent

100,000 = Converts BTU to therms

3.1.4 Boiler Tune-Up

Measure Description

This measure includes a tune-up for an existing boiler so optimal burner combustion is maintained. The measure may include measuring combustion efficiency, adjusting air flow to reduce excessive stack temperatures, adjusting draft control, checking combustion air intake, cleaning the fire side heat exchanger and water tubes, and calibrating the controls.

Baseline and Efficiency Standards

An average baseline boiler combustion efficiency (E_c) of 80 percent is assumed for existing units. The 2012 Federal Standards (CFR 431.87) for boiler efficiency increased baseline boiler efficiency levels to between 77%-84% depending on size and application.³⁶⁷

There are no minimum efficiency requirements for boiler tune-ups.

Estimated Useful Life (EUL)

According to the NYSERDA Natural Gas Database,³¹ the estimated useful life (EUL) is two years.

Measure/Technology Review

Several of the primary data sources reviewed for this effort contained information about the boiler tune-up measure. A summary of the key resources is included in Table 235.

Resource	Notes	
NYSERDA ³¹	Life of tune-up 2 years, 70% baseline burner efficiency, 2% overall fuel savings	
XCEL Energy ⁵⁴	CEL Energy ⁵⁴ Reports and rebate application show minimum tune-up standards, recomment testing burners annually, report does not indicate minimum burner efficiency standard, tune-up is XCEL's most popular gas rebate	
ENERGY STAR® ¹²	Report: Wise Rules for Industrial Energy Efficiency, September 2003 – BOILER WISE RULE #4, A comprehensive tune-up with precision testing equipment to detect and correct excess air losses, smoking, unburned fuel losses, sooting, and high stack temperatures, can result in <i>boiler</i> fuel savings between 2-20%.	

Table 235: Boiler Tune-Up – Review of Boiler Tune-Up Information

Note: Italic numbers are endnotes not footnote. (See Section 4.4 Commercial Measure References)

Code Review

No applicable energy efficiency codes were found related to boiler tune-ups.

³⁶⁷ New efficiency standards for commercial boilers went into effect January 10, 2023. See <u>10 CFR 431.87(b)</u>. Existing equipment is not expected to reflect these new efficiency standards at this time.

Calculation of Deemed Savings

Unit Electrical Measure Savings

There are no electrical savings associated with this measure.

Unit Natural Gas Measure Savings

Deemed demand and annual natural gas savings for the boiler tune-up measure should be calculated by the following formulas:

$$Therm_{savings} = Capacity \times EFLH_H \times \%Savings \times \frac{1}{Ec_{Base}} \times \frac{1}{100000}$$

$$(196)$$

$$Therm per hr_{savings} = Capacity \times \%Savings \times \frac{1}{Ec_{Base}} \times \frac{1}{100000}$$

$$(197)$$

Where:

Capacity = Rated equipment output heating capacity, BTU/hr

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

 Ec_{Base} = Combustion efficiency for boiler, if unavailable, estimate efficiency to 80 percent

%*Savings* = Percent savings (NYSERDA Database), 2 percent

100,000 =Conversion constant from BTU to therms

3.1.5 Burner Replacement for Commercial Boilers

Measure Description

This measure includes replacing a natural gas burner with a more efficient burner. Replacement units include power burners that mechanically mix oxygen and gas for maximum efficiency. The measure only applies to existing boilers, since efficient burners now come as standard features with new boilers. Emissions standards are not considered in the burner efficiency analysis. Discussions with boiler manufacturers indicated environmental restrictions that could affect boiler efficiency negatively.

Baseline and Efficiency Standards

An average baseline burner combustion efficiency of 80 percent is assumed for existing units. The 2012 Federal Standards (CFR 431.87) for boiler efficiency increased baseline boiler efficiency levels to between 77%-84% depending on size and application.³⁶⁸

Estimated Useful Life (EUL)

According to the NYSERDA Natural Gas Database,³¹ the estimated useful life (EUL) is 12 years.

Measure/Technology Review

Several of the primary data sources reviewed for this effort contained information about boilers. A summary of the key resources is included in Table 236.

Resource	Notes		
NYSERDA ³¹	Life of burner 12 years, 70% baseline burner efficiency, 75% new burne efficiency, 7% natural gas savings, +5% efficiency increase,		
Lawrence Berkeley National Laboratory ²⁸	Report: Establishing an Energy Efficiency Recommendation for Commercial Boilers, Michelle J. Ware; report discusses boiler burner efficiency vs. overall boiler efficiency, reports that overall efficiency (E is approximately 3-5% lower than combustion efficiency (E _c)		
CenterPoint Energy, Minnesota ⁶⁰	Rebate requirements: Equal to or less than 5 MM BTU, fully modulating or 6-step modulation, Percent savings used in rebate not indicated, minimum burner efficiency not specified		
ENERGY STAR® ⁶⁹	Report: Wise Rules for Industrial Energy Efficiency, September 2003		
XCEL Energy ⁵³	Reports and rebate application show minimum installation and equipment standards to be eligible for rebate, recommend testing burners annually, report does not indicate minimum burner efficiency standard		

Table 236: Boiler Replacement for Commercial Boilers – Review of Burner Information

Note: Italic numbers are endnotes not footnote. (See Section 4.4 Commercial Measure References)

³⁶⁸ New efficiency standards for commercial boilers went into effect January 10, 2023. See <u>10 CFR 431.87(b)</u>. Existing equipment is not expected to reflect these new efficiency standards at this time.

Code Review

No applicable energy efficiency codes were found related to burner replacements.

Calculation of Deemed Savings

Unit Electrical Measure Savings

Electrical savings were not considered for this measure. If a new blower motor is installed, the size of the motor and constant vs. variable speed will affect the electrical component of the retrofit.

Unit Natural Gas Measure Savings

Deemed demand and annual natural gas savings for a burner replacement should be calculated by the following formulas:

$$Therm_{savings} = Capacity \times EFLH_H \times \%Savings \times \frac{1}{Ec_{Base}} \times \frac{1}{100000}$$

$$(198)$$

$$Therm/hr_{savings} = Capacity \times \%Savings \times \frac{1}{Ec_{Base}} \times \frac{1}{100000}$$

Where:

Capacity = Rated equipment output heating capacity, BTU/hr

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

 Ec_{Base} = Combustion efficiency of baseline burner, 80 percent

%*Savings* = Percent savings from NYSERDA database, 7 percent

100,000 =Conversion constant from BTU to therms

(199)

3.1.6 Central Air Conditioner and Heat Pump Tune-Up

Measure Description

This measure applies to central air conditioners and heat pumps. An AC tune-up, in general terms, involves checking, adjusting and resetting the equipment to factory conditions, such that it operates closer to the performance level of a new unit. For this measure, the service technician must complete the following tasks according to industry best practices:

Air Conditioner Inspection and Tune-Up Checklist³⁶⁹

- Inspect and clean condenser, evaporator coils, and blower.
- Inspect refrigerant level and adjust to manufacturer specifications.
- Measure the static pressure across the cooling coil to verify adequate system airflow and adjust to manufacturer specifications.
- Inspect, clean, or change air filters.
- Calibrate thermostat on/off set points based on building occupancy.
- Tighten all electrical connections, and measure voltage and current on motors.
- Lubricate all moving parts, including motor and fan bearings.
- Inspect and clean the condensate drain.
- Inspect controls of the system to ensure proper and safe operation. Check the starting cycle of the equipment to assure the system starts, operates, and shuts off properly.
- Provide documentation showing completion of the above checklist to the utility's representative.

Baseline and Efficiency Standards

The baseline is a system with demonstrated imbalances of refrigerant charge or if there are other pre-tuneup field measured inefficiencies.

After the tune-up, the equipment must meet airflow and refrigerant charge requirements. To ensure the greatest savings when conducting tune-up services, the eligibility minimum requirement for airflow is the manufacturer specified design flow rate, or 350 CFM/ton, if unknown. Also, the refrigerant charge must be within +/-3 degrees of target sub-cooling for units with thermal expansion valves (TXV) and +/-5 degrees of target super heat for units with fixed orifices or a capillary.

The efficiency standard, or efficiency after the tune-up, is assumed to be the manufacturer specified energy efficiency ratio (EER) of the existing central air conditioner or heat pump, or the measured or calculated system EER as detailed below.³⁷⁰

Effective January 1, 2023, HVAC minimum efficiencies apply a new M1 rating using the nomenclature of SEER2, EER2 and HSPF2. AHRI approved methods for conversion from EER and SEER through a

³⁶⁹ Based on ENERGY STAR® HVAC Maintenance Checklist.

http://www.energystar.gov/index.cfm?c=heat_cool.pr_maintenance.

³⁷⁰

multiplier of 0.95 and for HSPF, a multiplier of 0.85 (0.84 for packaged units).

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) for refrigerant charge correction is 10 years.

Calculation of Deemed Savings

Deemed peak demand and annual energy savings for unitary AC/HP tune-up should be calculated using the following formulas:

$$kW_{savings,C} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right) \times CF$$
(200)

$$kWh_{savings,C} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{EER_{pre}} - \frac{1}{EER_{post}}\right)$$
(201)

$$kWh_{savings,H} = CAP_H \times \frac{1}{1000} \times EFLH_H \times \left(\frac{1}{HSPF_{pre}} - \frac{1}{HSPF_{post}}\right)$$
(202)

$$kWh_{savings,AC} = kWh_{savings,C}$$

(203)

(204)

$$kWh_{savings,HP} = kWh_{savings,C} + kWh_{savings,H}$$

Where:

- CAP_{C} = Rated or calculated equipment cooling capacity (BTU/hr)
- CAP_H = Rated or calculated equipment heating capacity (BTU/hr)
- 1,000 = Conversion constant to convert from watts to kilowatts
- EER_{pre} = Calculated or measured efficiency of the equipment for cooling before tune-up, Equation(205)
- EER_{post} = Nameplate efficiency of the existing equipment for cooling; if unknown, use default EER value from Table 239 and Table 240.

Note: Site measurements may be substituted for $EER2_{pre}$ and $EER2_{post}$, providing that the measurements are taken on the same site visit and under similar operating conditions using reliable, industry accepted techniques. If onsite measurements are used to measure savings for measures other than refrigerant charge, then the implementer should use an EUL of three years.

 $HSPF_{pre}$ = Calculated or measured efficiency of the equipment for heating before tune-up

 $HSPF_{post}$ = Nameplate, measured or calculated efficiency of the existing equipment for heating; if unknown, use default HSPF value from Table 241.

CF = Coincidence Factor (

Table 495)

 $EFLH_{C}$ = Equivalent full-load cooling hours (Table 497)

 $EFLH_{H}$ = Equivalent full-load heating hours (Table 498)

There are two methods for calculating system pre and post efficiencies as described below:

Method 1: Change of efficiency based on change in system charge

In method 1, the efficiency improvement resulting from the refrigerant charge adjustment depends on the pre-adjustment refrigerant charge. This method may be used for air conditioners and heat pumps operating in cooling mode.

$$EER_{pre} = (1 - EL) \times EER_{post}$$
(205)

Where:

 EER_{pre} = Calculated efficiency of the cooling equipment before tune-up

- EER_{post} = Nameplate efficiency of the existing equipment for cooling; if unknown, use default EER value from Table 239 and Table 240.
- EL = Efficiency Loss (Fixed Orifice: Table 237; TXV: Table 237) determined by averaging reported efficiency losses from multiple studies.^{371,372,373,374,375} Interpolation of the efficiency loss values presented is allowed. Extrapolation is not allowed.

³⁷¹ Architectural Energy Corporation, managed by New Buildings Institute. "Small HVAC System Design Guide." Prepared for the California Energy Commission. October 2003. Figure 11.

³⁷² Davis Energy Group. "HVAC Energy Efficiency Maintenance Study," California Measurement Advisory Council (CALMAC). December 29, 2010. Figure 14.

³⁷³ Proctor Engineering Group. "Innovative Peak Load Reduction Program CheckMe! Commercial and Residential AC Tune-Up Project." California Energy Commission. November 6, 2003. Table 6-3.

³⁷⁴ Proctor Engineering Group. PEG Tune-Up Calculations spreadsheet.

³⁷⁵ Pennsylvania Technical Reference Manual (TRM). June 2012. Measure 3.3.2, Table 3-96.

% Charged	EL
<u>≤</u> 70	0.37
75	0.29
80	0.20
85	0.15
90	0.10
95	0.05
100	0.00
≥120	0.03

Table 237: Efficiency Loss Percentage by Refrigerant Charge Level (Fixed Orifice)

Table 238: Efficiency Loss Percentage by Refrigerant Charge Level (TXV)

% Charged	EL
<u><</u> 70	0.12
75	0.09
80	0.07
85	0.06
90	0.05
95	0.03
100	0.00
<u>≥</u> 120	0.04

Table 239: Default Air Conditioner EER per Size Category³⁷⁶

Size Category (BTU/hr)	Default EER ³⁷⁷
< 65,000	11.8
\geq 65,000 and < 135,000	11.0
\geq 135,000 and < 240,000	10.8

³⁷⁶ Code specified SEER or EER value from ASHRAE 90.1-2010 (efficiency value effective January 1, 2015)

³⁷⁶ Code specified SEER or EER value from 2013 Addenda to ASHRAE 90.1-2010 (efficiency value effective January 1, 2015 for units < 65,000 Btu/hr and prior to January 1, 2010 for units $\ge 65,000$ Btu/hr).

³⁷⁷ SEER values converted to EER using EER = $-0.02 \times \text{SEER}^2 + 1.12 \times \text{SEER}$. National Renewable Energy Laboratory (NREL). "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. http://www.nrel.gov/docs/fy11osti/49246.pdf

\geq 240,000 and < 760,000	9.8
≥760,000	9.5

Method 2: Calculation of savings based on pre or pre and post measurement of system efficiency, and age of equipment

In method 2, direct site measurements of EER pre and post values are used.

Pre and post EER measurements should be conducted and the measurements should be taken on the same site visit and under similar operating conditions using reliable, industry accepted techniques.

If on-site measurements are used to determine savings for improvements other than refrigerant charge, then the implementer should use an EUL of three years.

When using this approach, the system capacity (CAPc) is adjusted using the following calculation:

$$CAP_{c} = CAP_{nameplate} \times \frac{EER_{post}}{EER_{namplate}}$$
(206)

In cases where only a pre-tune up efficiency can be completed, then post tune-up efficiency may be estimated using the lesser of the nameplate efficiency or the results of equation (207). Equation 197 estimates the efficiency of the unit based on the age as well as typical maintenance practices of the customer.

$$EER_{post} = \frac{EER_{pre}}{(1-M)^{age}}$$
(207)

Where:

M = Maintenance factor,³⁷⁸ use 0.01 if annual maintenance conducted or 0.03 if maintenance is seldom; use default value of 0.03 if maintenance history is unknown.

Age = Age of equipment in years, up to a maximum of 20 years, use a default of 10 years if unknown.

³⁷⁸ "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. Table 32. Page 40. http://www.nrel.gov/docs/fy11osti/49246.pdf.

Heat Pump Heating Credit

For heat pump systems, an additional saving credit may be taken as follows:

Size Category (BTU/hr)	Default EER
< 65,000	11.8
\geq 65,000 and < 135,000	10.8
\geq 135,000 and < 240,000	10.4
≥240,000	9.3

```
HSPF_{pre} = HSPF_{post} \times (1 - M)^{age}
```

(208)

Where:

- $HSPF_{post}$ = Nameplate efficiency of the existing equipment for heating; if unknown, use default HSPF value from Table 241
- M = Maintenance factor³⁸⁰, use 0.01 if annual maintenance conducted or 0.03 if maintenance is seldom; use default value of 0.03 if maintenance history is unknown.
- *Age* = Age of equipment in years, up to a maximum of 20 years, use a default of 10 years if unknown.

Table 241: Default Heat Pump HSPF per Size Category³⁸¹

Size Category (BTU/hr)	Subcategory or Rating Condition	Default HSPF ³⁸²
< 65 000	Split System	8.2
< 65,000	Single Package	8.0
\geq 65,000 and < 135,000	47°F db/43°F wb Outdoor Air	11.3
	17°F db/15°F wb Outdoor Air	7.7
≥ 135,000	47°F db/43°F wb Outdoor Air	10.9
	17°F db/15°F wb Outdoor Air	7.0

³⁷⁹ Code specified SEER or EER value from 2013 Addenda to ASHRAE 90.1-2010 (efficiency value effective January 1, 2015 for units < 65,000 Btu/hr and prior to January 1, 2010 for units > 65,000 Btu/hr).

³⁸⁰ "Building America House Simulation Protocols." U.S. DOE. Revised October 2010. Table 32. Page 40. http://www.nrel.gov/docs/fy11osti/49246.pdf.

³⁸¹ Code specified HSPF or COP value from 2013 Addenda to ASHRAE 90.1-2010 (efficiency value effective January 1, 2015 for units < 65,000 Btu/hr and prior to January 1, 2010 for units > 65,000 Btu/hr).

³⁸² COP values converted to HSPF using COP=HSPF÷3.412

3.1.7 Commercial and Industrial Boilers

Measure Description

Commercial and industrial boilers are used in facilities to provide space or process heating via hot water or steam distribution. This measure includes natural gas-fired boilers of the following types: 1) Non-condensing hot water heating boiler, 2) Condensing hot water heating boiler and 3) Steam heating boiler (low and high pressure).

Commercial boilers normally are categorized 300,000 BTU/hr or larger. Small commercial boilers have a capacity range of 300,000 - 2,500,000 BTU/hr while large commercial boilers have a capacity range of 2,500,000 BTU/hr - 10,000,000 BTU/hr, and very large commercial boilers have a capacity greater than 10,000,000 BTU/hr.

Baseline and Efficiency Standards

The baseline efficiency standards for replace-on-burnout projects are based on the federal energy conservation standards³⁸³ as shown in Table 242. The baseline efficiency standards for early retirement projects are based on the IECC 2009, as shown in Table 242.

For early retirement, the maximum lifetime age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Project Type	Size Category (BTU/hr)	Subcategory or Rating Condition	Baseline Efficiency384,385	Test Procedure
Replace-on-Burnout	< 300,000	Hot Water	84% AFUE	DOE 10 CFR Part 430.23
		Steam	82% AFUE	
	> 300,000	Hot Water	84% E _t	
	and \leq 2,500,000	Steam	81% E _t	
	> 2,500,000°	Hot Water	85% Ec	DOE 10 CFR
	and \leq 10,000,000	Steam	82% E _t	Part 431.86
	> 10,000,000	Hot Water	82% E _c	
		Steam	79% E _t	
Early Retirement	< 300,000	Hot Water	82% AFUE	DOE 10 CFR

Table 242: Commercial and Industrial Boilers – Baseline Efficiencies

³⁸³ Federal Standards for boilers over 300,000 BTU/hr: <u>10 CFR 431.87(b)</u>, and for boilers under 300,000 BTU/hr: <u>10 CFR 430.32(e)(2)(iii)(A)</u>, accessed July 2023.

 $^{^{384}}$ Ec = Combustion efficiency (100 percent less flue losses) as defined in <u>10 CFR 431.82</u>

³⁸⁵ Et = Thermal efficiency as defined in 10 CFR 431.82

	Steam	80% AFUE	Part 430.23
> 300,000	Hot Water	80% E _t	
and ≤ 2,500,000	Steam	79% E _t	DOE 10 CFR
> 2,500,000	Hot Water	82% Ec	Part 431.86
2,300,000	Steam	79% Et ³⁸⁶	

These requirements apply to boilers with rated input of 8,000,000 BTU/h or less that are not packaged boilers, and to all packaged boilers. Minimum efficiency requirements for boilers cover all capacities of packaged boilers.

The savings calculations assume that the minimum boiler efficiency exceeds that published in Table 242.

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is 20 years.

Measure/Technology Review

All of the primary data sources reviewed for this effort contained information about boilers. A summary of the key resources is included in Table 243 below:

Table 243: Commercial and Indust	rial Bailars Daviaw	of High Efficiency	Roiler Information
Table 245. Commercial and muust	rial Dullers – Review	of figh-Efficiency	Doner mitor mation

Resource	Notes
DEER 2008 ⁶⁵	Savings estimates for multiple boiler retrofits at a variety of building types; incremental boiler cost data for common measure types. Boiler capacities and full-load hours are not available.
ENERGY STAR® ⁶⁹	Report on Central Heating Systems: Best Opportunities. Calculation template for boiler efficiency improvement – residential.
GAMA 2007 ²²	Annual publication from the Hydronics Institute Division of GAMA, I=B=R Ratings for Boilers, Baseboard Radiation, Finned Tube (commercial) Radiation and Indirect-Fired Water Heaters, January 2007 edition, documents boiler manufacture ratings and efficiencies

Note: Italic numbers are endnotes not footnote. (See Section 4.4 Commercial Measure References)

Code Review

The 2014 Arkansas Energy Code for New Building Construction states that, effective January 1, 2015, Arkansas adopts the IECC 2009 Edition. For commercial structures, IECC 2009 adopts by reference ASHRAE / IESNA Standard 90.1-2007. IECC 2009 indicates on p. 47, Table 503.2.3(5) Boilers, Gas- and Boiler-Fired, Minimum Efficiency Requirement for commercial buildings.

³⁸⁶ IECC 2009 calls for an efficiency of 80% for steam boilers greater than 2,500,000 BTU/hr. However, because this is higher than the federal requirement, early retirement projects may use the replace on burnout baseline efficiency.

Calculation of Deemed Savings

Unit Natural Gas Measure Savings

Replace on Burnout

$$Therm_{savings} = Capacity \times EFLH_H \times \left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right) \times \frac{1}{100000}$$
(209)

$$Therm/hr_{savings} = Capacity \times \left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right) \times \frac{1}{100000}$$
(210)

Where:

Capacity = Rated equipment output heating capacity, BTU/hr

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498, or custom entry of full-load hours if project is for non-space heating applications,

 η_{pre} = Efficiencies listed in Table 242 for replace on burnout projects should be used

 η_{post} = Nameplate Efficiency of the new boiler

100,000 = Converts BTU to therms

Early Retirement

Annual savings must be calculated separately for two time periods:

- 1. The estimated remaining life (RUL), see: Table 245 of the equipment that is being removed, designated the first N years, and
- 2. Years EUL N through EUL, where EUL is 20 years.

For the first N years:

$$Therm_{savings} = Capacity \times EFLH_H \times \left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right) \times \frac{1}{100000}$$
(211)

Therm/hr_{savings} = Capacity ×
$$\left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right)$$
 × $\frac{1}{100000}$ (212)

Where:

Capacity = Rated equipment heating capacity, BTU/hr

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498, or custom entry of full-load hours if project is for non-space heating applications. If site specific ELFH values are used, then a full analysis report showing how the EFLH are calculated shall be provided with any submittal information η_{pre} = Efficiency of the existing boiler, if unavailable, efficiencies listed in Table 242 for early retirement projects should be used. Alternately, participants can use measured boiler full load efficiency. If actual efficiency is used, then a full boiler efficiency test report shall be provided with any submittal information

 η_{post} = Efficiency of the new boiler.

100,000 = Converts BTU to therms

For Years EUL - N through EUL: Savings for years EUL - N should be calculated exactly as they are for replace on burnout projects.

Lifetime savings for Early Retirement Projects is calculated as follows:

$$Lifetime \ therm_{savings} = \left[\left(therm_{savings,ER} \times RUL \right) + \left(therm_{savings,ROB} \times (EUL - RUL) \right) \right]$$
(213)

Performance Efficiency Nomenclature	Description
Annual Fuel Utilization Efficiency (AFUE)	Measures the annual heating efficiency of a boiler or furnace (< 0.3 million BTU/hr), which is the heat transferred to the conditioned space divided by the fuel energy supplied.
Combustion Efficiency (E _C)	Measures the ability of a boiler to burn fuel. $E_C = 100 - $ flue loss (or the % of heat input rate)
Thermal Efficiency (E _t)	Measures (at steady state conditions) the ratio of heat energy output to the heat energy input, exclusive of jacket and heat losses through the boiler shell (> 0.3 million BTU/hr)

Table 244: Commercial Boilers – Efficiency Definitions

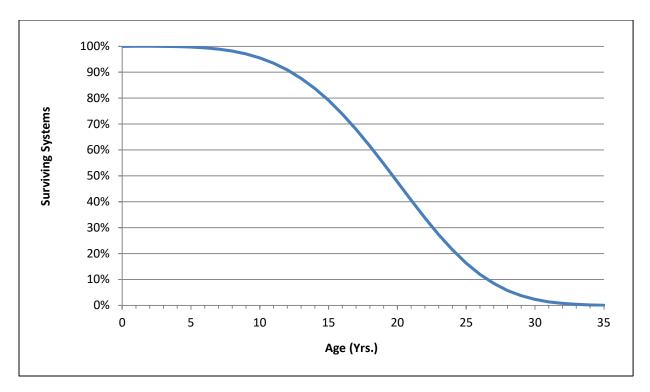

Age of Replaced System (Years)	RUL (Years)	Age of Replaced System (Years)	RUL (Years)
5	14.7	15	6.2
6	13.7	16	5.5
7	12.7	17	5.0
8	11.8	18	4.5
9	10.9	19	4.0
10	10.0	20	3.6
11	9.1	21	3.2
12	8.3	22	2.9
13	7.5	23	2.6
14	6.8	24 +	0.0

 Table 245: Commercial Boilers Remaining Useful Life (RUL) of Replaced Systems³⁸⁷

Commercial boilers have an estimated useful life of 20 years. This estimate is consistent with the age at which 50 percent of systems installed in a given year will no longer be in service, as described by the survival function in Figure 9.

³⁸⁷ Use of the early retirement baseline is capped at 23 years, representing the age at which 75 percent of existing equipment is expected to have failed. Equipment older than 23 years should use the ROB baseline.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Figure 9: Survival Function for Commercial Boilers³⁸⁸

The method used for estimating RUL of a replaced system uses the age of the existing system to re-estimate the survival function shown in Figure 9. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.

³⁸⁸ Source: Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". <u>https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx</u>

3.1.8 Commercial Furnaces

Measure Description

Commercial natural gas furnaces use a burner and heat exchanger that heats air to meet the heating load of a given space. As a self-contained unit, the burner heats the heat exchanger while a blower fan forces air through the heat exchanger and then through ductwork into the conditioned space. Furnace manufacturers have been able to increase the overall efficiency of a typical unit by utilizing technologies such as increasing the heat exchanger efficiency, pulse combustion, and offering a condensing furnace.

Baseline and Efficiency Standards

Arkansas currently recognizes IECC 2009³⁸⁹ commercial furnace minimum efficiencies. These minimum efficiencies are shown in Table 246 for duct furnaces and unit heaters. Federal standards for warm air furnaces are more restrictive than IECC 2009 and the federal standards are reflected in the table for that equipment type.

Equipment Type	Size Category (Input)	Subcategory or Rating Condition391	Baseline Efficiency392,393	Test Procedure
Warm air	< 225,000 Btu/h		80% AFUE ³⁹⁴	DOE 10 CFR Part 430
furnaces, gas fired	≥ 225,000 Btu/h	Maximum capacity	81% Et ³⁹⁵	DOE 10 CFR Part 431
Warm air duct furnaces, gas fired	All capacities	Maximum capacity	80% E _c	ANSI Z83.9
Warm air unit heaters, gas fired	All capacities	Maximum capacity	80% E _c	ANSI Z83.8

Table 246:	Commercial Furnaces -	- Baseline	Efficiencies	Requirement ³⁹⁰
1 4010 - 101	Commerciar r ar naces	Dascille	Linereneres	negan emene

The savings calculations assume that the minimum furnace efficiency exceeds the figures shown in Table 246.

³⁸⁹ 2009 International Energy Conservation Code

³⁹⁰ Combination units not covered by the National Appliance Energy Conservation Act of 1987 (NAECA) (3-phase power or cooling capacity greater than or equal to 65,000 Btu/h [19 kW]) shall comply with either rating.

³⁹¹ Minimum ratings as provided for and allowed by the unit's controls.

 $^{^{392}}$ Et = Thermal efficiency. See test procedure for detailed discussion.

 $^{^{393}}$ Ec = Combustion efficiency (100% less flue losses). See test procedure for detailed discussion.

³⁹⁴ U.S. DOE Federal Standard <u>10 CFR 430.32(e)(1)(ii)</u>

³⁹⁵ U.S. DOE Federal Standard 10 CFR 431.77(a)(2)

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is 20 years.

Calculation of Deemed Savings

Unit Electrical Measure Savings

There are no deemed electrical savings for this measure. No provisions for early retirement are included because efficiency requirements for furnaces have not changed in almost 20 years.

Unit Natural Gas Measure Savings

Deemed annual natural gas savings for furnace should be calculated by the following formulas:

$$Therm_{savings} = Capacity \times EFLH_{H} \times \left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right) \times \frac{1}{100000}$$

$$(214)$$

$$Therm/hr_{savings} = Capacity \times \left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right) \times \frac{1}{100000}$$

Where:

Capacity = Rated equipment output heating capacity, Btu/h

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

 η_{pre} = Efficiency of the existing furnace; if unavailable, use efficiencies listed in Table 246

 η_{post} = Efficiency of the new furnace

100,000 = Converts BTU to therms

(215)

3.1.9 Direct Vent Heaters (Small Commercial and Converted Residences)

Measure Description

This measure applies to a direct vent³⁹⁶, natural gas-fired, wall-type furnace with electronic ignition for small open areas not requiring ducted air distribution. Typical applications include single-room areas such as living areas, bedrooms, small offices or retail shops.

Baseline and Efficiency Standards

The baseline for retrofit is a gravity-type natural gas-fired furnace. These are wall systems that draw combustion air from the conditioned space and discharge products of combustion to the outside area. A separate baseline was established for retrofit of a fan-driven natural gas-fired furnace with standard venting.

Direct vent furnaces are available in sizes from 10,000 BTU/hr to 55,000 BTU/hr input. The federal efficiency standard for natural gas fired furnaces is 78 percent. The most efficient direct vented wall furnaces are rated 80-83 percent efficient when installed with a factory-supplied vent wall cap and in accordance with manufacturer's recommendations. Direct vent wall furnaces are installed in exterior walls, utilizing outside air for combustion and directly discharging combustion products to the outside area. The energy savings are a result of utilizing a more efficient furnace and the use of outside air for combustion.

The equipment must meet the American National Standards Institute (ANSI) Z21.86 (latest standard) for Fan Type Direct-Vent Wall Furnaces (See Table 247).

 Table 247: Direct Vent Heaters – Baseline and Efficiency Standards

Baseline	Efficiency Standard
Gravity Type Wall Furnace: 60% AFUE	Direct Vent Wall Furnace: 80.8% AFUE
Fan Driven Wall Furnace: 78% AFUE	

Estimated Useful Life (EUL)

The estimated useful life of this measure is 20 years, the same as gas furnaces. DEER 2008 does not list Direct Vent Heaters as a separate technology. The current technology for direct vent heaters is similar to gas furnaces listed in DEER 2008.

³⁹⁶ Non-vented space heaters were not considered, due to the hazard of carbon monoxide gas.

Deemed Savings Values

	Retrofit Std Ven Natural Gas-Fire		Retrofit Std Vent Fan-Driven Natural Gas-Fired Wall Furnace and New Construction			
Weather Zone and Location	Annual Therms / kBTUh Furnace Capacity	Peak Therms / kBTUh Furnace Capacity	Annual Therms / kBTUh Furnace Capacity	Peak Therms / kBTUh Furnace Capacity		
Zone 9 - Fayetteville	4.809	0.074	1.333	0.022		
Zone 8 - Fort Smith	4.957	0.073	1.420	0.022		
Zone 7 - Little Rock	4.149	0.077	1.185	0.023		
Zone 6 - El Dorado	3.228	0.036	0.906	0.010		

Table 248: Direct Vent Heaters – Deemed Savings Values

3.1.10 Duct Efficiency Improvements

Measure Description

These deemed savings are applicable to approved measures for sealing leaks in supply and return ducts in unconditioned spaces of commercial buildings, including vented attics and plenums, for repair and replacement of damaged ductwork. This measure is applicable to ductwork when:

- The building has an operable electric cooling and a gas or electric heating system and
- The maximum duct pressure class is 1.0 inches w.g. (water gauge)
- The maximum cooling capacity is equal to or less than 135,000 BTU/hr
- The maximum heating capacity is equal to or less than 285,000 BTU/hr

Baseline and Efficiency Standards

Pre- and post-installation duct leakage space may be evaluated by one of the following methods:

- Duct pressurization test by a certified and approved tester
- The "Leakage Classification Method," described below
- Other tests at the utilities' discretion

All testing and sealing procedures are more fully described in the *HVAC Air Duct Leakage Test Manual, Second Edition-2012*, published by Sheet Metal and Air Conditioning Contractors' National Association (SMACNA).

Duct sealing must meet the SMACNA Seal Class B requirements. All transverse joints and longitudinal seams shall be sealed using liquid sealants, mastics, and/or gaskets. Pressure-sensitive tape shall not be used as the primary sealant, unless it has been certified to comply with UL-181A or UL-181B by an independent testing laboratory and the tape is used in accordance with that certification.

Unconditioned space is defined as a space which is neither directly nor indirectly conditioned, and is isolated from conditioned space by partitions, such as walls and/or closeable doors, and ceilings and in which the temperature of the area traversed by the ductwork is greater than 100 degrees Fahrenheit during the cooling season and lower than 50 degrees Fahrenheit during the heating season.

Evaluation of Duct Leakage Using Pressurization Testing

Duct leakage testing shall be conducted according to the procedures specified in Chapter 4 of the *SMACNA HVAC Air Duct Leakage Test Manual*. Test pressure should approximate the normal system operating pressure of the section of the duct system being tested. For split-system air conditioner and heat pump units less than 65,000 Btuh cooling capacity, normal static pressures are often near 0.1 inches w.g., or 25 pascals.

To be eligible, a minimum of 75 percent of the ductwork must be located in unconditioned space and the ductwork must have a pre-installation leakage rate greater than 15 percent of fan capacity at duct operating pressure. The maximum leakage rate reduction for this measure will be capped at 30 percent of fan capacity at duct operating pressure or at the fan rated capacity at 0.75 in. static pressure if design pressure is not known.

Pre-installation and post-installation testing should be performed using identical measurement procedures.

Post-installation testing should be conducted after sealing materials have been allowed to cure.

Project savings shall be determined using the CFM difference in pre- and post-installation leakage test values, multiplied by the per-CFM deemed savings values for the appropriate weather zone. These tables

are located at the end of this section.

Evaluation of Duct Leakage Using Leakage Classification Method

The leakage classification method relates duct leakage from ducts in unconditioned spaces to three variables:

- Surface area of ducts in unconditioned spaces (sq. ft.)
- Duct system operating pressure
- Leakage classification

Leakage classification is based on duct material, configuration, and whether ducts are sealed or unsealed. These variables are related to duct leakage per 100 square feet of duct area by the following:³⁹⁷

$$F = C_L \times P^{0.65}$$

Where:

F = Leakage Factor (CFM/100 sq. ft. of duct surface area)

 C_L = Leakage Classification (Table 249)

P = Duct static pressure in the section of the duct being tested, in inches w.g.

Duct static pressure measurements shall be taken in accordance with SMACNA HVAC Air Duct Leakage Test Manual, Chapter 6.

Separate duct static pressure measurements shall be taken for duct sections of different type or size.

In the event duct static pressure measurement is impossible or impractical, the following default static pressure values may be used:

Split system and package AC and HP systems, up to 65,000 Btuh cooling capacity: 0.1 inches w.g.(25 pascals)

Other AC and HP systems, up to 135,000 Btuh cooling capacity: 0.5 inches w.g.

Duct system leakage (CFM) is then given by:

$$CFM = F \times \frac{A_u}{100}$$
(217)

Where:

F = Leakage Factor (CFM/100 sq. ft. of duct surface area)

 A_u = Surface area of duct system or section of duct system being evaluated, in sq. ft.

With these equations, the leakage in an entire duct system, or any section thereof, may be estimated. This measure is only applicable for duct systems or duct system sections that are in unconditioned spaces. For duct system sections that have different operating pressures, separate calculations for each section should

(216)

³⁹⁷ Source: HVAC Air Duct Leakage Test Manual, Second Edition-2012, p. 2.1

be performed.

Calculations using the appropriate leakage classification values for unsealed and sealed ducts will provide pre- and post- installation CFM leakage rates.

Project savings shall be determined using the CFM difference in pre- and post-installation CFM leakage rates, multiplied by the per-CFM deemed savings values for the appropriate weather zone. These tables are located at the end of this section.

		Leakage	Classification ³⁹⁸	
Duct Type	Unsealed/ Catastrophic Leaks	Significant Leaks	Some Observable Leaks	Connections Sealed with Mastic ³⁹⁹
Rectangular Metal	48	35	22	8
Round Metal	24	17	10	4
Fibrous Glass Duct	24	18	12	6
Non-Metal Flexible Duct	30	24	18	12

Table 249: Duct Leakage Classifications

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is 18 years.

Deemed Savings Values

		Gas-E	lectric		All Electric				
Duct Leakage	Ι	DX Coils wi	ith Furnace)	Heat	Pump	Electric F	Electric Resistance	
	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh / 1,000 CFM reduction	kW / 1,000 CFM reduction	therms / 1,000 CFM reduction	therms / 1,000 CFM reduction	kWh / 1,000 CFM reduction	kW / 1,000 CFM reduction	kWh / 1,000 CFM reduction	kW / 1,000 CFM reduction	
Savings/ CFM Reduction	1767	1.485	161.308	5.568	6028	1.787	4659	1.787	

Table 250: Duct Efficiency Improvements (SC) – Zone 9 Northern

³⁹⁸ Adapted from SMACNA HVAC Air Duct Leakage Test Manual, Table 5-1. The original table had only values for Unsealed and Sealed. Additional categories for Some Observable Leaks and Significant Leaks were added by taking the midpoints between the existing Unsealed and Sealed values.

³⁹⁹ Connections sealed with mastic or by other proven sealing methods.

		Gas-E	lectric		All Electric				
Duct Leakage	DX Coils with Furnace				Heat	Pump	Electric F	Electric Resistance	
	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh / 1,000 CFM reduction	kW / 1,000 CFM reduction	therms / 1,000 CFM reduction	therms / 1,000 CFM reduction	kWh / 1,000 CFM reduction	kW / 1,000 CFM reduction	kWh / 1,000 CFM reduction	kW / 1,000 CFM reduction	
Savings/ CFM Reduction	2022	0.595	170.468	4.295	6582	0.911	4989	0.911	

Table 251: Duct Efficiency Improvements (SC) – Zone 8 Northeast/North

		Gas-E	Electric		All Electric				
Duct Leakage		DX Coils w	vith Furnace	e	Heat	Pump	Electric l	Resistance	
	Energy Savings	Peak Deman d Savings	Annual Gas Savings	Peak Gas Reduced	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh / 1,000 CFM reductio n	kW / 1,000 CFM reducti on	therms / 1,000 CFM reductio n	1,0001,000CFMCFMreductioreductio		kW / 1,000 CFM reductio n	kWh / 1,000 CFM reducti on	kW / 1,000 CFM reductio n	
Savings/ CFM Reduction	2172	2.023	137.237	2.413	5933	2.383	4581	2.383	

		Gas-E	lectric		All Electric				
Duct Leakage]	DX Coils w	ith Furnace	•	Heat	Pump	Electric l	Resistance	
	Energy Savings	Peak Deman d Savings	Annual Gas Savings	Peak Gas Reduced	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh / 1,000 CFM reduction	kW / 1,000 CFM reductio n	therms / 1,000 CFM reductio n	therms / 1,000 CFM reductio n	kWh / 1,000 CFM reducti on	kW / 1,000 CFM reductio n	kWh / 1,000 CFM reducti on	kW / 1,000 CFM reductio n	
Savings/ CFM Reduction	3097	2.778	128.596	4.223	5774	2.817	4620	2.817	

Table 253: Duct Efficiency Improvements (SC) – Zone 6 South Region

Calculation of Deemed Savings

Deemed savings for duct efficiency improvements were calculated using an eQuest model. Model runs were performed with TMY3 data that were converted to TMY2 format for each weather zone. As such, weather files were available for the cities of El Dorado (Zone 6), Little Rock (Zone 7), Fort Smith (Zone 8), and Fayetteville (Zone 9).

Leakage rates were calculated using a base unsealed leakage rate of 30 percent and an estimated reduction for sealed leakage rate of 12 percent, but the resulting 18 percent reduction is not claimed directly. These two endpoints were used to develop a linear relationship between reduction in duct leakage and cooling and heating energy use to determine the energy consumption for heating and cooling per CFM per square foot of duct surface area. These per CFM savings are applied against the site-specific CFM reduction determined by duct leakage pressurization testing or by the leakage classification method.

Peak savings were determined using two different building types: a strip mall and a small office building. Note that separate values are determined for natural gas savings. The prototype characteristics of the building models are outlined in Appendix A.

3.1.11 Duct Insulation (Converted Residences)

Measure Description

This measure consists of adding duct insulation with an R-value of 5.6 or 8.0 to uninsulated metal supply and return ductwork, located in unconditioned space that previously had no existing insulation.

Baseline and Efficiency Standards

The baseline for this measure is uninsulated sheet metal ducts or insulated metal ducts in which the insulation has failed. Failed insulation is insulation which has non-repairable tears to the vapor barrier, exhibits gaps with exposed metal between insulation, or insulation which is failing. Flex ducts, and fiber board ducts are not eligible for this measure. The ducts must be located in unconditioned spaces, such as attics or crawl spaces. Old ductwork insulation must be removed prior to installation of new duct wrap insulation.

Unconditioned space is defined as a space which is neither directly nor indirectly conditioned and is isolated from conditioned space by partitions, such as walls and/or closeable doors, and ceilings and in which the temperature of the area traversed by the ductwork is greater than 100 degrees Fahrenheit during the cooling season and lower than 50 degrees Fahrenheit during the heating season. Chapter 8, Table 1 provides a quick guide for determining if the area in which the ductwork is located may be considered unconditioned space.

The efficiency upgrade for this measure requires that ducts must be insulated with duct wrap to an R-value of 5.6 or 8.0. The R-value of 5.6 is the required duct insulation value in accordance with the Arkansas Energy Code Table 503.3.3.3⁴⁰⁰The following table provides a quick guide for determining if the area in which the ductwork is located may be considered unconditioned space.

⁴⁰⁰ Source: <u>http://170.94.37.152/REGS/168.00.11-003F-13522.pdf</u>

Description	Approx. Temp. Summer/ Winter	Ventilated	Ceiling Insulation	Roof Deck Insulation	Sprayed Insulation	Radiant Barrier	Qualifies
Attic #1 Converted Residence	130/50	N	Y	N	N	N	Y
Attic #2 Converted Residence	120/50	Y	Y	N	N	N	Y
Attic #3 Metal Bldg. w/Ceiling	110/60	Y	Y	Y	N	Y	N
Mechanical Rooms	110/60 w/o boiler	Y	N	Y	N	Ν	Y
Ventilated Warehouse	110/50	Y	N	N	N	N	N
Office Bldg. Ducted Return	90/60	N	N	Y	N	N	N
Office Bldg. Ducted Return ⁴⁰¹	130/50	N	Y	N	N	N	Y
Plenum Space Used for Return	90	Y	Y	Y	N	N	N
No Ceiling	85	Ν	Ν	Y	Ν	Ν	Ν

Table 254: Conditioned vs. Unconditioned Areas

⁴⁰¹ Only top floor common to roof qualifies.

Estimated Useful Life (EUL)

The estimated useful life of this measure is 20 years, in accordance with DEER 2008.

Deemed Savings Values

Please note that the savings are a factor to be multiplied by the conditioned square footage of the converted residence. Gas Heat (No AC) kWh applies to forced-air systems only.

Unconditioned Duct Location and added R-Value	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Attic to R-8	0.080	0	0.016	0.419	0.426	0.00015	0.00064
Attic to R-5.6	0.041	0	0.008	0.214	0.219	0.00008	0.00033
Crawl Space to R-8	0.058	0	0.019	0.388	0.402	0.00005	0.00054
Crawl Space to R-5.6	0.029	0	0.010	0.198	0.205	0.00002	0.00028

Table 255: Duct Insulation (CR) – Deemed Savings Values - Zone 9 Northern

Table 256: Duct Insulation (CR) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Unconditioned Duct Location and added R-Value	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms) ⁴⁰²
K-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Attic to R-8	0.098	0	0.016	0.445	0.436	0.00017	0.00053
Attic to R-5.6	0.050	0	0.008	0.227	0.224	0.00009	0.00027
Crawl Space to R-8	0.067	0	0.020	0.425	0.420	0.00004	0.00048
Crawl Space to R-5.6	0.034	0	0.010	0.217	0.215	0.00002	0.00025

⁴⁰² Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.929 (Attic to R-8), m = 0.930 (Attic to R-5.6), m = 0.1.05 (Crawlspace to R-8), m = 1.05 (Crawlspace to R-5.6). For Fort Smith, m = 0.878 (Attic to R-8), m = 0.987 (Crawlspace to R-8).

Unconditioned Duct Location and added	AC w/ Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Only Therms	AC w/ Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
R-Value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Attic to R-8	0.109	0	0.015	0.432	0.383	0.00017	0.00050
Attic to R-5.6	0.055	0	0.007	0.221	0.196	0.00009	0.00026
Crawl Space to R-8	0.072	0	0.018	0.421	0.383	0.00002	0.00063
Crawl Space to R-5.6	0.037	0	0.009	0.215	0.197	0.00001	0.00032

Table 257: Duct Insulation (CR) – Deemed Savings Values - Zone 7 Central Region

Table 258: Duct Insulation (CR) – Deemed Savings Values - Zone 6 South Region

Unconditioned Duct Location and added R-Value	AC w/ Gas Heat kWh per ft ²	Gas Heat (no AC) kWh per ft ²	Gas Heat Only Therms per ft ²	AC w/ Electric Resistance kWh per ft ²	Heat Pump kWh per ft ²	AC Peak Savings (kW) per ft ²	Peak Gas Savings (therms) per ft ²
Attic to R-8	0.125	0	0.011	0.380	0.350	0.00019	0.00048
Attic to R-5.6	0.064	0	0.006	0.194	0.180	0.00010	0.000245
Crawl Space to R-8	0.081	0	0.012	0.368	0.319	0.00007	0.00055
Crawl Space to R-5.6	0.041	0	0.006	0.188	0.164	0.00003	0.00028

Calculation of Deemed Savings

The building load simulation software EnergyGauge, which calculates hourly load data, was used to estimate energy savings for a prototype Arkansas converted residence.

A series of models was created to determine the difference in weather data throughout the four weather regions in Arkansas, as defined in IECC 2009. Since building shell measures are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype characteristics of the building model are outlined in Volume 3, Appendix A.

3.1.12 Duct Insulation (Small Commercial)

Measure Description

Duct insulation deemed savings are estimated per square foot of duct insulation installed. Deemed savings are provided for the addition of insulation to uninsulated, metal ducts installed in unconditioned space only, up to an R6 value. Duct insulation deemed savings values are estimated for buildings with roof deck insulation between R0-R9 and R10-R20. In order for a small commercial building duct insulation retrofit to qualify for these deemed savings, an HVAC tune-up (including refrigerant recharge) must first be performed.

Baseline and Efficiency Standards

The baseline is uninsulated metal ducts or metal ducts with failed insulation of any size located in an unconditioned space inside a small commercial building. Failed insulation is insulation which has non-repairable tears to the vapor barrier, exhibits gaps exposing metal, or insulation which has failed due to excess moisture. Flex ducts and fiber board ducts are not eligible for this measure. In a multi-story building, the baseline applies only to the top floor; for the purposes of this deemed savings estimate, ceiling space between floors is considered conditioned space. The baseline conditions modeled for HVAC supply and return fans are continuous operation during building operating hours (e.g., when the building is occupied), and cycling on and off with the HVAC unit during non-business operating hours.

The *ASHRAE Design Guide for Small Offices and Retail Buildings* recommends R-6 for the weather zones in which Arkansas is located. As such, duct insulation incentives require that insulation levels be brought up to R-6.

The following table provides a quick guide for determining if the area in which the ductwork is located may be considered unconditioned space.

Description	Approx. Temp. Summer/ Winter	Ventilated	Ceiling Insulation	Roof Deck Insulation	Sprayed Insulation	Radiant Barrier	Qualifies
Attic #1 Converted Residence	130/50	N	Y	N	N	N	Y
Attic #2 Converted Residence	120/50	Y	Y	N	N	N	Y
Attic #3 Metal Bldg. w/Ceiling	110/60	Y	Y	Y	N	Y	N
Mechanical Rooms	110/60 w/o boiler	Y	N	Y	N	Ν	Y
Ventilated Warehouse	110/50	Y	N	N	N	N	N
Office Bldg. Ducted Return	90/60	N	N	Y	N	N	N
Office Bldg. Ducted Return ⁴⁰³	130/50	N	Y	N	N	N	Y
Plenum Space Used for Return	90	Y	Y	Y	N	N	N
No Ceiling	85	Ν	Ν	Y	Ν	N	Ν

Table 259: Conditioned vs. Unconditioned Areas

⁴⁰³ Only top floor common to roof qualifies.

Estimated Useful Life (EUL)

The estimated useful life of this measure is 20 years, in accordance with DEER 2008.

Deemed Savings Values

Deemed savings values for annual electric energy use, peak demand, and peak gas reductions are provided in the following tables. *Note that deemed savings for duct insulation are per square foot of duct insulation added*.

		Gas-	Electric		All Electric			
Pre-		DX Coils v	with Furnac	e	Heat Pump Electric Resis			Resistance
Retrofit Roof Insulation	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings
R-value	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
0 to 9	0.748	0.801	41.739	1.435	1.222	0.796	1.556	0.796
10 to 20	0.596	0.617	26.05	1.007	0.9	0.611	1.08	0.611

 Table 260: Duct Insulation (SC) – Deemed Savings Values - Zone 9 Northern Region

Table 261: Duct Insulation (SC) – Deemed Savings Values - Zone 8 Northeast/North Central Region

		ce	Heat Pump		Electric Resistance			
Pre- Retrofit Roof	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced ⁴⁰⁴	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings
Insulation R-value	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
0 to 9	0.802	0.681	41.485	1.229 •	1.291	0.672	1.627	0.751
10 to 20	0.69	0.561	26.512	0.769 •	0.958	0.508	1.129	0.56

⁴⁰⁴ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying the Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.905 (R-0 to R-9) and m = 0.885 (R-10 to R-20). For Fort Smith, m = 0.862 (R-0 to R-9) and m = 0.847 (R-10 to R-20).

		Gas-Electric				All Electric			
		DX Coils	with Furna	ice	Heat Pump		Electric Resistance		
Pre- Retrofit Roof	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
Insulation R-value	kWh/ sq. ft.	kW/ 1000 sq. ft.	therms/ 1000 sq. ft.	therms/ 1000 sq. ft.	kWh/ sq. ft.	kW/ 1000 sq. ft.	kWh/ sq. ft.	kW/ 1000 sq. ft.	
0 to 9	0.843	0.683	34.59	0.988	1.255	0.746	1.535	0.842	
10 to 20	0.72	0.573	22.354	0.683	0.924	0.574	1.07	0.653	

Table 262: Duct Insulation (SC) – Deemed Savings Values - Zone 7 Central Region

Table 263: Duct Insulation ((SC) – Deemed Savings	Values - Zone 6 South Region
------------------------------	-----------------------	------------------------------

	Gas-Electric						All Electric			
	DX Coils with Furnace				Heat Pump Electric Resista			Resistance		
Pre- Retrofit Roof	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings		
Insulation R-value	kWh/ sq. ft.	kW/ 1000 sq. ft.	therms/ 1000 sq. ft.	therms/ 1000 sq. ft.	kWh/ sq. ft.	kW/ 1000 sq. ft.	kWh/ sq. ft.	kW/ 1000 sq. ft.		
0 to 9	0.994	0.869	27.37	1.354	1.303	0.864	1.503	1		
10 to 20	0.767	0.676	16.997	1.04	0.982	0.669	1.073	0.77		

Calculation of Deemed Savings

Deemed savings were calculated using eQuest models populated as shown in the following section. Model runs were performed with TMY3 data for cities in each weather zone: El Dorado (Zone 6), Little Rock (Zone 7), Fort Smith (Zone 8), and Fayetteville (Zone 9).

Three different buildings were used: a strip mall, a stand-alone retail building, and a small office building. Because roof deck insulation directly affects the temperature of the unconditioned space where candidate ducts are located, savings were estimated (on a per square foot basis) for each building type for two different levels of pre-retrofit roof deck insulation. The deemed savings values presented herein represent the average savings on a square foot basis for commercial buildings with gas or electric heating (including either electric resistance or heat pump) in each weather zone for buildings with pre-retrofit roof deck insulation levels of R-0 to R-9 and R-10 to R-20. The prototype characteristics of the building model are outlined in Volume 3, Appendix A.

3.1.13 Occupancy-Based PTAC/PTHP Controls

Measure Description

Packaged terminal air conditioners (PTAC) and packaged terminal heat pumps (PTHP) are commonly installed in the hospitality industry to provide heating and cooling of individual guest rooms. Occupancy-based PTAC/PTHP controllers are a combination of a control unit and occupancy sensor that operate in conjunction with each other to provide occupancy-controlled heating and/or cooling. The control unit plugs into a wall socket and the PTAC/PTHP plugs into the control unit. The control unit is operated by an occupancy sensor that is mounted in the room and turns the PTAC/PTHP on and off. The most common application for occupancy-based PTAC/PTHP controls is in hotel and motel rooms.

Hotel and motel guest rooms vary significantly. Hotel rooms typically have a larger area and volume than motel rooms. Additionally, a typical hotel and motel room will likely have a different number of exposed walls. A hotel room is likely to have only a single exposed wall with other walls adjoining conditioned space, while a motel room will have at least two exposed walls and an exposed attic (or roof structure) and/or slab foundation. For the purposes of this measure, a Motel is defined as having guest rooms that open to the exterior and are single story. All other lodging facilities should be defined as a Hotel.

Baseline and Efficiency Standards

The baseline for this measure is a PTAC or PTHP unit without an occupancy-based control system.

The efficiency condition for this measure is a PTAC or PTHP unit with an occupancy-based control system that has been configured with a 5 or 10 °F temperature setback.

Controller units must include an occupancy sensor and include the capability to configure the zone temperature control mode (occupied/unoccupied setback) based on guest room occupancy.

Estimated Useful Life (EUL)

In accordance with DEER 2014, the estimated useful life for an Energy Management System is 15 years, which is applicable to this measure.

Deemed Savings Values

Deemed savings values are configured per square foot of the room served by the PTAC/PTHP unit. If average guest room square footage is not available, assume 420 square feet for hotel guest rooms and 350 square feet for motel guest rooms.⁴⁰⁵

⁴⁰⁵ DOE Commercial Prototype Building Models. Available for download at: <u>https://www.energycodes.gov/prototype-building-models#ASHRAE</u>.

	РТ	TAC	РТНР		
Weather Zone and Location	5 °F Setback	10 °F Setback	5 °F Setback	10 °F Setback	
Zone 6 - El Dorado	0.752	1.302	0.602	1.041	
Zone 7 - Little Rock	0.822	1.449	0.658	1.159	
Zone 8 - Fort Smith	0.896	1.581	0.717	1.265	
Zone 9 - Fayetteville	0.774	1.352	0.620	1.081	

Table 264: PTAC/PTHP Energy Savings per Square Foot for Hotels (kWh/ft²)

Table 265: PTAC/PTHP Demand Savings per Square Foot for Hotels (kW/ft²)

	PTAC/PTHP			
Weather Zone and Location	5 °F Setback	10 °F Setback		
Zone 6 - El Dorado	0.000186	0.000514		
Zone 7 - Little Rock	0.000331	0.000668		
Zone 8 - Fort Smith	0.000286	0.000616		
Zone 9 - Fayetteville	0.000256	0.000539		

Table 266: PTAC/PTHP Energy Savings per Square Foot for Motels (kWh/ft²)

	РТАС		РТНР		
Weather Zone and Location	5 °F Setback	10 °F Setback	5 °F Setback	10 °F Setback	
Zone 6 - El Dorado	1.165	2.015	0.932	1.612	
Zone 7 - Little Rock	1.272	2.243	1.018	1.794	
Zone 8 - Fort Smith	1.388	2.447	1.110	1.958	
Zone 9 - Fayetteville	1.199	2.093	0.959	1.674	

Table 267: PTAC/PTHP Demand Savings per Square Foot for Motels (kW/ft²)

	PTAC/PTHP			
Weather Zone and Location	5 °F Setback	10 °F Setback		
Zone 6 - El Dorado	0.000223	0.000617		
Zone 7 - Little Rock	0.000398	0.000802		
Zone 8 - Fort Smith	0.000343	0.000739		
Zone 9 - Fayetteville	0.000307	0.000646		

Calculation of Deemed Savings

Hotel PTAC savings for this measure were modeled for each Arkansas weather zone using BEoptTM version 2.2, TMY3 weather data, and the EnergyPlus building modeling engine⁴⁰⁶, averaging results for the four cardinal orientations. A single hotel room with three adiabatic walls and a super-insulated ceiling and floor, representing the most typical and conservative room configuration, was modeled with a 10.7 EER PTAC and electric resistance heat. Room area and volume assumptions were extracted from the DOE commercial prototype building models for the Small and Large Hotel building types.⁴⁰⁷ Each room was modeled with a 24 square foot window.⁴⁰⁸ All appliances were removed except for a refrigerator. All other default BEopt assumptions were maintained, and all assumptions were maintained in the base and change cases, except for the assumed temperature schedule for the 5 and 10 °F temperature setbacks. The base temperature schedule was developed by adding or subtracting the specified setup or setback temperature by the percent hour unoccupied.⁴⁰⁹ Percent hours unoccupied were extracted from the occupancy schedule for the US DOE commercial prototype building model for the Small Hotel building type. Prototype guest room characteristics used in the BEopt building model can be found in Volume 3, Appendix A.

Modeled Hotel PTAC savings were adjusted to estimate savings for Hotel PTHPs and Motel PTACs and PTHPs. The adjustment factors were developed by comparing average savings values developed for comparable measures from the Technical Reference Manuals in Texas and Illinois.^{410,411} Hotel PTHP energy savings were calculated by applying a 0.80 adjustment factor to corresponding Hotel PTAC energy savings. Motel PTAC/PTHP energy savings were calculated by applying a 1.29 adjustment factor to corresponding Hotel PTAC/PTHP energy savings. Modeled Hotel demand savings were applied to the Motel building type but were adjusted based on the reduction of the guest room square footage assumption from 420 square feet to 350 square feet.

⁴⁰⁶ U.S. DOE. <u>https://www.energy.gov/eere/buildings/articles/energyplus</u>

⁴⁰⁷ Available for download at: <u>https://www.energycodes.gov/prototype-building-models#ASHRAE</u>.

⁴⁰⁸ Codes and Standards Enhancement Initiative (CASE), "Guest Room Occupancy Controls: 2013 California Building Energy Efficiency Standards," October 2011. P. 11.

⁴⁰⁹ Codes and Standards Enhancement Initiative (CASE), "Guest Room Occupancy Controls: 2013 California Building Energy Efficiency Standards, October 2011. p. 14.

⁴¹⁰ Texas TRM Version 2.0: 2.6.2 Lodging Guest Room Occupancy Sensor Controls, Tables 2-111 and 2-112.

⁴¹¹ Illinois TRM Version 3.0: 4.4.8 Guest Room Energy Management (PTAC & PTHP), pp. 203-208.

3.1.14 Packaged Terminal AC/HP (PTAC/PTHP) Equipment

Measure Description

This measure requires the installation of a PTAC or PTHP. AHRI Test Standard 310/380-2004 defines a PTAC or PTHP as "a wall sleeve and a separate non-encased combination of heating and cooling assemblies specified by the manufacturer and intended for mounting through the wall. It includes refrigeration components, separable outdoor louvers, forced ventilation, and heating availability by purchaser's choice of, at least, hot water, steam, or electrical resistance heat." These definitions are consistent with federal code (10 CFR Part 431.92).

PTAC/PTHP equipment is available in standard and non-standard sizes. Standard size refers to PTAC/PTHP equipment with wall sleeve dimensions having an external opening greater than or equal to 16 inches high or greater than or equal to 42 inches wide, and a cross-sectional area greater than or equal to 670 square inches. Non-standard size refers to PTAC/PTHP equipment with existing wall sleeve dimensions having an external wall opening of less than 16 inches high or less than 42 inches wide, and a cross-sectional area less than 670 square inches.

Baseline and Efficiency Standards

The sections that follow describe the baseline efficiency values that should be used for measures in new construction applications or that replace burned-out equipment, designated "replace-on-burnout," and for measures that replace equipment with remaining useful life, designated "early retirement."

New Construction or Replace-on-Burnout

The baseline for units that are used in new construction or are replaced on burnout is the current federal minimum standard,⁴¹² which went into effect January 1, 2017 for standard sized units and September 30, 2010 for non-standard sized units (Table 268).

As specified in Protocol E2 of TRM Volume 1, the enforcement date for a code or standard update is the end of the current program year if the effective date of the code or standard update is before July 1. For code or standard effective dates on or after July 1, the enforcement date is the end of the following program year. The specified lag period is to allow for the sale and/or use of existing equipment inventory. See Protocol E2 for more details.

⁴¹² 2010 U.S. Code: Title 42, Chapter 77, Subchapter III, Part A-1, Section 6313.

Equipment Type	Size Category	Minimum Efficiency ⁴¹⁴	
РТАС	Standard	EER = 14 - (0.300 x CAP)	
FIAC	Non-Standard	EER = 10.9 - (0.213 x CAP)	
PTHP	Standard	EER = 14.0 - (0.300 x CAP) $COP = 3.7 - (0.052 x CAP)$	
	Non-Standard	EER = 10.8 - (0.213 x CAP) COP = 2.9 - (0.026 x CAP)	

Table 268: PTAC/PTHP Equip	oment – Baseline Efficiency Levels ⁴¹³
----------------------------	---

Early Retirement

Early retirement projects involve replacement of a working system. There is a dual baseline for early retirement applications. For the remaining useful life of the existing equipment, the baseline is the nameplate efficiency of the existing cooling equipment. If unavailable, use efficiencies listed in Table 269.

For the remainder of the estimated useful life, the baseline is the current federal minimum efficiency for the installed equipment type (Table 268). For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Table 269: PTAC/PTHP Equipment – Early Retirement Baseline Efficiencies ⁴¹⁵
--

Equipment Type	Minimum Efficiency
PTAC (Cooling)	$EER = 10.9 - (0.213 \times CAP/1000)$
PTHP (Cooling)	$EER = 10.8 - (0.213 \times CAP/1000)$
PTHP (Heating)	$COP = 2.9 - (0.026 \times CAP/1000)$

Estimated Useful Life (EUL)

The estimated useful life of the measure is 10 years, in accordance with the DOE's Packaged Terminal Air Conditioners and Heat Pumps Energy Conservation Standard Technical Support Document.⁴¹⁶

⁴¹³ Standards for Packaged Terminal Air Conditioners and Heat Pumps. U.S. DOE.

https://www1.eere.energy.gov/buildings/appliance_standards/standards.aspx?productid=46&action=viewcurrent

⁴¹⁴ "Cap" refers to cooling capacity in thousand Btu/h.

⁴¹⁵ IECC 2009, Table 503.2.3(3); consistent since IECC 2003.

⁴¹⁶ U.S. DOE, Technical Support Document: "*Packaged Terminal Air Conditioners and Heat Pumps, 3.2.7 Equipment Lifetime*". <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/45</u>.

Calculation of Deemed Savings

Deemed peak demand and annual energy savings for PTAC/PTHP equipment should be calculated using the following formulas:

New Construction or Replace-on-Burnout

$$kW_{Savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right) \times CF$$
(218)

$$kWh_{Savings,PTAC} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{base}} - \frac{1}{\eta_{post}}\right)$$
(219)

$$kWh_{Savings,PTHP,C} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{base,C}} - \frac{1}{\eta_{post,C}}\right)$$
(220)

$$kWh_{Savings,PTHP,H} = CAP_H \times \frac{1}{3412} \times EFLH_H \times \left(\frac{1}{\eta_{base,H}} - \frac{1}{\eta_{post,H}}\right)$$
(221)

Where:

 CAP_{C} = Rated equipment output cooling capacity of the new unit (BTU/hr)

 CAP_{H} = Rated equipment output heating capacity of the new unit (BTU/hr)

 $\eta_{base,C}$ = Baseline energy efficiency rating of the baseline cooling equipment (EER) (Table 269)

 $\eta_{post,C}$ = Nameplate energy efficiency rating of the installed cooling equipment (EER)

 $\eta_{post,H}$ = Nameplate energy efficiency rating of the installed heating equipment (COP)

Note: heating efficiencies expressed as a heating seasonal performance factor (HSPF) will need to be converted to a coefficient of performance (COP) using the following equation:

$$COP = \frac{HSPF}{3.412}$$
(222)

3,412 = Constant to convert from BTU/hr to kWh

CF =Coincidence factor (

Table 495)

 $EFLH_{C}$ = Equivalent full-load hours for cooling (Table 497)

 $EFLH_H$ = Equivalent full-load hours for heating (Table 498)

Early Retirement

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated as the RUL, and
- 2. The remaining time in the EUL period (EUL RUL).

For the RUL:

$$kW_{Savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right) \times CF$$
(223)

$$kWh_{savings,PTAC} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{pre}} - \frac{1}{\eta_{post}}\right)$$
(224)

$$kWh_{Savings,PTHP,C} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{pre,C}} - \frac{1}{\eta_{post,C}}\right)$$
(225)

$$kWh_{Savings,PTHP,H} = CAP_H \times \frac{1}{3412} \times EFLH_H \times \left(\frac{1}{\eta_{pre,H}} - \frac{1}{\eta_{post,H}}\right)$$
(226)

For the remaining time in the EUL period (EUL – RUL):

Calculate annual savings as you would for a replace-on-burnout project using Equations (218), (219), (220), and (221).

Lifetime kWh savings for Early Retirement Projects is calculated as follows:

$$LifetimekWh_{savings} = \left[(kwh_{savings,ER} \times RUL) + (kWh_{savings,ROB} \times (EUL - RUL)) \right]$$
(227)

Where:

CAP = Rated equipment cooling capacity of the new unit (BTU/hr)

- $\eta_{pre,C}$ = Energy efficiency rating of the existing cooling equipment (EER) (if unavailable, use default efficiency from Table 269)
- $\eta_{pre,H}$ = Energy efficiency rating of the existing heating equipment (COP) (if unavailable, use default efficiency from Table 269)

 $\eta_{post,C}$ = Energy efficiency rating of the installed cooling equipment (EER)

 $\eta_{post,H}$ = Energy efficiency rating of the installed heating equipment (COP)

1,000 = Conversion constant for watts to kilowatts

Note: heating efficiencies expressed as a heating seasonal performance factor (HSPF) will need to be converted to a coefficient of performance (COP) using the following equation:

$$COP = \frac{HSPF}{3.412}$$

(228)

CF =Coincidence factor (

Table 495)

 $EFLH_{C}$ = Equivalent full-load hours for cooling from Table 497

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

RUL = Remaining Useful Life (Table 270)

EUL = Estimated Useful Life = 10 years

Table 270: Remaining Useful Life (RUL)	of Replaced Systems ⁴¹⁷
--	------------------------------------

Age of Replaced System (Years)	RUL (Years)
1	9.5
2	9.0
3	8.5
4	8.0
5	7.5
6	7.0
7	6.5
8	6.0

Age of Replaced System (Years)	RUL (Years)
9	5.5
10	5.0
11	4.5
12	4.0
13	3.5
14	3.0
15	2.5
16 +	0.0

⁴¹⁷ Use of the early retirement baseline is capped at 15 years, representing the age at which 75 percent of existing equipment is expected to have failed. Systems older than 15 years should use the ROB baseline.

Derivation of RULs

Commercial PTAC/PTHP systems have an estimated useful life of ten years. This estimate is consistent with the age at which 50 percent of systems installed in a given year will no longer be in service, as described by the survival function in Figure 10.

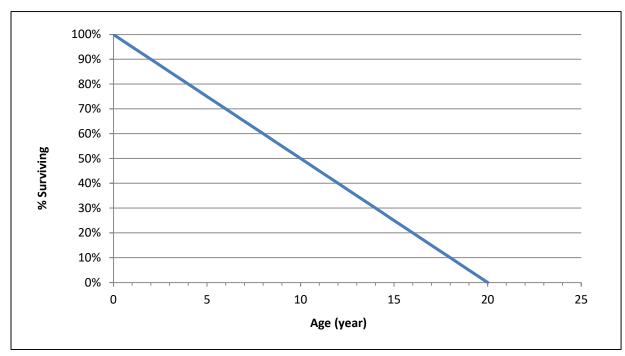


Figure 10: Survival Function for Commercial PTAC/PTHP Systems^{418,419}

The method used for estimating the RUL of a replaced system uses the age of the existing system to reestimate the survival function shown in Figure 10. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

⁴¹⁸ U.S. DOE, "*Technical Support Document: "Packaged Terminal Air Conditioners and Heat Pumps, Chapter 8*". <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/45</u>.

⁴¹⁹ Source: Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". <u>https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx</u>

3.1.15 Steam Trap Replacement or Repair

Measure Description

Steam traps are important elements of steam and condensate systems, and may represent a major energy conservation opportunity. The primary function of a steam trap is to allow condensate formed in the heating process to be drained from the heating equipment. A second crucial function of a steam trap is to facilitate the removal of air from the steam system. Steam traps often fail in the open position, which make steam traps among the biggest energy wasters in a facility. If a steam trap fails in the open position, steam is allowed to pass through the trap and directly into the condensate return system, therefore wasting the available heat within the steam. The boiler continues to generate steam that is being wasted through the failed open steam traps that fail in the closed position, no energy savings will be realized and the heating equipment will not meet its designed capacity.

Baseline and Efficiency Standards

According to the NYSERDA³¹ Natural Gas Database, 70 percent is indicated for baseline combustion efficiency for a steam trap maintenance project. The efficiency to generate steam is stipulated at 100 percent for electric boilers.

Estimated Useful Life (EUL)

According to the NYSERDA Natural Gas Database, the estimated useful life (EUL) is five years.

Calculation of Deemed Savings

When electric boilers are being used to generate steam, deemed electrical savings for steam trap replacements or repairs of failed traps should be calculated by the following formulas:

$$kW_{savings} = (Steam Trap Discharge Rate \times h_{fg} \times \frac{1}{E_{Elec}} \times \frac{1}{3412} \times h_{fg})/(E_{Elec} \times Conversion Factor)$$

$$kWh_{savings} = (Steam Trap Discharge Rate \times OpHrs \times h_{fg} \times \frac{1}{E_{Elec}} \times \frac{1}{3412})/(E_{Elec} \times Conversion Factr)$$

Where:

Steam Trap Discharge Rate = Steam loss in lb/hr. See Table 271.

- 3,412 = Btuh to kW
- OpHrs = annual hours the steam system is pressurized (if unknown, default to equivalent full load heating hours, EFLH_H, Table 498)
- h_{fg} = Latent heat of vaporization in BTU/lb from the saturated steam tables
- $E_{Elec} =$ Efficiency for an electric boiler, 100 percent

(229)

(230)

When natural gas-fired boilers are being used to generate steam, deemed annual natural gas savings for steam trap replacements or repairs of failed traps should be calculated by the following formulas:

$$Therm_{savings} = (Steam Trap Discharge Rate \times OpHrs \times h_{fg} \times \frac{1}{E_{Elec}} \times \frac{1}{100000})/Ec_{Base} \times Therm Conversion Factor)$$
(231)

Where:

Steam Trap Discharge Rate = Steam loss in lb/hr. See Table 271.

- OpHrs = annual hours the steam system is pressurized (if unknown, default to equivalent full load heating hours, EFLH_H, Table 498)
- h_{fg} = Latent heat of evaporation in Btu/lb from steam tables (970.4).
- Ec_{Base} = Combustion efficiency for boiler (if unavailable, estimate at 70%)

100,000 =Conversion constant from Btu to therms

Table 271: Steam Trap Replacement and Repair – Leaking Steam Trap Discharge Rate - Steam Loss
(lbs./hr.)

Steam Trap Orifice Diameter		Steam Pressure (psig) ¹											
(inches)	2	5	10	15	25	50	75	100	125	150	200	250	300
1/32"	0	0	1	1	1	2	2	3	4	5	6	7	9
1/16"	1	1	2	2	3	4	6	8	9	11	14	18	21
3/32"	1	2	3	4	6	10	14	17	21	25	32	40	48
1/8"	2	4	6	8	11	17	24	31	37	44	58	71	85
5/32"	4	6	9	12	16	27	37	48	58	69	90	111	132
3/16"	5	9	14	18	24	39	54	69	84	99	130	160	190
7/32"	7	12	19	24	32	53	73	94	115	135	177	218	259
1/4"	10	16	24	31	42	69	96	123	150	177	230	284	338
9/32"	12	20	31	40	53	87	121	155	189	224	292	360	428
5/16"	15	25	38	49	66	108	150	192	234	276	360	444	528
11/32"	18	30	46	59	80	131	181	232	283	334	436	538	640
7/16"	30	49	74	96	129	211	294	376	459	541	706	871	1036
15/32"	35	57	86	111	149	244	339	434	529	624	814	1004	1195
1/2"	39	64	97	125	168	276	384	491	599	707	922	1137	1353
¹ Table extracted f	rom A	rmstro	ong on	line ste	eam lo	ss calc	ulator:	1					
(http://www.arn	(http://www.armstronginternational.com/steam_loss) by selecting the "coil/process" application												
and entering the i	inlet p	ressur	e, outl	et pres	sure a	nd orit	fice dia	meter					

Measure/Technology Review

Several of the primary data sources reviewed for this effort contained information about steam traps.

Resource	Notes			
NYSERDA 420	Life of steam trap 5 years, 70% boiler efficiency, 10-20% natural gas savings.			
FEMP ⁴²¹	Report: Steam Trap Performance Assessment – shows methods to test for failed traps, how to calculate energy savings, table showing energy loss for failed traps at various pressures and orifice sizes, recommends not using the full orifice diameter when calculating savings (recommends 0.50 coefficient of discharge).			
U.S. DOE ⁴²²	Report: Energy Tips – Steam, Table for steam loss in lb/hr. for steam trap failed open with coefficient of discharge of 0.72.			
ENERGY STAR® ⁴²³	Report: Wise Rules for Industrial Energy Efficiency, September 2003			
XCEL Energy 424	Reports and rebate application show minimum installation and equipment standards to be eligible for rebate, recommend testing steam traps annually.			

Table 272: Steam Trap Replacement and Repair – Review of Steam Trap Information

Code Review

No energy codes related to steam trap replacement or repair were found.

⁴²⁰ Nexant. 2005. NYSERDA Deemed Savings Measure Database. Prepared for NYSERDA.

⁴²¹ Federal Energy Management Program (FEMP). 1999. Steam Trap Assessment.

⁴²² U.S. DOE. 2006. Energy Tips – Steam Inspect and Repair Steam Traps. January, 2006.

⁴²³ ENERGY STAR®. 2003. Wise Rules for Industrial Energy Efficiencies. September 2003.

⁴²⁴ Xcel Energy. 2006. 2007/2008/2009 Triennial Plan Minnesota Natural Gas and Electric Conversation Improvement Program.

3.1.16 Unitary and Split System AC/HP Equipment

Measure Description

This measure requires the installation of packaged or split system air conditioners (AC) or heat pumps (HP), excluding PTACs/PTHPs. Unitary or split system ACs/HPs consist of one or more factory-made assemblies that normally include an evaporator or cooling coil(s), compressor(s), and condenser(s). They provide the function of air cooling, and may include the functions of air heating, air circulation, air cleaning, dehumidifying, or humidifying.

Baseline and Efficiency Standards

The sections that follow describe the different baseline efficiency values that should be used for measures in new construction applications or that replace burned-out equipment, designated "replace-on-burnout," and for measures that replace equipment with remaining useful life, designated "early retirement."

New Construction or Replace-on-Burnout

The baseline for equipment installed in new construction or replace-on-burnout is the current federal standard specified in 10 CFR 431.97⁴²⁵(Table 273). On January 1, 2023, new baseline standards for unitary packaged equipment greater than or equal to 65,000 Btu/h went into effect replacing IEER values from January 1, 2018.

New efficiency metrics were also identified for residential central split systems air conditioners and heat pumps less than 65,000 Btu/h that went into effect on January 1, 2023. These are noted as the following:

- Split system air conditioners < 45,000 Btu/h 14.3 SEER2, 11.7 EER2
- Split system air conditioners >= 45,000 Btu/h 13.8 SEER2, 11.2 EER2
- Single-package air conditioners <= 65,000 Btu/h 13.4 SEER2, 10.6 EER2
- Split system heat pumps <= 65,000 Btu/h 14.3 SEER2, 11.7 EER2, 7.5 HSPF2
- Single-package heat pumps <= 65,000 Btu/h 13.4 SEER2, 10.6 EER2, 6.7 HSPF2

For equipment not rated under the new testing procedure, AHRI recommends that previously rated HSPF values are converted to HSPF2 values for ducted systems by applying a 0.85 multiplier and for ductless systems a 0.90 multiplier. For packaged systems, a 0.84 multiplier is to be used. For SEER and EER values, a 0.95 multiplier can be applied for Ducted/Packaged systems. No multiplier is used for non-ducted systems (ductless).

Table 273 reflects the current standards for baseline efficiency determination from both of these code changes.

⁴²⁵ 2010 U.S. Code: Title 42, Chapter 77, Subchapter III, Part A-1, Section 6313.

Equipment Type	Capacity (Btu/h)	Heating Section Type	Sub-Category	Minimum Efficiency
	< 45,000	A 11	S. 1.4 S	11.7 EER2 14.3 SEER2 ⁴²⁸
	>45,000 and <65,000	All	Split System ⁴²⁷	11.2 EER2 13.8 SEER2
	< 65,000	All	Single Package ⁴²⁹	10.6 EER2 13.4 SEER2
	\geq 65,000 & < 135,000	Electric Resistance (or none)	Split System & Single Package	14.8 IEER
	≥ 65,000 & < 135,000	All other	Split System & Single Package	14.6 IEER
Air Conditioners, Air Cooled	\geq 135,000 & < 240,000	Electric Resistance (or none)	Split System & Single Package	14.2 IEER
	≥ 135,000 & < 240,000	All other	Split System & Single Package	14.0 IEER
	≥240,000 & <760,000	Electric Resistance (or none)	Split System & Single Package	13.2 IEER
	≥ 240,000 & < 760,000		Split System & Single Package	13.0 IEER
	≥ 760,000	Electric Resistance (or none)	Split System & Single Package	9.7 EER 11.2 IEER

Table 273: Unitary AC/HP Equipment – Baseline Efficiency Levels 426

⁴²⁹ ibid.

⁴²⁶ IECC 2012, Table C403.2.3(1) & C403.2.3(2); full-load efficiencies consistent with ASHRAE Standard 90.1-2007, Table 6.8.1A & 6.8.1B and compliant with the federal standard.

⁴²⁷ As specified by 10 CFR 430.32(c)(3) for Residential Central Air Conditioners and Heat Pumps. Split systems are not explicitly covered by originally specified federal standard 10 CFR 431.97 for Commercial packaged air conditioner and heating equipment. EER values are not specified in federal standards. Code specified SEER values converted to EER using EER = $-0.02 \times (SEER)^2 + 1.12 \times SEER$. EER2 values taken from the Southwest minimum requirements.

⁴²⁸ The 2023 federal standards (10 CFR 430.32(c)(5)) are in terms of an updated metric, depicted as SEER2 and manufacturers must certify their products meet the standard according to the new test procedure and new metrics. (<u>https://www.regulations.gov/document/EERE-2014-BT-STD-0048-0200</u>). SEER2 and EER2 values taken from the Southeast and Southwest requirements.

Equipment Type	Capacity (Btu/h)	Heating Section Type		
	≥ 760,000	All other	Split System & Single Package	9.5 EER 11.0 IEER
	< 65,000		Shigle Package Split System & Single Package	12.1 EER 12.3 IEER
Air Conditioners, Water and Evaporative	\geq 65,000 & < 135,000	Electric Resistance (or none)	Split System & Single Package	12.1 EER 13.9 IEER
Cooled ⁴³⁰	<u>></u> 65,000 & < 135,000	All other	Split System & Single Package	12.5 EER 13.9 IEER
	\geq 135,000 & < 240,000	Electric Resistance (or none)	Split System & Single Package	12.5 EER 13.9 IEER
Air Conditioners,	\geq 135,000 & < 240,000	All other	Split System & Single Package	12.3 EER 13.7 IEER
Water and Evaporative Cooled	orative		Split System & Single Package	12.4 EER 13.6 IEER
	≥240,000	All other	Split System & Single Package	12.2 EER 13.4 IEER
	< 65,000 < 65,000		Split System	11.7 EER2 14.3 SEER2
Heat Pumps, Air Cooled (Cooling Mode)		All	Single Package (before 1/1/2015)	10.6 EER2
			Single Package (after 1/1/2015) ⁴³¹	13.4 SEER2
	\geq 65,000 & < 135,000	Electric Resistance (or none)	Split System & Single Package	14.1 IEER

 $^{^{430}}$ Used IECC 2012 values for before 6/1/2011 to be consistent with ASHARAE 90.1-2007.

⁴³¹ As specified by 10 CFR 430.32(c)(3) for Residential Central Air Conditioners and Heat Pumps. Split systems are not explicitly covered by originally specified federal standard 10 CFR 431.97 for Commercial packaged air conditioner and heating equipment.

Equipment Type	Capacity (Btu/h)	Heating Section Type	Sub-Category	Minimum Efficiency
	$\geq 65,000 \&$ < 135,000	All other	Split System & Single Package	13.9 IEER
	≥135,000 & <240,000	Electric Resistance (or none)	Split System & Single Package	13.5 IEER
	≥ 135,000 & < 240,000	All other	Split System & Single Package	13.3 IEER
	≥ 240,000	Electric Resistance (or none)	Split System & Single Package	12.5 IEER
	≥240,000	All other	Split System & Single Package	12.3 IEER
	< 65,000	n/a	Split System & Single Package (before 1/1/2015)	7.7 HSPF
			Split System (after 1/1/2015) ⁴³²	7.5 HSPF2
Heat Pumps, Air Cooled (Heating Mode)			Single Package (after 1/1/2015) ⁴³³	6.7 HSPF2
	$\geq 65,000 \&$ < 135,000	n/a	Split System & Single Package	3.4 COP
	≥ 135,000 & <240,000	n/a	Split System & Single Package	3.3 COP
	<u>>240,000 &</u> <760,000	n/a	Split System & Single Package	3.2 COP

433 Ibid.

⁴³² As specified by 10 CFR 430.32(c)(3) for Residential Central Air Conditioners and Heat Pumps. Split systems are not explicitly covered by originally specified federal standard 10 CFR 431.97 for Commercial packaged air conditioner and heating equipment.

Early Retirement

Early retirement projects involve the replacement of a working system. There is a dual baseline for early retirement applications. For the remaining useful life of the existing equipment, the baseline is the nameplate efficiency of the existing cooling equipment. If unavailable, baseline efficiency will be estimated according to the ASHRAE standard that was in effect at the time of manufacture based on the type, size, and year of manufacture for the replaced system. Baseline efficiency levels for systems installed from 1990 to 2007 are provided in Table 274 through

Table 277. For the remainder of the estimated useful life, the baseline is the current federal minimum efficiency for the installed equipment type (Table 273).

For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Mfg. Year of Replaced System	Split Systems < 65,000 BTU/hr	Packaged Systems < 65,000 BTU/hr	All Systems ≥ 65,000 - < 135,000 BTU/hr	All Systems ≥ 135,000 - < 240,000 BTU /hr	All Systems ≥ 240,000 - < 760,000 BTU/hr	All Systems ≥ 760,000 BTU/hr
	EER ⁴³⁵	EER ⁴³⁶	EER	EER	EER	EER
1990	9.2	9.0	8.9	8	8	7.8
1991	9.2	9.0	8.9	8	8	7.8
1992	9.2	9.0	8.9	8.3	8.3	8
1993	9.2	9.0	8.9	8.3	8.3	8
1994	9.2	9.0	8.9	8.3	8.3	8
1995	9.2	9.0	8.9	8.3	8.3	8
1996	9.2	9.0	8.9	8.3	8.3	8
1997	9.2	9.0	8.9	8.3	8.3	8
1998	9.2	9.0	8.9	8.3	8.3	8
1999	9.2	9.0	8.9	8.3	8.3	8
2000	9.2	9.0	8.9	8.3	8.3	8
2001	9.2	9.0	8.9	8.3	8.3	8
2002	9.2	9.0	10.1	9.5	9.3	9
2003	9.2	9.0	10.1	9.5	9.3	9
2004	9.2	9.0	10.1	9.5	9.3	9
2005	9.2	9.0	10.1	9.5	9.3	9
2006	11.2	11.2	10.1	9.5	9.3	9
2007	11.2	11.2	10.1	9.5	9.3	9

Table 274: Baseline Full-Load Efficiency of Air Conditioners (ACs) Replaced via Early Retirement434

⁴³⁴ Consolidation of ASHRAE 90.1-1989-2007

436 Ibid.

 $^{^{435}}$ Prior code specified EER value should be converted to EER2 by multiplying the code specified value by 0.95. This is based on the equivalency methodology comparing SEER2 efficiency values against comparable split system ACs <45,000 Btu/h of SEER 15 and >=45,000 Btu/h of SEER 14.5 (see Federal Code of Regulations, 2017-01-06 Energy Conservation Program: Energy Conservation Standards for Residential Central Air-Conditioners and Heat Pumps; Direct final rule; Docket: EERE-2014-BT-STD-0048, Section I Synopsis of the Direct Final Rule). SEER values converted to EER using EER = -0.02 x (SEER)² + 1.12 x SEER.

Mfg. Year of Replaced System	Split Systems < 65,000 BTU/hr	Packaged Systems < 65,000 BTU/hr	All Systems ≥ 65,000 - < 135,000 BTU/hr	All Systems ≥ 135,000 - < 240,000 BTU/hr	All Systems ≥ 240,000 - < 760,000 BTU/hr	All Systems ≥ 760,000 BTU/hr
	SEER	SEER	IEER	IEER	IEER	IEER
1990	10.0	10.4	10.3	9.3	9.3	9.0
1991	10.0	10.4	10.3	9.3	9.3	9.0
1992	10.0	10.4	10.3	9.6	9.6	9.3
1993	10.0	10.4	10.3	9.6	9.6	9.3
1994	10.0	10.4	10.3	9.6	9.6	9.3
1995	10.0	10.4	10.3	9.6	9.6	9.3
1996	10.0	10.4	10.3	9.6	9.6	9.3
1997	10.0	10.4	10.3	9.6	9.6	9.3
1998	10.0	10.4	10.3	9.6	9.6	9.3
1999	10.0	10.4	10.3	9.6	9.6	9.3
2000	10.0	10.4	10.3	9.6	9.6	9.3
2001	10.0	10.4	10.3	9.6	9.6	9.3
2002	10.0	10.4	11.7	11.0	10.8	10.4
2003	10.0	10.4	11.7	11.0	10.8	10.4
2004	10.0	10.4	11.7	11.0	10.8	10.4
2005	10.0	10.4	11.7	11.0	10.8	10.4
2006	13.0	13.0	11.7	11.0	10.8	10.4
2007	13.0	13.0	11.7	11.0	10.8	10.4

Table 275: Baseline Part-Load Efficiency of Air Conditioners (ACs) Replaced via EarlyRetirement437

 $^{^{437}}$ IEER = EER x 1.16 based on review of existing AHRI Unitary Large Equipment. Accessed 7/16/2014. Prior code specified SEER value should be converted to SEER2 by multiplying the code specified value by 0.95. This is based on the equivalency methodology comparing SEER2 efficiency values against comparable split system ACs <45,000 Btu/h of SEER 15 and >=45,000 Btu/h of SEER 14.5 (see Federal Code of Regulations, 2017-01-06 Energy Conservation Program: Energy Conservation Standards for Residential Central Air-Conditioners and Heat Pumps; Direct final rule; Docket: EERE-2014-BT-STD-0048, Section I Synopsis of the Direct Final Rule).

Mfg. Year of Replaced System	Split Systems < 65,000 BTU/hr	Packaged Systems < 65,000 BTU/hr	All Systems ≥ 65,000 - < 135,000 BTU/hr	All Systems ≥ 135,000 - < 240,000 BTU/hr	All Systems ≥ 240,000 - < 760,000 BTU/hr	All Systems ≥ 760,000 BTU/hr
System	EER ⁴³⁹	EER 440	EER	EER	EER	EER
1990	9.2	9.0	8.9	8	8	7.8
1991	9.2	9.0	8.9	8	8	7.8
1992	9.2	9.0	8.9	8.3	8.3	8.5
1993	9.2	9.0	8.9	8.3	8.3	8.5
1994	9.2	9.0	8.9	8.3	8.3	8.5
1995	9.2	9.0	8.9	8.3	8.3	8.5
1996	9.2	9.0	8.9	8.3	8.3	8.5
1997	9.2	9.0	8.9	8.3	8.3	8.5
1998	9.2	9.0	8.9	8.3	8.3	8.5
1999	9.2	9.0	8.9	8.3	8.3	8.5
2000	9.2	9.0	8.9	8.3	8.3	8.5
2001	9.2	9.0	8.9	8.3	8.3	8.5
2002	9.2	9.0	9.9	9.1	8.8	8.8
2003	9.2	9.0	9.9	9.1	8.8	8.8
2004	9.2	9.0	9.9	9.1	8.8	8.8
2005	9.2	9.0	9.9	9.1	8.8	8.8
2006	11.2	11.2	9.9	9.1	8.8	8.8
2007	11.2	11.2	9.9	9.1	8.8	8.8

Table 276: Baseline Full-Load Efficiency of Heat Pumps (HPs) Replaced via Early Retirement⁴³⁸

⁴³⁸ Consolidation of ASHRAE 90.1-1989-2007

440 Ibid.

 $^{^{439}}$ Prior code specified EER value should be converted to EER2 by multiplying the code specified value by 0.95. This is based on the equivalency methodology comparing SEER2 efficiency values against comparable split system ACs <45,000 Btu/h of SEER 15 and >=45,000 Btu/h of SEER 14.5 (see Federal Code of Regulations, 2017-01-06 Energy Conservation Program: Energy Conservation Standards for Residential Central Air-Conditioners and Heat Pumps; Direct final rule; Docket: EERE-2014-BT-STD-0048, Section I Synopsis of the Direct Final Rule). SEER values converted to EER using EER = -0.02 x (SEER)² + 1.12 x SEER.

Mfg. Year of Replaced System	Split Systems < 65,000 BTU/hr	Packaged Systems < 65,000 BTU/hr	All Systems ≥ 65,000 - < 135,000 BTU/hr	All Systems ≥ 135,000 - < 240,000 BTU/hr	All Systems ≥ 240,000 - < 760,000 BTU/hr	All Systems ≥ 760,000 BTU/hr
	SEER	SEER	IEER	IEER	IEER	IEER
1990	10.0	10.4	10.3	9.3	9.3	9.0
1991	10.0	10.4	10.3	9.3	9.3	9.0
1992	10.0	10.4	10.3	9.6	9.6	9.9
1993	10.0	10.4	10.3	9.6	9.6	9.9
1994	10.0	10.4	10.3	9.6	9.6	9.9
1995	10.0	10.4	10.3	9.6	9.6	9.9
1996	10.0	10.4	10.3	9.6	9.6	9.9
1997	10.0	10.4	10.3	9.6	9.6	9.9
1998	10.0	10.4	10.3	9.6	9.6	9.9
1999	10.0	10.4	10.3	9.6	9.6	9.9
2000	10.0	10.4	10.3	9.6	9.6	9.9
2001	10.0	10.4	10.3	9.6	9.6	9.9
2002	10.0	10.4	11.5	10.6	10.2	10.2
2003	10.0	10.4	11.5	10.6	10.2	10.2
2004	10.0	10.4	11.5	10.6	10.2	10.2
2005	10.0	10.4	11.5	10.6	10.2	10.2
2006	13.0	13.0	11.5	10.6	10.2	10.2
2007	13.0	13.0	11.5	10.6	10.2	10.2

Table 277: Baseline Part-Load Efficiency of Heat Pumps (HPs) Replaced via Early Retirement⁴⁴¹

⁴⁴¹ IEER = EER x 1.16 based on review of existing AHRI Unitary Large Equipment. Accessed 7/16/2014. Prior code specified SEER value should be converted to SEER2 by multiplying the code specified value by 0.95. This is based on the equivalency methodology comparing SEER2 efficiency values against comparable split system ACs <45,000 Btu/h of SEER 15 and >=45,000 Btu/h of SEER 14.5 (see Federal Code of Regulations, 2017-01-06 Energy Conservation Program: Energy Conservation Standards for Residential Central Air-Conditioners and Heat Pumps; Direct final rule; Docket: EERE-2014-BT-STD-0048, Section I Synopsis of the Direct Final Rule).

Equipment Useful Life (EUL)

According to the DEER 2008, the EUL for this measure is 15 years.

Calculation of Deemed Savings

Deemed peak demand and annual energy savings for unitary AC and HP equipment should be calculated as shown below. Note that these savings calculations are different depending on whether the measure is replace-on-burnout or early retirement.

New Construction or Replace-on-Burnout

$$kW_{Savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{\eta_{base,C}} - \frac{1}{\eta_{post,C}}\right) \times CF$$
(232)

$$kWh_{Savings,AC} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{base,C}} - \frac{1}{\eta_{post,C}}\right)$$
(233)

$$kWh_{Savings,HP,C} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{base,C}} - \frac{1}{\eta_{post,C}}\right)$$
(234)

$$kWh_{Savings,HP,H} = CAP_H \times \frac{1}{3412} \times EFLH_H \times \left(\frac{1}{\eta_{base,H}} - \frac{1}{\eta_{post,H}}\right)$$
(235)

Where:

 CAP_{c} = Rated equipment cooling capacity of the new unit (BTU/hr)

 CAP_H = Rated equipment heating capacity of the new unit (BTU/hr)

1,000 = Conversion constant from watts to kilowatts

 $\eta_{base,C,H}$ = Baseline energy efficiency rating of the cooling/heating equipment (Table 273)

 $\eta_{post,C,H}$ = Nameplate energy efficiency rating of the installed cooling/heating equipment

Note: Use EER for kW savings calculations and SEER/IEER and HSPF for kWh savings calculations.

CF =Coincidence factor (

Table 495)

 $EFLH_{C}$ = Equivalent full-load hours for cooling from Table 497

 $EFLH_H$ = Equivalent full-load hours for heating from Table 498

Early Retirement

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (15 RUL).

For the RUL (Table 278):

$$kW_{Savings} = CAP_C \times \frac{1}{1000} \times \left(\frac{1}{\eta_{pre,C}} - \frac{1}{\eta_{post,C}}\right) \times CF$$
(236)

$$kWh_{Savins,AC} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{pre,C}} - \frac{1}{\eta_{post,C}}\right)$$
(237)

$$kWh_{Savings,HP,C} = CAP_C \times \frac{1}{1000} \times EFLH_C \times \left(\frac{1}{\eta_{pre,C}} - \frac{1}{\eta_{post,C}}\right)$$
(238)

$$kWh_{Savings,HP,H} = CAP_H \times \frac{1}{3412} \times EFLH_H \times \left(\frac{1}{\eta_{pre,H}} - \frac{1}{\eta_{post,H}}\right)$$
(239)

$$kWh_{Savings,HP} = kWh_{Savings,HP,C} + kWh_{Savings,HP,H}$$
(240)

For the remaining time in the EUL period (15 - RUL):

Calculate annual savings as you would for a replace-on-burnout project using Equations (232), (233), and (234).

Lifetime kWh savings for Early Retirement Projects is calculated as follows:

$$LifetimekWh_{savings} = \left[\left(kwh_{savings,ER} \times RUL \right) + \left(kWh_{savings,ROB} \times (EUL - RUL) \right) \right]$$
(241)

Where:

ROB =Replace-on-Burnout

ER = Early Retirement

 CAP_{C} = Rated equipment cooling capacity of the new unit (BTU/hr)

 CAP_H = Rated equipment heating capacity of the new unit (BTU/hr)

1,000 = Conversion constant from watts to kilowatts

 $\eta_{pre,AC/HP}$ = Nameplate energy efficiency rating of the existing cooling/heating equipment (if unavailable, use default efficiency from Table 274 and Table 275 for air conditioners or Table 276 and

Table 277 for heat pumps)

 $\eta_{post,AC/HP}$ = Nameplate energy efficiency rating of the installed cooling/heating equipment

Note: use EER for kW savings calculations and SEER/IEER and HSPF for kWh savings calculations.

Note: heating efficiencies expressed as a coefficient of performance (COP) will need to be converted to a heating seasonal performance factor (HSPF) using the following equation:

$$HSPF = COP \times 3.412$$

(242)

CF =Coincidence factor (

Table 495)

 $EFLH_{C}$ = Equivalent full-load hours for cooling (Table 497)

 $EFLH_H$ = Equivalent full-load hours for heating (Table 498)

RUL = Remaining Useful Life (Table 278)

EUL = Estimated Useful Life = 15 years

Age of Replaced System (Years)	RUL (Years)
5	10.0
6	9.1
7	8.2
8	7.3
9	6.5
10	5.7
11	5.0
12	4.4

Age of Replaced System (Years)	RUL (Years)
13	3.8
14	3.3
15	2.8
16	2.5
17	2.2
18	1.9
19 +	0.0

⁴⁴² Use of the early retirement baseline is capped at 18 years, representing the age at which 75 percent of existing equipment is expected to have failed. Systems older than 18 years should use the ROB baseline.

Derivation of RULs

Commercial HVAC systems have an EUL of 15 years. This estimate is consistent with the age at which 50 percent of systems installed in a given year will no longer be in service, as described by the survival function in Figure 11.

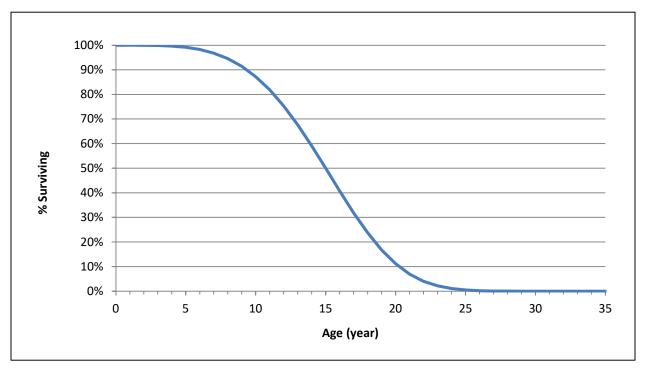


Figure 11: Survival Function for Commercial Unitary HVAC Systems⁴⁴³

The method used for estimating the RUL of a replaced system uses the age of the existing system to reestimate the survival function shown in Figure 11. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

⁴⁴³ Source: Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx

3.1.17 Air or Water Cooled Chilling Equipment (Chillers)

Measure Description

This measure requires the installation of any air cooled or water cooled chilling package, referred to as a chiller. AHRI Test Standard 550/590-2003 defines a water-chilling package as "a factory-made and prefabricated assembly of one or more compressor, condensers, and evaporators, with interconnections and accessories, designed for the purpose of cooling water. It is a machine specifically designed to make use of a vapor compression refrigeration cycle to remove heat from water and reject the heat to a cooling medium, usually air or water." A chiller is commonly used to provide cooling for a variety of building types and process loads.

The most common applications are for larger cooling loads (e.g., 50 to 100 tons and greater). Chiller types include centrifugal, rotary, screw, scroll, reciprocating, and gas absorption. Absorption chillers are subject to a different AHRI test standard and not reviewed as part of this analysis. When a water-cooled chiller is replacing an air-cooled chiller, the additional auxiliary electrical loads for the condenser water pump and the cooling tower fan have to be considered. Thus a penalty factor is necessary as a downward adjustment to account for the peak demand and energy savings.

Baseline and Efficiency Standards

The sections that follow describe the different baseline efficiency values that should be used for measures in new construction applications or that replace burned-out equipment, designated "replace-on-burnout" and for measures that replace equipment with remaining useful life, designated "early retirement."

New Construction or Replace-on-Burnout

The baseline for units that are used in new construction or are replaced on burnout is the current state minimum standard,⁴⁴⁴ which went into effect January 21, 2013 (Table 279).

As specified in Protocol E2 of TRM Volume 1, the enforcement date for a code or standard update is the end of the current program year if the effective date of the code or standard update is before July 1. For code or standard effective dates on or after July 1, the enforcement date is the end of the following program year. The specified lag period is to allow for the sale and/or use of existing equipment inventory. See Protocol E2 for more details.

⁴⁴⁴ ASHRAE Standard 90.1-2007.

Equipment Type	Chiller Type	Capacity (Tons)	Path A Minimum Efficiency ⁴⁴⁶	Path B Minimum Efficiency
A	All	< 150	9.562 EER 12.5 IPLV	N/A
Air cooled		≥150	9.562 EER 12.75 IPLV	N/A
		< 75	0.780 kW/ton 0.630 IPLV	0.800 kW/ton 0.600 IPLV
Water cooled	Rotary/ Screw/Scroll/ Reciprocatin g	\geq 75 and < 150	0.775 kW/ton 0.615 IPLV	0.790 kW/ton 0.586 IPLV
water cooled		\geq 150 and < 300	0.680 kW/ton 0.580 IPLV	0.718 kW/ton 0.540 IPLV
		≥ 300	0.620 kW/ton 0.540 IPLV	0.639 kW/ton 0.490 IPLV
	Centrifugal	< 300	0.634 kW/ton 0.596 IPLV	0.639 kW/ton 0.450 IPLV
Water cooled		\geq 300 and < 600	0.576 kW/ton 0.549 IPLV	0.600 kW/ton 0.400 IPLV
		≥ 600	0.570 kW/ton 0.539 IPLV	0.590 kW/ton 0.400 IPLV

Table 279: Chillers -	- Baseline Efficiency	y Levels for Chilled	Water Packages ⁴⁴⁵
-----------------------	-----------------------	----------------------	-------------------------------

Early Retirement

Early retirement projects involve replacement of a working system. There is a dual baseline for early retirement applications. For the remaining useful life of the existing equipment, the baseline is the nameplate efficiency of the existing cooling equipment. If unavailable, baseline efficiency will be estimated according to the ASHRAE standard that was in effect at the time of manufacture based on the type, size, and year of manufacture for the replaced system. Baseline efficiency levels for systems installed from 1990 to 2012 are provided in Table 280 through Table 285. The remainder of the estimated useful life, the baseline is the current state minimum efficiency for the installed equipment type (Table 279).

For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent

⁴⁴⁵ The values in the table reflect IECC 2009, Table 503.2.3(7). These values supersede current Arkansas state commercial energy code and ASHRAE Standard 90.1-2007 due to the Environmental Protection Agency (EPA) 2010 Hydro chlorofluorocarbon (HCFC) Phase-out Regulations.

⁴⁴⁶ Note that the efficiency values listed in this table is for Path A type chillers without a VSD. Chillers that exceed Path B requirements are eligible for this measure. However the savings were calculated using the Path A baseline efficiency values.

failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Year Installed	< 75 Tons	≥ 75 to 150 Tons	≥ 150 to 300 Tons	≥ 300 to 600 Tons	<u>></u> 600 Tons
(Replaced System)	Full-load EER	Full-load EER	Full-load EER	Full-load EER	Full-load EER
1990	9.210	9.210	8.529	8.529	8.529
1991	9.210	9.210	8.529	8.529	8.529
1992	9.210	9.210	8.529	8.529	8.529
1993	9.210	9.210	8.529	8.529	8.529
1994	9.210	9.210	8.529	8.529	8.529
1995	9.210	9.210	8.529	8.529	8.529
1996	9.210	9.210	8.529	8.529	8.529
1997	9.210	9.210	8.529	8.529	8.529
1998	9.210	9.210	8.529	8.529	8.529
1999	9.210	9.210	8.529	8.529	8.529
2000	9.210	9.210	8.529	8.529	8.529
2001	9.210	9.210	8.529	8.529	8.529
2002	9.554	9.554	9.554	9.554	9.554
2003	9.554	9.554	9.554	9.554	9.554
2004	9.554	9.554	9.554	9.554	9.554
2005	9.554	9.554	9.554	9.554	9.554
2006	9.554	9.554	9.554	9.554	9.554
2007	9.554	9.554	9.554	9.554	9.554
2008	9.554	9.554	9.554	9.554	9.554
2009	9.554	9.554	9.554	9.554	9.554
2010	9.554	9.554	9.554	9.554	9.554
2011	9.554	9.554	9.554	9.554	9.554
2012	9.562	9.562	9.562	9.562	9.562

⁴⁴⁷ Consolidation of ASHRAE 90.1-1989-2007.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Year Installed	< 75 Tons	<u>></u> 75 to 150 Tons	≥ 150 to 300 Tons	<u>></u> 300 to 600 Tons	<u>> 600</u> Tons
(Replaced System)	IPLV (EER)	IPLV (EER)	IPLV (EER)	IPLV (EER)	IPLV (EER)
1990	12.157	12.157	11.258	11.258	11.258
1991	12.157	12.157	11.258	11.258	11.258
1992	12.157	12.157	11.258	11.258	11.258
1993	12.157	12.157	11.258	11.258	11.258
1994	12.157	12.157	11.258	11.258	11.258
1995	12.157	12.157	11.258	11.258	11.258
1996	12.157	12.157	11.258	11.258	11.258
1997	12.157	12.157	11.258	11.258	11.258
1998	12.157	12.157	11.258	11.258	11.258
1999	12.157	12.157	11.258	11.258	11.258
2000	12.157	12.157	11.258	11.258	11.258
2001	12.157	12.157	11.258	11.258	11.258
2002	12.611	12.611	12.611	12.611	12.611
2003	12.611	12.611	12.611	12.611	12.611
2004	12.611	12.611	12.611	12.611	12.611
2005	12.611	12.611	12.611	12.611	12.611
2006	12.611	12.611	12.611	12.611	12.611
2007	12.611	12.611	12.611	12.611	12.611
2008	12.611	12.611	12.611	12.611	12.611
2009	12.611	12.611	12.611	12.611	12.611
2010	12.611	12.611	12.611	12.611	12.611
2011	12.611	12.611	12.611	12.611	12.611
2012	12.622	12.622	12.622	12.622	12.622

Table 281: Baseline Part-Load Efficiency for Air-Cooled Chillers Replaced via Early Retirement⁴⁴⁸

⁴⁴⁸ IPLV = EER x 1.32 based on comparison of corresponding IECC 2009 EER and IPLV baseline efficiency values.

Year Installed	< 75 Tons	≥ 75 to 150 Tons	≥ 150 to 300 Tons	<u>> 300 to</u> 600 Tons	<u>≥</u> 600 Tons
(Replaced System)	Full-load kW/Ton	Full-load kW/Ton	Full-load kW/Ton	Full-load kW/Ton	Full-load kW/Ton
1990	0.926	0.926	0.837	0.748	0.748
1991	0.926	0.926	0.837	0.748	0.748
1992	0.926	0.926	0.837	0.748	0.748
1993	0.926	0.926	0.837	0.748	0.748
1994	0.926	0.926	0.837	0.748	0.748
1995	0.926	0.926	0.837	0.748	0.748
1996	0.926	0.926	0.837	0.748	0.748
1997	0.926	0.926	0.837	0.748	0.748
1998	0.926	0.926	0.837	0.748	0.748
1999	0.926	0.926	0.837	0.748	0.748
2000	0.926	0.926	0.837	0.748	0.748
2001	0.926	0.926	0.837	0.748	0.748
2002	0.703	0.703	0.634	0.577	0.577
2003	0.703	0.703	0.634	0.577	0.577
2004	0.703	0.703	0.634	0.577	0.577
2005	0.703	0.703	0.634	0.577	0.577
2006	0.703	0.703	0.634	0.577	0.577
2007	0.703	0.703	0.634	0.577	0.577
2008	0.703	0.703	0.634	0.577	0.577
2009	0.703	0.703	0.634	0.577	0.577
2010	0.703	0.703	0.634	0.577	0.577
2011	0.703	0.703	0.634	0.577	0.577
2012	0.703	0.703	0.634	0.577	0.577

 Table 282: Baseline Full-Load Efficiency for Centrifugal Water-Cooled Chillers Replaced via Early

 Retirement⁴⁴⁹

⁴⁴⁹ Consolidation of ASHRAE 90.1-1989-2007.

Year Installed	< 75 Tons	≥ 75 to 150 Tons	≥ 150 to 300 Tons	≥ 300 to 600 Tons	<u>></u> 600 Tons
(Replaced System)	IPLV (kW/ton)	IPLV (kW/ton)	IPLV (kW/ton)	IPLV (kW/ton)	IPLV (kW/ton)
1990	0.815	0.815	0.737	0.658	0.658
1991	0.815	0.815	0.737	0.658	0.658
1992	0.815	0.815	0.737	0.658	0.658
1993	0.815	0.815	0.737	0.658	0.658
1994	0.815	0.815	0.737	0.658	0.658
1995	0.815	0.815	0.737	0.658	0.658
1996	0.815	0.815	0.737	0.658	0.658
1997	0.815	0.815	0.737	0.658	0.658
1998	0.815	0.815	0.737	0.658	0.658
1999	0.815	0.815	0.737	0.658	0.658
2000	0.815	0.815	0.737	0.658	0.658
2001	0.815	0.815	0.737	0.658	0.658
2002	0.619	0.619	0.558	0.508	0.508
2003	0.619	0.619	0.558	0.508	0.508
2004	0.619	0.619	0.558	0.508	0.508
2005	0.619	0.619	0.558	0.508	0.508
2006	0.619	0.619	0.558	0.508	0.508
2007	0.619	0.619	0.558	0.508	0.508
2008	0.619	0.619	0.558	0.508	0.508
2009	0.619	0.619	0.558	0.508	0.508
2010	0.619	0.619	0.558	0.508	0.508
2011	0.619	0.619	0.558	0.508	0.508
2012	0.619	0.619	0.558	0.508	0.508

 Table 283: Baseline Part-Load Efficiency for Centrifugal Water-Cooled Chillers Replaced via Early

 Retirement⁴⁵⁰

 $^{^{450}}$ IPLV = kW/ton x 0.88 based on comparison of corresponding IECC 2009 kW/ton and IPLV baseline efficiency values.

Year Installed	< 75 Tons	<u>></u> 75 to 150 Tons	≥ 150 to 300 Tons	<u>></u> 300 to 600 Tons	<u>≥</u> 600 Tons
(Replaced System)	Full-load kW/ton	Full-load kW/ton	Full-load kW/ton	Full-load kW/ton	Full-load kW/ton
1990	0.926	0.926	0.837	0.748	0.748
1991	0.926	0.926	0.837	0.748	0.748
1992	0.926	0.926	0.837	0.748	0.748
1993	0.926	0.926	0.837	0.748	0.748
1994	0.926	0.926	0.837	0.748	0.748
1995	0.926	0.926	0.837	0.748	0.748
1996	0.926	0.926	0.837	0.748	0.748
1997	0.926	0.926	0.837	0.748	0.748
1998	0.926	0.926	0.837	0.748	0.748
1999	0.926	0.926	0.837	0.748	0.748
2000	0.926	0.926	0.837	0.748	0.748
2001	0.926	0.926	0.837	0.748	0.748
2002	0.790	0.790	0.718	0.639	0.639
2003	0.790	0.790	0.718	0.639	0.639
2004	0.790	0.790	0.718	0.639	0.639
2005	0.790	0.790	0.718	0.639	0.639
2006	0.790	0.790	0.718	0.639	0.639
2007	0.790	0.790	0.718	0.639	0.639
2008	0.790	0.790	0.718	0.639	0.639
2009	0.790	0.790	0.718	0.639	0.639
2010	0.790	0.790	0.718	0.639	0.639
2011	0.790	0.790	0.718	0.639	0.639
2012	0.790	0.790	0.718	0.639	0.639

 Table 284: Baseline Full-Load Efficiency for Screw, Scroll, and Reciprocating Water-Cooled Chillers

 Replaced via Early Retirement⁴⁵¹

⁴⁵¹ Consolidation of ASHRAE 90.1-1989-2007.

Year Installed	< 75 Tons	<u>></u> 75 to 150 Tons	≥ 150 to 300 Tons	<u>></u> 300 to 600 Tons	<u>></u> 600 Tons
(Replaced System)	IPLV (kW/ton)	IPLV (kW/ton)	IPLV (kW/ton)	IPLV (kW/ton)	IPLV (kW/ton)
1990	0.815	0.815	0.737	0.658	0.658
1991	0.815	0.815	0.737	0.658	0.658
1992	0.815	0.815	0.737	0.658	0.658
1993	0.815	0.815	0.737	0.658	0.658
1994	0.815	0.815	0.737	0.658	0.658
1995	0.815	0.815	0.737	0.658	0.658
1996	0.815	0.815	0.737	0.658	0.658
1997	0.815	0.815	0.737	0.658	0.658
1998	0.815	0.815	0.737	0.658	0.658
1999	0.815	0.815	0.737	0.658	0.658
2000	0.815	0.815	0.737	0.658	0.658
2001	0.815	0.815	0.737	0.658	0.658
2002	0.695	0.695	0.632	0.562	0.562
2003	0.695	0.695	0.632	0.562	0.562
2004	0.695	0.695	0.632	0.562	0.562
2005	0.695	0.695	0.632	0.562	0.562
2006	0.695	0.695	0.632	0.562	0.562
2007	0.695	0.695	0.632	0.562	0.562
2008	0.695	0.695	0.632	0.562	0.562
2009	0.695	0.695	0.632	0.562	0.562
2010	0.695	0.695	0.632	0.562	0.562
2011	0.695	0.695	0.632	0.562	0.562
2012	0.695	0.695	0.632	0.562	0.562

 Table 285: Baseline Part-Load Efficiency for Screw, Scroll, and Reciprocating Water-Cooled

 Chillers Replaced via Early Retirement⁴⁵²

 $^{^{452}}$ IPLV = kW/ton x 0.88 based on comparison of corresponding IECC 2009 kW/ton and IPLV baseline efficiency values.

Estimated Useful Life (EUL)

The 2011 ASHRAE Handbook for HVAC Applications, Chapter 37.3, supports a measure life of over 25 years for centrifugal chillers. However, the sample size diminishes for older systems such that the study can only reliably substantiate an EUL of 25 years for centrifugal chillers.⁴⁵³

For all other high-efficiency chillers, according to the DEER 2008, the estimated useful life (EUL) is 20 years.

Calculation of Deemed Savings

Deemed peak demand and annual energy savings for chillers should be calculated using the following formulas:

New Construction or Replace-on-Burnout

$$kW_{Savings} = CAP \times (\eta_{base} - \eta_{post}) \times CF$$

$$kWh_{savings} = CAP \times EFLH_C \times (\eta_{base} - \eta_{post})$$
(243)

Where:

CAP = Rated equipment cooling output capacity of the new unit (Tons)

- η_base = Baseline energy efficiency rating of the baseline cooling equipment (kW/ton or EER converted to kW/ton from Table 279)
- $\eta_post =$ Nameplate energy efficiency rating of the installed cooling equipment (kW/ton)
- Note: use full-load efficiency (in units of kW/ton) for kW savings calculations and IPLV (in units of kW/ton) for kWh savings calculations. Cooling efficiencies expressed as an EER will need to be converted to kW/ton using the following equation:

$$\frac{kW}{Ton} = \frac{12}{EER}$$

(245)

(244)

CF =Coincidence factor (

https://interchange.puc.texas.gov/Search/Filings?ControlNumber=40885

⁴⁵³ Frontier Associates on behalf of Electric Utility Marketing Managers of Texas (EUMMOT). "Petition to Approve Revisions to Commercial HVAC Deemed Savings for Energy Efficiency Programs: Docket No. 40885." Public Utility Commission of Texas. Approved January 30, 2013.

Table 495)

EFLH_c = Equivalent full-load hours for cooling (Table 497)

 $EFLH_H$ = Equivalent full-load hours for heating (Table 498)

Early Retirement

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life of the equipment that is being removed, designated the remaining useful life (RUL), and
- 2. The remaining time in the EUL period (EUL RUL), where the EUL is either 20 or 25, depending on the chiller type.

For the RUL (Table 286):

$$kW_{Savings} = CAP \times (\eta_{pre} - \eta_{post}) \times CF$$

$$kWh_{savings} = CAP \times EFLH_C \times (\eta_{pre} - \eta_{post})$$
(246)

For the remaining time in the EUL period (EUL – RUL):

Calculate annual savings as you would for a replace-on-burnout project using Equation (243) and (244).

Lifetime kWh savings for Early Retirement Projects is calculated as follows:

$$LifetimekWh_{savings} = \left[(kwh_{savings,ER} \times RUL) + \left(kWh_{savings,ROB} \times (EUL - RUL) \right) \right]$$
(248)

Where:

CAP = Rated equipment cooling capacity of the new unit (Tons)

- η_{pre} = Nameplate energy efficiency rating of the existing cooling equipment (if unavailable, use default efficiency from Table 280 through Table 285)
- η_{post} = Nameplate energy efficiency rating of the installed cooling equipment
- Note: use full-load efficiency (in units of kW/ton) for kW savings calculations and IPLV (in units of kW/ton) for kWh savings calculations. Cooling efficiencies expressed as an EER will need to be converted to kW/ton using the following equation:

$$\frac{kW}{Ton} = \frac{12}{EER}$$

(249)

(247)

CF =Coincidence factor (

Table 495)

- $EFLH_{C}$ = Equivalent full-load hours for cooling from (Table 497)
- *EUL* = Estimated Useful Life = 25 years (centrifugal chillers); 20 years (all other chillers)
- *RUL* = Remaining Useful Life (Table 286)

Non-Centrifugal Chilled W	ater Systems	Centrifugal Chilled Water Systems			
Age of Replaced System (Years)	RUL (Years)	Age of Replaced System (Years)	RUL (Years)		
5	14.7	5	19.9		
6	13.7	6	18.9		
7	12.7	7	17.9		
8	11.8	8	16.9		
9	10.9	9	15.9		
10	10.0	10	14.9		
11	9.1	11	13.9		
12	8.3	12	12.9		
13	7.5	13	11.9		
14	6.8	14	10.9		
15	6.2	15	10.1		
16	5.5	16	9.3		
17	5.0	17	8.7		
18	4.5	18	8.1		
19	4.0	19	7.5		
20	3.6	20	7.1		
21	3.2	21	6.6		
22	2.9	22	6.3		
23	2.6	23	5.9		
24 +	0.0	24	5.9		
		25	5.4		
		26	5.1		

27

28

29

 $\frac{30}{31+}$

Table 286: Remaining Useful Life (RUL) of Replaced Systems454

4.9

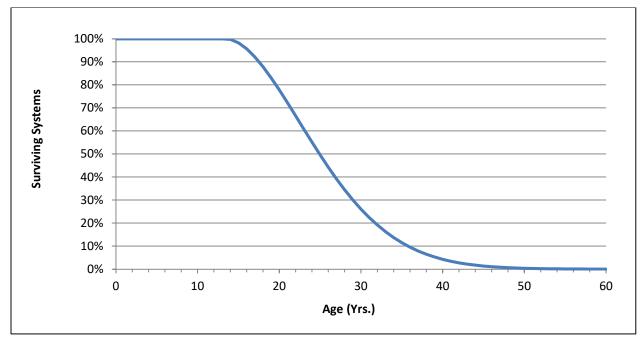
4.7

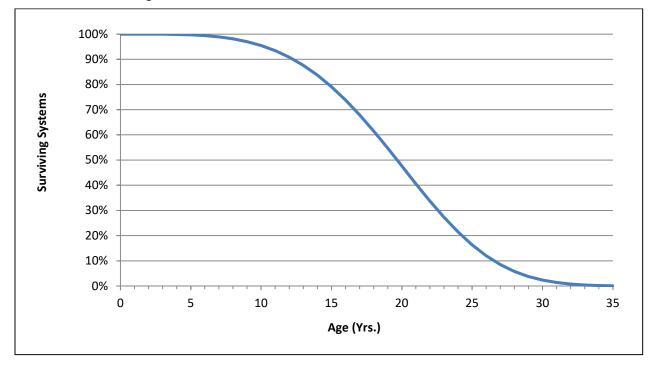
4.5 4.3

0.0

Derivation of RULs

Commercial centrifugal chillers have an EUL of 25 years. This estimate is consistent with the age at which 50 percent of systems installed in a given year will no longer be in service, as described by the survival function in Figure 12.




Figure 12: Survival Function for Commercial Centrifugal Chillers⁴⁵⁵

⁴⁵⁵ Source: Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". <u>https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx</u>

⁴⁵⁴ Use of the early retirement baseline is capped at 23 years (non-centrifugal) and 30 years (centrifugal), representing the age at which 75 percent of existing equipment is expected to have failed. Systems older than 23 years (non-centrifugal) or 30 years (centrifugal) years should use the ROB baseline.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Commercial non-centrifugal chillers have an EUL of 20 years. This estimate is consistent with the age at which 50 percent of systems installed in a given year will no longer be in service, as described by the survival function in Figure 13.

Figure 13: Survival Function for Commercial Non-Centrifugal Chillers⁴⁵⁶

The method used for estimating the RUL of a replaced system uses the age of the existing system to reestimate the survival function shown in Figure 12 and Figure 13. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.3.

⁴⁵⁶ Source: Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx

3.2 Envelope Measures3.2.1 Ceiling Insulation (Converted Residences)

Measure Description

This measure consists of adding ceiling insulation over a conditioned area in a converted residence (CR) of existing construction.

Baseline and Efficiency Standards

In existing construction, ceiling insulation levels vary greatly, depending on the age of the converted residence, type of insulation, and attic space utilization (such as using the attic for storage and HVAC equipment). Deemed savings tables are based on the current level of ceiling insulation in the converted residence from R-0 to R-22. The current insulation level of each converted residence will be determined and documented by the installation contractor. Field measurements of insulation thicknesses, condition, and R-values per inch, as typically documented by weatherization staff, are generally not sufficiently precise to determine existing insulation levels to the nearest whole-number R-value. Based on this, the measure is divided into existing R-values ranges as shown in the table below. The insulation contractor will need to consider degradation due to age and density of the existing insulation when determining the appropriate baseline insulation range.

A ceiling insulation level of R-38 is recommended throughout Arkansas, as prescribed by DOE.⁴⁵⁷ The combined R-values of the existing insulation and the insulation being added will total at least R-38.

Table 287: Ceiling Insulation – Baseline and Efficiency Standards

Baseline	Efficiency Standard
R-0 to R-4	
R-5 to R-8	D 29
R-9 to R-14	R-38
R-15 to R-22	

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 20 years, in accordance with DEER 2008.

⁴⁵⁷ Insulation Fact Sheet, Energy Efficiency and Renewable Energy, U.S. DOE, Circular CE-180 with Addendum 1, 2002.

Deemed Savings Values

EnergyGauge USA[®] was used to estimate energy savings for a prototype Arkansas converted residence.

A series of models was created to determine the difference in weather data throughout the four weather regions in Arkansas as defined in IECC 2003. Since building shell measures are sensitive to weather, available TMY3 weather data specific to each of the four Arkansas weather regions were used for the analysis. The prototype characteristics of the building model are outlined in Appendix A.

Please note that the savings per square foot is a factor to be multiplied by the square footage of the ceiling area over a conditioned space that is being insulated. Gas Heat (no AC) kWh applies to forced-air furnace systems only.

Ceiling Insulation Base	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
R-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
0	1.601	0.186	0.263	7.588	4.474	0.00087	0.00502
1 to 4	1.020	0.111	0.161	4.708	2.808	0.00081	0.00326
5 to 8	0.670	0.059	0.075	2.373	1.492	0.00068	0.00133
9 to 14	0.393	0.035	0.046	1.430	0.897	0.00043	0.00083
15 to 22	0.220	0.021	0.027	0.841	0.522	0.00023	0.00051

Table 288: Ceiling Insulation (CR) – Deemed Savings Values - Zone 9 Northern Region

Table 289: Ceiling Insulation (CR) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Ceiling Insulation Base	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
R-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
0	0.678	0.131	0.198	5.453	3.116	0.00057	0.00389
1 to 4	0.371	0.070	0.106	2.830	1.609	0.00036	0.00208
5 to 8	0.179	0.034	0.051	1.364	0.773	0.00018	0.00099
9 to 14	0.096	0.018	0.028	0.737	0.417	0.00010	0.00053
15 to 22	0.049	0.009	0.014	0.367	0.207	0.00005	0.00027

Ceiling Insulation Base R-value	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms per ft ²	AC/Electric Resistance kWh per ft ²	Heat Pump kWh per ft ²	AC Peak Savings kW per ft ²	Peak Gas Savings Therms per ft ²
0	1.606	0.161	0.227	6.773	4.062	0.00050	0.00413
1 to 4	1.061	0.095	0.138	4.208	2.516	0.00050	0.00271
5 to 8	0.710	0.050	0.064	2.167	1.375	0.00049	0.00116
9 to 14	0.423	0.030	0.039	1.312	0.830	0.00039	0.00071
15 to 22	0.241	0.017	0.023	0.770	0.482	0.00022	0.00043

Table 290: Ceiling Insulation (CR) – Deemed Savings Values - Zone 7 Central Region

Table 291: Ceiling Insulation (CR) – Deemed Savings Values - Zone 6 South Region

Ceiling Insulation Base	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
R-value	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
0	1.959	0.139	0.196	6.443	4.044	0.00070	0.00403
1 to 4	1.284	0.083	0.120	4.021	2.533	0.00069	0.00250
5 to 8	0.871	0.043	0.056	2.148	1.449	0.00067	0.00111
9 to 14	0.513	0.026	0.034	1.286	0.864	0.00047	0.00070
15 to 22	0.294	0.015	0.020	0.752	0.501	0.00026	0.00043

3.2.2 Ceiling Insulation (Small Commercial)

Measure Description

Ceiling insulation deemed savings are estimated per square foot of treated ceiling area above conditioned space(s) for various levels of pre-retrofit ceiling insulation. To qualify for this measure, contractors must raise the R-value of ceiling insulation to R-30 in a building in which the pre-retrofit ceiling insulation is judged to have an R-value no greater than R-22. Furthermore, because of the interactive nature of the relationship between ceiling insulation and roof deck insulation, the deemed savings values are estimated based on the number of existing levels of pre-retrofit ceiling and roof-deck insulation. Buildings in which the combined pre-retrofit roof deck and ceiling insulation R-values exceed R-30 are not eligible for this measure. The combined roof insulating values are only applicable for non-ventilated attic spaces and spaces in which the attic area is not used as a return air plenum.

Baseline and Efficiency Standard

In existing construction, ceiling insulation levels vary greatly, depending on a number of factors, including the construction style, age of the structure, and the type of insulation. The savings that can be achieved by installing additional ceiling insulation depend on both the existing levels of ceiling insulation and the insulating capacity of the roof deck. As such, deemed savings tables detail savings from ceiling insulation and four different levels of existing ceiling insulation. Specifically, deemed savings are presented for buildings with three different levels of existing roof deck insulation: R-0 to R-5, R-6 to R-12, and R-13 to R-20. The R-value of the pre-retrofit roof deck insulation can be no greater than R-20, the R-value of the pre-retrofit ceiling insulation level of each building will be determined and documented by the insulation installer. Degradation, due to age and density of the existing insulation, should be taken into account.

In the event that existing insulation is or has been removed, the existing R-value will be based on the R-value of the existing insulation prior to removal.

The IECC of 2006 calls for R-30 attic insulation in commercial buildings for the weather zones in which Arkansas is located. As such, ceiling insulation rebates are designed to bring building attic insulation up to R-30 levels. All typical ceiling insulation materials are eligible for this measure.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 20 years, in accordance with DEER 2008.

Deemed Savings Values

Deemed savings were calculated using an eQuest model populated as shown in the following section. Model runs were performed with TMY3 data for each weather zone: El Dorado (Zone 6), Little Rock (Zone 7), Fort Smith (Zone 8), and Fayetteville (Zone 9).

Three different buildings were used: a strip mall, a stand-alone retail store, and a small office building. Savings for each combination of pre-retrofit conditions (ceiling and roof deck insulation levels) were estimated on a per square foot basis for each building type. The deemed savings values presented herein represent the average savings per square foot for each building type modeled, the weather zone and combination of pre-retrofit conditions. The prototype characteristics of the building models are outlined in Appendix A.

Deemed savings values for annual electric energy use (kWh), peak demand (kW), and annual and peak gas usage (therms) for the small commercial (SC) ceiling insulation measure are provided in the following tables:

	Ele	ctric	Gas					
Pre-Retrofit Ceiling R-value	Annual Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Savings				
K-value	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²				
	Pre-H	Retrofit Roof Insulati	on R-0 to R-5					
R-0 to R-4	0.413	0.337	0.178	1.549				
R-5 to R-8	0.146	0.151	0.08	0.611				
R-9 to R-14	0.08	0.089	0.047	0.351				
R-15 to R-22	0.033	0.038	0.02	0.15				
	Pre-R	etrofit Roof Insulation	on R-6 to R-12					
R-0 to R-4	0.191	0.244	0.076	0.91				
R-5 to R-8	0.09	0.1095	0.043	0.47				
R-9 to R-14	0.051	0.065	0.026	0.283				
R-15 to R-22	0.02	0.028	0.011	0.123				
	Pre-Retrofit Roof Insulation R-13 to R-20							
R-0 to R-4	0.127	0.151	0.034	0.732				
R-5 to R-8	0.053	0.068	0.018	0.344				
R-9 to R-14	0.031	0.041	0.011	0.21				
R-15 to R-22	0.013	0.018	0.005	0.101				

Table 292: Ceiling Insulation (SC) – Electric and Gas Savings for DX Coils with Gas Furnace - Zone 9 Northern Region

	Heat	Pump	Electric Resistance							
Pre-Retrofit Ceiling	Annual Energy Savings	Peak Demand Savings	Annual Energy Savings	Peak Demand Savings						
R-value	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²						
	Pre-Retrofit Roof Insulation R-0 to R-5									
R-0 to R-4	1.106	0.337	1.978	0.334						
R-5 to R-8	0.431	0.151	0.789	0.15						
R-9 to R-14	0.247	0.089	0.453	0.089						
R-15 to R-22	0.104	0.038	0.191	0.038						
	Pre-Ro	etrofit Roof Insulation	n R-6 to R-12							
R-0 to R-4	0.755	0.244	1.339	0.242						
R-5 to R-8	0.3125	0.1095	0.572	0.109						
R-9 to R-14	0.1845	0.065	0.339	0.065						
R-15 to R-22	0.08	0.028	0.1475	0.028						
	Pre-Retrofit Roof Insulation R-13 to R-20									
R-0 to R-4	0.404	0.151	0.7	0.15						
R-5 to R-8	0.194	0.068	0.355	0.068						
R-9 to R-14	0.122	0.041	0.225	0.041						
R-15 to R-22	0.056	0.018	0.104	0.018						

Table 293: Ceiling Insulation (SC) – Electric Savings for Electric Heat - Zone 9 Northern Region

Table 294: Ceiling Insulation (SC) -	Electric and Gas Savings for DX Coils with Gas Furnace - Zone
8 Northeast/North Central Region	

	Ele	ctric	Gas					
Pre-Retrofit Ceiling	Annual Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Savings ⁴⁵⁸				
R-value	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²				
	Pre-l	Retrofit Roof Insulation	on R-0 to R-5					
R-0 to R-4	0.487	0.316	0.098	1.465				
R-5 to R-8	0.182	0.149	0.038	0.57				
R-9 to R-14	0.103	0.088	0.022	0.327				
R-15 to R-22	0.042	0.038	0.009	0.141				
	Pre-R	Retrofit Roof Insulatio	n R-6 to R-12					
R-0 to R-4	0.286	0.2305	0.06	1.004				
R-5 to R-8	0.113	0.107	0.027	0.428				
R-9 to R-14	0.066	0.064	0.016	0.257				
R-15 to R-22	0.028	0.028	0.007	0.112				
Pre-Retrofit Roof Insulation R-13 to R-20								
R-0 to R-4	0.163	0.145	0.034	0.67				
R-5 to R-8	0.066	0.065	0.018	0.306				
R-9 to R-14	0.04	0.04	0.011	0.187				
R-15 to R-22	0.018	0.018	0.005	0.091				

⁴⁵⁸ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying the Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.943 (R-0 to R-4), 1.008 (R-5 to R-8), 1.025 (R-9 to R-14), and 1.034 (R-15 to R-22). For Fort Smith, m = 0.930 (R-0 to R-4), 0.998 (R-5 to R-8), 1.016 (R-9 to R-14), and 1.024 (R-15 to R-22).

	Heat Pump		Electric Resistance	
Pre-Retrofit Ceiling R-value	Annual Energy Savings	Peak Demand Savings	Annual Energy Savings	Peak Demand Savings
	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
	Pre-R	etrofit Roof Insulatio	on R-0 to R-5	
R-0 to R-4	1.166	0.316	2.021	0.314
R-5 to R-8	0.448	0.149	0.806	0.148
R-9 to R-14	0.256	0.088	0.463	0.088
R-15 to R-22	0.108	0.038	0.196	0.038
	Pre-Re	etrofit Roof Insulation	n R-6 to R-12	
R-0 to R-4	0.7975	0.2305	1.3785	0.2295
R-5 to R-8	0.3095	0.107	0.5895	0.108
R-9 to R-14	0.1825	0.064	0.35	0.065
R-15 to R-22	0.079	0.028	0.153	0.0285
	Pre-Re	trofit Roof Insulation	R-13 to R-20	
R-0 to R-4	0.429	0.145	0.736	0.145
R-5 to R-8	0.171	0.065	0.373	0.068
R-9 to R-14	0.109	0.04	0.237	0.042
R-15 to R-22	0.05	0.018	0.11	0.019

Table 295: Ceiling Insulation (SC) – Electric Savings for Electric Heat - Zone 8 Northeast/North Central Region

	Electric		Gas	
Pre-Retrofit Ceiling	Annual Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Savings
R-value	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²
	Pre-F	Retrofit Roof Insulatio	on R-0 to R-5	
R-0 to R-4	0.428	0.315	0.104	1.291
R-5 to R-8	0.158	0.144	0.042	0.498
R-9 to R-14	0.089	0.087	0.024	0.283
R-15 to R-22	0.037	0.038	0.01	0.119
	Pre-R	etrofit Roof Insulation	n R-6 to R-12	
R-0 to R-4	0.272	0.216	0.057	0.869
R-5 to R-8	0.109	0.1025	0.028	0.371
R-9 to R-14	0.064	0.062	0.017	0.217
R-15 to R-22	0.027	0.0275	0.007	0.094
	Pre-Re	etrofit Roof Insulation	R-13 to R-20	
R-0 to R-4	0.169	0.117	0.029	0.568
R-5 to R-8	0.071	0.061	0.016	0.254
R-9 to R-14	0.043	0.037	0.01	0.155
R-15 to R-22	0.019	0.017	0.005	0.074

Table 296: Ceiling Insulation (SC) – Electric and Gas Savings for DX Coils with Gas Furnace - Zone 7 Central Region

	Heat Pump		Electric Resistance	
Pre-Retrofit Ceiling R-value	Annual Energy Savings	Peak Demand Savings	Annual Energy Savings	Peak Demand Savings
	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
	Pre-R	etrofit Roof Insulatio	on R-0 to R-5	
R-0 to R-4	1.019	0.315	1.804	0.315
R-5 to R-8	0.397	0.144	0.718	0.144
R-9 to R-14	0.228	0.087	0.412	0.086
R-15 to R-22	0.097	0.038	0.175	0.038
	Pre-Ro	etrofit Roof Insulation	n R-6 to R-12	
R-0 to R-4	0.6655	0.216	1.232	0.231
R-5 to R-8	0.3065	0.1025	0.5245	0.1075
R-9 to R-14	0.163	0.062	0.311	0.0655
R-15 to R-22	0.071	0.0275	0.136	0.029
	Pre-Re	trofit Roof Insulation	R-13 to R-20	
R-0 to R-4	0.312	0.117	0.66	0.147
R-5 to R-8	0.216	0.061	0.331	0.071
R-9 to R-14	0.098	0.037	0.21	0.045
R-15 to R-22	0.045	0.017	0.097	0.02

Table 297: Ceiling Insulation (SC) – Electric Savings for Electric Heat - Zone 7 Central Region

	Electric		Gas	
Pre-Retrofit Ceiling	Annual Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Savings
R-value	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²
	Pre-F	Retrofit Roof Insulatio	on R-0 to R-5	
R-0 to R-4	0.428	0.315	0.104	1.291
R-5 to R-8	0.158	0.144	0.042	0.498
R-9 to R-14	0.089	0.087	0.024	0.283
R-15 to R-22	0.037	0.038	0.01	0.119
	Pre-R	etrofit Roof Insulation	n R-6 to R-12	
R-0 to R-4	0.272	0.216	0.057	0.869
R-5 to R-8	0.109	0.1025	0.028	0.371
R-9 to R-14	0.064	0.062	0.017	0.217
R-15 to R-22	0.027	0.0275	0.007	0.094
	Pre-Re	etrofit Roof Insulation	R-13 to R-20	
R-0 to R-4	0.169	0.117	0.029	0.568
R-5 to R-8	0.071	0.061	0.016	0.254
R-9 to R-14	0.043	0.037	0.01	0.155
R-15 to R-22	0.019	0.017	0.005	0.074

Table 298: Ceiling Insulation (SC) – Electric and Gas Savings for DX Coils with Gas Furnace – Zone 6 South Region

	Heat Pump		Electric Resistance	
Pre-Retrofit Ceiling	Annual Energy Savings	Peak Demand Savings	Annual Energy Savings	Peak Demand Savings
R-value	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
	Pre-R	etrofit Roof Insulatio	on R-0 to R-5	
R-0 to R-4	0.911	0.323	1.699	0.323
R-5 to R-8	0.361	0.14	0.676	0.14
R-9 to R-14	0.209	0.084	0.389	0.084
R-15 to R-22	0.088	0.038	0.165	0.038
	Pre-Ro	etrofit Roof Insulation	n R-6 to R-12	
R-0 to R-4	0.631	0.2385	1.1445	0.2385
R-5 to R-8	0.2625	0.105	0.485	0.105
R-9 to R-14	0.1565	0.064	0.2875	0.064
R-15 to R-22	0.0675	0.029	0.1255	0.029
	Pre-Re	trofit Roof Insulation	R-13 to R-20	
R-0 to R-4	0.351	0.154	0.59	0.154
R-5 to R-8	0.164	0.07	0.294	0.07
R-9 to R-14	0.104	0.044	0.186	0.044
R-15 to R-22	0.047	0.02	0.086	0.02

Table 299: Ceiling Insulation (SC) – Electric Savings for Electric Heat - Zone 6 South Region

3.2.3 Cool Roofs

Measure Description

To qualify for this measure, at least 75 percent of the roof area must be replaced with a cool roof. A cool roof reflects the sun's heat and emits absorbed radiation back into the atmosphere. A cool roof is defined by ASHRAE 90.1 as a roof having a minimum solar reflectivity equal to 0.55 and a minimum thermal emittance equal to 0.75. ASHRAE 90.1-2007 provides an alternative approach allowing products with a minimum Solar Reflective Index (SRI) equal to 64. The Cool Roof Rating Council (www.coolroofs.org) maintains a SRI database.

Baseline and Efficiency Standards

The baseline roof is assumed to have a solar reflectance of 0.23 and a thermal emittance of 0.90. This was calculated using a weighted average method from the following data:

- Predominant roof material used in west south central region for non-small commercial buildings as obtained from CBECS 2003, Table B4.
- Average reflectance properties of roofing material as obtained from the publication *Laboratory Testing of Reflectance Properties of Roofing Material* by Florida Solar Energy Center (FSEC)

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 15 years for metal roofs and 10 years if paint is applied, in accordance with DEER 2008.

Deemed Savings Values

Deemed savings values for annual electric energy use (kWh), peak demand (kW), and annual and peak gas usage (therms) are provided in the following tables.

		Gas-E	lectric		All Electric				
		DX Coils with Furnace					Electric Resistance		
Weather Zone and Location	Energy Savings	Peak Demand Savings	Gas Savings	Peak Gas Savings	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
Zone 6 - El Dorado	0.1014	0.0218	-3.9599	Negligible	0.0699	0.0221	0.0206	0.0219	
Zone 7 - Little Rock	0.0953	0.0223	-4.8018	Negligible	0.0536	0.0225	-0.0021	0.0226	
Zone 8 - Fort Smith	0.0885	0.0222	-5.1528	Negligible	0.0411	0.0226	-0.0174	0.0226	
Zone 9 - Fayetteville	0.0838	0.0211	-6.0212	Negligible	0.0296	0.0207	-0.0116	0.0249	

Table 300: Cool Roofs (SC) – Deemed Savings Values – Retail Strip Mall

Table 301: Cool Roofs (SC) – Deemed Savings Values – Big Box Retail

		Gas	-Electric		All Electric				
		DX Coils	with Furnac	Heat	Pump	Electric H	Resistance		
Weather Zone and Location	Energy Savings	Peak Demand Savings	Gas Savings	Peak Gas Savings	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
Zone 6 - El Dorado	0.1864	0.0901	-5.3104	Negligible	0.1415	0.0894	0.0709	0.0876	
Zone 7 - Little Rock	0.1444	0.0703	-5.7814	Negligible	0.0885	0.0704	0.0194	0.0692	
Zone 8 - Fort Smith	0.1687	0.0900	-6.7557	Negligible	0.1004	0.0883	0.0226	0.0874	
Zone 9 - Fayetteville	0.1575	0.0812	-6.4549	Negligible	0.0823	0.0770	0.0184	0.0788	

		Gas	-Electric		All Electric				
		DX Coils	with Furnac	Heat	Pump	Electric F	Resistance		
Weather Zone and Location	Energy Savings	e llamana		Peak Gas Savings	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
Zone 6 - El Dorado	0.1037	0.0538	-1.8153	-0.0010	0.0917	0.0541	0.0717	0.0530	
Zone 7 - Little Rock	0.0936	0.0510	-2.0929	-0.0010	0.0763	0.0513	0.0520	0.0502	
Zone 8 - Fort Smith	0.0919	0.0532	-2.4715	-0.0010	0.0702	0.0535	0.0422	0.0524	
Zone 9 - Fayetteville	0.0893	0.0474	-2.3386	-0.0009	0.0689	0.0477	0.0437	0.0466	

Table 302: Cool Roofs (SC) – Deemed Savings Values – Full Service Restaurant

				Gas-El	lectric							
		DX Coils	with Furna	ce	Chiller with Boiler							
Weather Zone and Location	Energy Savings	Peak Demand Savings	Gas Savings	Peak Gas Savings	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings				
Location	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²				
Zone 6 - El Dorado	0.1136	0.0376	-0.4361	-0.0006	0.2662	0.0638	-0.2731	-0.0006				
Zone 7 - Little Rock	0.1140	0.0392	-0.7047	-0.0006	0.3005	0.0721	-0.5505	-0.0006				
Zone 8 - Fort Smith	0.1073	0.0364	-1.0793	-0.0006	0.2695	0.0653	-0.7874	-0.0006				
Zone 9 - Fayetteville	0.1002	0.0351	-0.8386	-0.0006	0.2521	0.0616	-0.6880	-0.0005				
	All Electric											
		Hea	t Pump		Electric Resistance							
	kWh	per ft ²	kW per	1000 ft ²	kWh	per ft ²	kW per	• 1000 ft ²				
Zone 6 - El Dorado	0.1	016	0.0	365	0.0	964	0.0)358				
Zone 7 - Little Rock	0.0988		0.0	378	0.0	903	0.0372					
Zone 8 - Fort Smith	0.0926		0.0351		0.0805		0.0345					
Zone 9 - Fayetteville	0.0	848	0.0	339	0.0	758	0.0333					

Table 303: Cool Roofs (SC) – Deemed Savings Values – Secondary School

Weather Zone and Location	Gas-Electric											
		DX Coils w	vith Furna	ice		Chiller v	with Boiler	•				
	Energy Savings	Peak Demand Savings	Gas Savings	Peak Gas Savings	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings				
	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²				
Zone 6- El Dorado	0.0906	0.0599	-1.1547	Negligible	0.1343	0.0978	-1.2917	Negligible				
Zone 7- Little Rock	0.0858	0.0629	-1.8316	Negligible	0.1171	0.1006	-1.9466	Negligible				
Zone 8- Fort Smith	0.0849	0.0620	-2.2312	Negligible	0.1229	0.0984	-2.1914	Negligible				
Zone 9- Fayetteville	0.0827	0.0581	-2.2615	Negligible	0.1153	0.0951	-2.2589	Negligible				
	All Electric											
		Heat Pump				Electric Resistance						
	kWh	per ft ²	1	r 1000 ft ²	kWh pe	er ft ²	kW per	1000 ft ²				
Zone 6- El Dorado		0780	0.0)589	0.0631		0.0578					
Zone 7- Little Rock	0.0601		0.0	0603	0.043	52	0.0608					
Zone 8- Fort Smith	0.0521		0.0	0.0584		6	0.0596					
Zone 9- Fayetteville	0.0	0517	0.0)547	0.0325		0.0557					

Table 304: Cool Roofs (SC) – Deemed Savings Values – Office Building

				Gas	-Electric				
]	DX Coils v	vith Furn	ace		Chiller	with Boiler		
Weather Zone	Energy Savings	Peak Demand Savings	Gas Savings	Peak Gas Savings	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	
Zone 6- El Dorado	0.1191	0.0526	-2.5353	Negligible	0.2003	0.0808	-0.7824	Negligible	
Zone 7- Little Rock	0.1066	0.0491	-3.0425	Negligible	0.2088	0.0864	-1.2486	Negligible	
Zone 8- Fort Smith	0.1083	0.0528	-3.5381	Negligible	0.1962	0.0819	-1.4894	Negligible	
Zone 9- Fayetteville	0.1027	0.0486	-3.5830	Negligible	0.1837	0.0784	-1.4735	Negligible	
				All	Electric				
		Heat	Pump		Electric Resistance				
	kWh p	per ft ²	kW per	• 1000 ft ²	kWh	per ft ²	kW pe	r 1000 ft ²	
Zone 6- El Dorado	0.09	965	0.0	9517	0.0	798	0.0	0710	
Zone 7- Little Rock	0.07	0.0755		335	0.0	668	0.0670		
Zone 8- Fort Smith	0.07	0.0713 0.028		282	0.0571		0.0675		
Zone 9- Fayetteville	0.06	535	0.0	278	0.0542		0.0639		

Table 305: Cool Roofs (SC) – Deemed Savings Values – All Other Building Types

Calculation of Deemed Savings

Deemed savings for commercial measures were calculated using eQuest models populated according to the commercial building prototypes developed by the US DOE Building Energy Codes Program, applying ASHRAE Standard 90.1-2007.⁴⁵⁹ Model runs were performed with TMY3 data for each weather zone: El Dorado (Zone 6), Little Rock (Zone 7), and Fort Smith (Zone 8), and Fayetteville (Zone 9).

Energy models for commercial cool roofs were developed for a retail strip mall, an office, a secondary school, a full-service restaurant, and a big box retail store. "All other building types" estimates, presented in Table 305, were calculated as averages of the five modeled building types. The baseline roof for the simulations was a built-up tar and felt roof. The deemed savings values presented herein represent the average savings on a per square foot or per thousand square foot basis for each weather zone. Peak demand savings were averaged across the period of 3pm-6pm during non-holiday weekdays in the months of June, July, and August.

⁴⁵⁹ U.S. DOE commercial building prototypes, developed in accordance with the minimum efficiencies outlined in ASHRAE Standard 90.1, can be found here: <u>https://www.energycodes.gov/prototype-building-models#ASHRAE</u>

3.2.4 Air Infiltration (Converted Residences)

Measure Description

This measure reduces air infiltration into converted residences (CR), using pre- and post-treatment blower door air pressure readings to confirm air leakage reduction.

Blower door air pressure post-measurements will be used to ensure that air infiltration in a converted residence is not reduced to less than 0.35 air changes per hour (ACH_{Nat}) ,⁴⁶⁰ verified using Table 306, which has been converted from ACH_{Nat} to CFM_{50} for simplified comparison to field measurements. Savings should not be claimed for CFM/ft^2 readings less than those displayed in Table 306.

Utilities may require competency testing of personnel who will perform the blower door tests.

Table 306: Air Infiltration (CR) – Minimum Final Ventilation Rate in CFM/ft2 of conditioned floor area

		Number of Sto	ries
Wind Shielding	Single Story	Two Story	Three + Story
Well Shielded	1.35	1.08	0.95
Normal	1.13	0.90	0.79
Exposed	1.02	0.81	0.71

Well Shielded is defined as urban areas with high buildings or sheltered areas, and buildings surrounded by trees, bermed earth, or higher terrain.

Normal is defined as buildings in a residential neighborhood or subdivision setting, with yard space between buildings; 80-90 percent of houses fall in this category.

Exposed is defined as buildings in an open setting with few buildings or trees around and buildings on top of a hill or ocean front, exposed to winds.

As an example, the minimum post-installation air exchange rate for an 1,800 square foot, one-story home with normal shielding is 2,034 CFM₅₀ (1,800 x 1.13).

In order to qualify for the air infiltration control deemed savings, there must be at least a 10 percent reduction of the ventilation rate, comparing pre- and post-installation. Therefore, in this example, the pre-installation ventilation rate must be at least 2,260 CFM₅₀ (2,034 \div 0.9) in order to be considered for air infiltration control measures.

⁴⁶⁰ ASHRAE 62-2001: minimum ACH_{Nat} = 0.35, or 15 CFM/person.

Baseline and Efficiency Standards

The baseline for this measure is the existing leakage rate of the converted residence to be treated. Baseline assumptions used in the development of these deemed savings are based on the 2009 ASHRAE Handbook of Fundamentals, Chapter 16, which provides typical infiltration rates for residential structures. In a worst-case scenario, ACH rates reported in ASHRAE averaged 0.90, with about 70 percent of the houses rating below 1.25 ACH_{Nat}.⁴⁶¹ Therefore, to reflect the majority of participants, these savings are only appropriate for participants whose starting ACH_{Nat} is 1.25 or lower.

To calculate ACH_{Pre}, use the following equation:

$$ACH_{N,pre} = \frac{CFM_{50,pre} \times 60}{Vol \times N}$$
(250)

Where:

 $CFM_{50,pre}$ = Pre-installation ventilation rate at 50 Pa (ft³/min).

60 = Constant to convert from minutes to hours.

Vol = Volume of the treated space (ft³) = Square Footage x Weighted Average Ceiling Height.

N = N factor (Table 307).

Table 307: Air Infiltration – N Factor⁴⁶²

		Number of Stories			
IECC Zone	Wind Shielding	Single Story	Two Story	Three + Story	
3	Well Shielded	25.8	20.6	18.1	
	Normal	21.5	17.2	15.1	
	Exposed	19.4	15.5	13.5	

Typical baseline CFM₅₀ ratings derived from EnergyGauge simulations used to create the deemed savings for this measure (Calculation of Deemed Savings) did not exceed 7,500 CFM₅₀ in any of the four weather zones examined. Pre-retrofit leakage rates are limited to a maximum of 7,500 CFM₅₀ as this generally indicates severe structural damage not repairable by typical infiltration reduction techniques. Participants reporting more than 4,000 CFM₅₀ in reduction are subject to a pre-treatment inspection by utility administrators. Pre-approval is required from utility administrators prior to any treatment.

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is 11 years for Air Infiltration.

⁴⁶¹ 2009 ASHRAE Handbook of Fundamentals, Chapter 15, pp. 16.17-16, 18.

⁴⁶² Krigger, J. & Dorsi, C., 2005, *Residential Energy: Cost Savings and Comfort for Existing Buildings, 4th Edition.* Version RE. December 20. Appendix A-11: Building Tightness Limits, p. 284.

Deemed Savings Values

The following formula shall be used to calculate deemed savings for infiltration efficiency improvements. The formula applies to single-family and multifamily dwellings, and to all building heights and shielding factors.

$$Deemed \ Savings = (CFM_{50,pre} \times CFM_{50,post}) \times V$$
(251)

Where:

- CFM_{50} = Air infiltration reduction in cubic feet per minute at 50 pascals, as measured by the difference between pre and post installation blower door air leakage tests.
- V = the corresponding therm, kWh, and kW values taken from the following tables. Gas Heat (no AC) is the reduction in electricity used by the furnace's air handler during the heating season.

Table 308: Infiltration (CR) – Deemed Savings Values - Zone 9 Northern Region

Air Infiltration Reduction	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)
	0.106	0.029	0.043	1.067	0.583	0.00013	0.00134

Table 309: Infiltration (CR) – Deemed Savings Values - Zone 8 Northea	st/North Central Region
---	-------------------------

Air Infiltration Reduction	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms ⁴⁶³
	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)
	0.125	0.032	0.046	1.154	0.625	0.00016	0.00123

⁴⁶³ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.862. For Fort Smith, m = 0.821.

Air	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
Infiltration Reduction	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)
	0.142	0.026	0.038	0.988	0.542	0.00014	0.00114

Table 310: Infiltration (CR) – Deemed Savings Values - Zone 7 Central Region

 Table 311: Infiltration (CR) – Deemed Savings Values - Zone 6 South Region

Air Infiltration Reduction	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)	(/CFM ₅₀ Reduced)
	0.174	0.020	0.029	0.836	0.480	0.00018	0.00093

Calculation of Deemed Savings

EnergyGauge USA was used to model hourly energy consumption for prototype converted residences in each Arkansas weather region. This series of model runs was created using available TMY3 weather data.

A series of model runs was completed in order to establish the relationship between various CFM_{50} leakage rates and heating and cooling energy consumption. The resulting analysis of model outputs was used to create the deemed savings tables of kWh, kW, and therm savings per CFM_{50} of air infiltration reduction. The prototype characteristics of the building models are outlined in Appendix A.

3.2.5 Roof Deck Insulation (Small Commercial)

Measure Description

Roof Deck insulation deemed savings are estimated per square foot of treated roof deck area above a conditioned space for increasing the roof deck insulation in small commercial (SC) buildings from various levels of pre-retrofit roof deck insulation to R-19. Because of the interactive nature of the relationship between roof deck and ceiling insulation, the deemed savings values are estimated based on a number of existing levels of pre-retrofit roof-deck and ceiling insulation. To qualify for this measure, contractors must raise the R-value of the roof deck insulation to R-19 on a building in which the pre-retrofit ceiling insulation is judged to have an R-value no greater than R-9, and the ceiling insulation no greater than R-22. Buildings in which the combined pre-retrofit roof deck and ceiling insulation R-values exceed R-30 are not eligible for this measure, and buildings participating in the ceiling insulation measure are not eligible for the roof deck insulation measure. The combined roof insulating values are only applicable for non-ventilated attic spaces and spaces in which the attic area is not used as a return air plenum.

Eligible roof deck insulation material is rigid foam board and spray foam insulation. Spray foam insulation is not an eligible measure for ventilated attic spaces or when gas-fired equipment is located in the attic space.

Baseline and Efficiency Standards

In existing construction, roof deck insulation levels vary depending on a number of factors, including the construction style and the age and type of insulation used. The savings that can be achieved by installing additional roof deck insulation depend on both the existing levels of ceiling insulation and the insulating capacity of the pre-retrofit roof deck. As such, deemed savings tables detail savings from roof deck insulation installations for each Arkansas weather zone based on four different levels of pre-retrofit roof deck insulation and three different levels of ceiling insulation. Specifically, deemed savings are presented for buildings with pre-retrofit roof deck insulation in three ranges: R-0 to R-3.5, R-4 to R-6, R-7 to R-9, and R-10 to R-12. For a roof deck insulation project to qualify for deemed savings, the R-value of the pre-retrofit roof deck insulation can be no greater than R-12, the R-value of the pre-retrofit ceiling insulation cannot exceed R-30. The pre-existing insulation level for each building will be determined and documented by the insulation installer. Degradation due to age and density of the existing insulation should be taken into account.

In the event that existing insulation is (or has been) removed, the existing R-value used to estimate the retrofit's deemed savings will be the R-value provided by the insulation in existence prior to removal.

IECC 2003 calls for above-deck insulation of up to R-15, continuously installed, and up to R-19 for metal buildings in the weather zones in which Arkansas is located. Roof deck insulation rebates are designed to encourage the installation of building attic insulation that meets the higher of these values, R-19. All typical roof deck insulation materials are eligible for this measure.

Any insulation retrofit shall be performed in accordance with the applicable safety and environmental standards for the type of insulation being installed. In some cases, this may require removal of existing insulation. For example, when retrofitting with spray-in polyurethane foam, existing ceiling insulation may need to be removed for fire safety. In this case, the expectation is that the contractor would return and replace the removed material; regardless, deemed savings shall only be paid according to the R-level of ceiling insulation existing prior to any removal of existing insulation.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 20 years, in accordance with DEER 2008.

Deemed Savings Values

Deemed savings values for annual electric energy use (kWh), peak demand (kW), and annual and peak gas usage (therms) are provided in the tables on the following pages.

Table 312: Roof Deck Insulation (SC) – Electric and Gas Savings for DX Coils with Gas Furnace Zone 9 Northern Region

Pre-Retrofit	Ele	ctric	Gas		
Roof Deck R-value	Annual Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Savings	
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	
	Pre-R	etrofit Ceiling Insulat	ion R-0 to R-6		
R-0 to R-3.5	0.269	0.222	0.128	0.659	
R-4 to R-6	0.207	0.178	0.104	0.507	
R-9 to R-14	0.123	0.114	0.064	0.307	
R-15 to R-22	0.072	0.071	0.039	0.182	
	Pre-Re	etrofit Ceiling Insulati	ion R-7 to R-14		
R-0 to R-3.5	0.061	0.083	0.023	0.16	
R-4 to R-6	0.05	0.066	0.019	0.134	
R-9 to R-14	0.034	0.042	0.013	0.093	
R-15 to R-22	0.021	0.026	0.009	0.059	
	Pre-Ret	trofit Ceiling Insulation	on R-15 to R-22		
R-0 to R-3.5	0.034	0.057	0.009	0.102	
R-4 to R-6	0.028	0.045	0.007	0.086	
R-9 to R-14	0.021	0.028	0.005	0.06	
R-15 to R-22	0.013	0.017	0.003	0.038	

Pre-Retrofit	Heat	Pump	Electric Resistance		
Roof Deck R-value	AnnualPeak DemandEnergy SavingsSavings		Annual Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
	Pre-Re	etrofit Ceiling Insulat	ion R-0 to R-6		
R-0 to R-3.5	0.687	0.167	1.368	0.22	
R-4 to R-6	0.348	0.086	0.662	0.12	
R-7 to R-9	0.223	0.057	0.416	0.078	
R-10 to R-12	0.137	0.036	0.252	0.047	
	Pre-Re	trofit Ceiling Insulati	on R-7 to R-14		
R-0 to R-3.5	0.252	0.077	0.405	0.092	
R-4 to R-6	0.144	0.042	0.232	0.05	
R-7 to R-9	0.095	0.028	0.155	0.033	
R-10 to R-12	0.06	0.017	0.099	0.02	
	Pre-Ret	trofit Ceiling Insulation	on R-15 to R-22		
R-0 to R-3.5	0.153	0.053	0.247	0.064	
R-4 to R-6	0.09	0.029	0.146	0.035	
R-7 to R-9	0.061	0.019	0.1	0.023	
R-10 to R-12	0.04	0.012	0.064	0.014	

Table 313: Roof Deck Insulation (SC) – Electric Savings for Electric Heat - Zone 9 Northern Region

Table 314: Roof Deck Insulation (SC) – Electric and Gas Savings for DX Coils with Gas Furnace Zone 8 Northeast/North Central Region

Pre-Retrofit	Ele	ectric	Gas		
Roof Deck R-value	Annual Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Savings ⁴⁶⁴	
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	
	Pre-Re	trofit Ceiling Insulat	tion R-0 to R-6		
R-0 to R-3.5	0.323	0.217	0.108	2.058	
R-4 to R-6	0.254	0.177	0.09	1.907	
R-7 to R-9	0.152	0.12	0.068	1.713	
R-10 to R-12	0.091	0.074	0.055	1.596	
	Pre-Ret	rofit Ceiling Insulat	ion R-7 to R-14		
R-0 to R-3.5	0.076	0.083	0.015	0.155	
R-4 to R-6	0.064	0.066	0.012	0.129	
R-7 to R-9	0.042	0.042	0.008	0.087	
R-10 to R-12	0.026	0.026	0.005	0.056	
	Pre-Ret	rofit Ceiling Insulati	on R-15 to R-22		
R-0 to R-3.5	0.045	0.056	0.008	0.1	
R-4 to R-6	0.038	0.045	0.007	0.084	
R-7 to R-9	0.025	0.028	0.005	0.058	
R-10 to R-12	0.016	0.017	0.003	0.037	

⁴⁶⁴ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.861. For Fort Smith, m = 0.859.

Pre-Retrofit	Heat	Pump	Electric Resistance		
Roof Deck R-value	AnnualPeak DemandEnergy SavingsSavings		Annual Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
	Pre-Ro	etrofit Ceiling Insulat	ion R-0 to R-6		
R-0 to R-3.5	0.705	0.23	1.421	0.278	
R-4 to R-6	0.361	0.117	0.696	0.141	
R-7 to R-9	0.231	0.073	0.439	0.088	
R-10 to R-12	0.141	0.046	0.266	0.055	
	Pre-Re	trofit Ceiling Insulati	on R-7 to R-14		
R-0 to R-3.5	0.261	0.1	0.406	0.1	
R-4 to R-6	0.15	0.055	0.235	0.055	
R-7 to R-9	0.102	0.036	0.159	0.036	
R-10 to R-12	0.064	0.023	0.101	0.023	
· · · · · · · · · · · · · · · · · · ·	Pre-Ret	rofit Ceiling Insulation	on R-15 to R-22		
R-0 to R-3.5	0.161	0.069	0.247	0.069	
R-4 to R-6	0.095	0.037	0.148	0.037	
R-7 to R-9	0.064	0.025	0.101	0.025	
R-10 to R-12	0.041	0.015	0.066	0.015	

Table 315: Roof Deck Insulation (SC) – Electric Savings for Electric Heat - Zone 8 Northeast/North Central Region

Pre-Retrofit	Ele	ctric	Gas		
Roof Deck R-value	Annual Energy SavingsPeak Demand Savings		Annual Gas Savings	Peak Gas Savings	
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	
	Pre-R	etrofit Ceiling Insulat	tion R-0 to R-6		
R-0 to R-3.5	0.278	0.216	0.071	0.575	
R-4 to R-6	0.214	0.176	0.054	0.434	
R-7 to R-9	0.129	0.114	0.032	0.259	
R-10 to R-12	0.076	0.07	0.019	0.154	
	Pre-Re	etrofit Ceiling Insulati	ion R-7 to R-14		
R-0 to R-3.5	0.071	0.082	0.014	0.142	
R-4 to R-6	0.059	0.066	0.012	0.116	
R-7 to R-9	0.039	0.043	0.008	0.077	
R-10 to R-12	0.025	0.027	0.005	0.049	
	Pre-Ret	trofit Ceiling Insulation	on R-15 to R-22		
R-0 to R-3.5	0.045	0.059	0.007	0.092	
R-4 to R-6	0.038	0.047	0.006	0.076	
R-7 to R-9	0.026	0.03	0.004	0.051	
R-10 to R-12	0.017	0.019	0.003	0.032	

Table 316: Roof Deck Insulation (SC) – Electric and Gas Savings for DX Coils with Gas Furnace Zone 7 Central Region

Pre-Retrofit	Heat	Pump	Electric Resistance		
Roof Deck R-value	AnnualPeak DemandEnergy SavingsSavings		Annual Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
	Pre-Re	etrofit Ceiling Insulat	ion R-0 to R-6		
R-0 to R-3.5	0.616	0.179	1.103	0.195	
R-4 to R-6	0.314	0.097	0.613	0.12	
R-7 to R-9	0.202	0.064	0.386	0.078	
R-10 to R-12	0.124	0.04	0.234	0.048	
	Pre-Re	trofit Ceiling Insulati	on R-7 to R-14		
R-0 to R-3.5	0.224	0.091	0.332	0.083	
R-4 to R-6	0.127	0.051	0.206	0.051	
R-7 to R-9	0.084	0.034	0.139	0.034	
R-10 to R-12	0.054	0.022	0.089	0.022	
	Pre-Ret	rofit Ceiling Insulation	on R-15 to R-22		
R-0 to R-3.5	0.133	0.066	0.202	0.06	
R-4 to R-6	0.08	0.037	0.13	0.037	
R-7 to R-9	0.054	0.024	0.089	0.024	
R-10 to R-12	0.035	0.015	0.058	0.015	

Table 317: Roof Deck Insulation (SC) – Electric Savings for Electric Heat - Zone 7 Central Region

Pre-Retrofit	Ele	ctric		Gas		
Roof Deck R-value	Annual Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Savings		
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²		
	Pre-Ro	etrofit Ceiling Insulat	tion R-0 to R-6			
R-0 to R-3.5	0.32	0.211	0.048	0.514		
R-4 to R-6	0.25	0.171	0.036	0.408		
R-7 to R-9	0.152	0.111	0.021	0.263		
R-10 to R-12	0.091	0.068	0.012	0.16		
	Pre-Re	trofit Ceiling Insulati	ion R-7 to R-14			
R-0 to R-3.5	0.086	0.078	0.011	0.148		
R-4 to R-6	0.071	0.063	0.009	0.128		
R-7 to R-9	0.047	0.041	0.006	0.093		
R-10 to R-12	0.03	0.025	0.004	0.062		
	Pre-Ret	rofit Ceiling Insulation	on R-15 to R-22			
R-0 to R-3.5	0.057	0.057	0.007	0.102		
R-4 to R-6	0.048	0.046	0.006	0.092		
R-7 to R-9	0.032	0.029	0.004	0.066		
R-10 to R-12	0.021	0.018	0.002	0.044		

Table 318: Roof Deck Insulation (SC) – Electric and Gas Savings for DX Coils with Gas Furnace - Zone 6 South Region

Pre-Retrofit	Heat	Pump	Electric Resistance		
Roof Deck R-value	Annual Energy Savings	Peak Demand Savings	Annual Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
	Pre-Ro	etrofit Ceiling Insulat	ion R-0 to R-6		
R-0 to R-3.5	0.563	0.163	1.136	0.195	
R-4 to R-6	0.281	0.089	0.546	0.111	
R-7 to R-9	0.176	0.058	0.341	0.072	
R-10 to R-12	0.107	0.036	0.205	0.045	
	Pre-Re	trofit Ceiling Insulati	on R-7 to R-14		
R-0 to R-3.5	0.201	0.084	0.328	0.084	
R-4 to R-6	0.111	0.047	0.185	0.047	
R-7 to R-9	0.075	0.031	0.124	0.031	
R-10 to R-12	0.048	0.02	0.079	0.02	
	Pre-Ret	rofit Ceiling Insulation	on R-15 to R-22		
R-0 to R-3.5	0.124	0.061	0.203	0.061	
R-4 to R-6	0.073	0.034	0.118	0.034	
R-7 to R-9	0.049	0.022	0.08	0.022	
R-10 to R-12	0.032	0.014	0.052	0.014	

Table 319: Roof Deck Insulation (SC) – Electric Savings for Electric Heat - Zone 6 South Region

Calculation of Deemed Savings

Deemed savings were calculated using an eQuest model populated as shown in the following section. Model runs were performed with TMY3 data for each weather zone: El Dorado (Zone 6), Little Rock (Zone 7), Fort Smith (Zone 8), and Fayetteville (Zone 9).

Two different buildings were used: a stand-alone retail store and a small office building. Savings for each combination of ceiling and pre-retrofit roof deck insulation level were estimated for each building type on a per-square-foot basis. The deemed savings values presented herein represent the average savings per square foot for each building type modeled, for each weather zone and combination of pre-retrofit roof deck and ceiling insulation level. The prototype characteristics of the building models are outlined in Volume 3, Appendix A.

3.2.6 Wall Insulation (Converted Residences)

Measure Description

This measure consists of adding exterior wall insulation in the wall cavity in converted residences of existing construction to a minimum insulation level of R-13.

Baseline and Efficiency Standards

The baseline is considered to be a converted residence with no wall insulation (R-0) in the wall cavity.

In order to qualify for this measure, the existing exterior wall cavity must be empty. This measure implements a wall insulation value of R-13.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 20 years, in accordance with DEER 2008.

Deemed Savings Values

EnergyGauge USA[®] was used to estimate energy savings for a prototypical Arkansas home. The prototype characteristics of the building models are outlined in Volume 3, Appendix A.

The exterior wall must insulate a conditioned space, and shall not include the window or door area. Gas Heat (no AC) kWh is the reduction in electricity used by the furnace's air handler during the heating season. Please note that the savings per square foot is a factor to be multiplied by the square footage of the newly insulated wall area.

Wall Insulation	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms ⁴⁶⁵
	(/ CFM ₅₀)	(/ CFM50)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)
R-13	0.725	0.154	0.233	6.100	3.462	0.00069	0.00504

Table 320: Wall Insulation (CR) – Deemed Savings Values - Zone 9 North Region

⁴⁶⁵ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.902. For Fort Smith, m = 0.870.

Wall Insulation	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms ⁴⁶⁶
Insulation	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM50)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)
R-13	0.810	0.157	0.237	6.307	3.610	0.00063	0.00468

Table 321: Wall Insulation (CR) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Table 322: Wall Insulation (CR) – Deemed Savings Values - Zone 7 Central Region

Wall Insulation	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)
R-13	0.765	0.134	0.203	5.442	3.050	0.00039	0.00388

Table 323: Wall Insulation (CR) – Deemed Savings Values - Zone 6 South Region

Wall Insulation	AC/Gas Gas Heat Heat (no AC) kWh kWh		Gas Heat Therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings kW	Peak Gas Savings Therms
	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)	(/ CFM ₅₀)
R-13	0.942	0.113	0.171	4.897	2.828	0.00061	0.00392

⁴⁶⁶ Peak gas savings in the Zone 8 table are for the Blytheville peak. Other Zone 8 peaks can be calculated by multiplying Blytheville peak by the appropriate factor, m. For Jonesboro, m = 0.902. For Fort Smith, m = 0.870.

3.2.7 Window Awnings (Small Commercial)

Measure Description

Opaque fixed or retractable window awnings on the east and west windows of commercial buildings less than 15,000 gross square feet are eligible for this measure. Window surfaces facing within 45 degrees of true north are not eligible for a rebate. Rebate amounts are based on the square footage of qualifying windows on which awnings are installed.

Baseline and Efficiency Standards

The baseline for this measure is a commercial building without shading or existing window awnings that has clear single or double pane glazing with a solar heat gain factor (SHGC) greater than 0.66. Existing Low E windows, windows with existing solar films or solar screens are not eligible for this measure.

In order to qualify for deemed savings, the window awning must be constructed of an opaque material and permanently installed. Overhangs may be inappropriate for sites within certain property associations with restrictive constitutions and covenants.

Exterior overhangs provide a practical method of shading windows. There is no simple formula for sizing overhangs. The methodology that works well for some locations may be inappropriate for others. Every climate requires special design attention to account for both sun and humidity conditions and to ensure awnings withstand wind and snow loading.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 10 years, in accordance with DEER 2006-7.

Deemed Savings Values

Deemed savings values for annual electric energy use (kWh), peak demand (kW), and annual and peak gas usage (therms) are provided in the tables on the following pages.

		Ga	s-Electric	All Electric				
		DX Coils	s with Furnace	Heat	Pump	Electric Resistance		
Direction of Awnings	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced*	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
East	7.698	2.960	-198.310	-2.244	1.564	2.580	3.605	2.581
West	6.705	4.057	-104.175	-0.862	2.750	3.552	3.970	3.555

Table 324: Window Awnings (SC) – Deemed Savings Values - Zone 9 Northern Region

		Gas-	Electric	All Electric				
		DX Coils	with Furnace	Heat	Pump	Electric Resistance		
Direction of Awnings			Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings		
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
East	8.829	3.254	-223.819	-0.934	1.884	1.900	4.199	1.901
West	7.655	3.951	-113.152	-0.300	3.086	2.426	4.465	2.430

Table 325: Window Awnings (SC) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Table 326: Window Awnings (SC) – Deemed Savings Values - Zone 7 Central Region

		Gas-	Electric		All Electric				
		DX Coils	with Furnace	Heat	Pump	Electric Resistance			
Direction of Awnings	Energy Savings Savings Peak Demai Saving		Annual Gas Savings Reduce		Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
East	8.720	2.930	-186.954	-3.147	2.609	2.753	4.646	2.754	
West	7.665	4.378	-96.776	-1.147	3.558	4.187	4.778	4.197	

		Ga	s-Electric			All Ele	ctric	
		DX Coil	s with Furna	Heat I	Pump	Electric Resistance		
Direction of Awnings	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced*	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings
	kWh per ft ²	kW per 1000 ft ²	therms per ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²
East	8.140	2.449	-134.097	-0.900	3.188	2.432	4.588	2.432
West	6.962	3.389	-69.563	-0.738	3.433	3.463	4.257	3.464

Calculation of Deemed Savings

Deemed savings were calculated using an eQuest model populated as shown in the following section. Model runs were performed with TMY3 data for each weather zone: El Dorado (Zone 6), Little Rock (Zone 7), Fort Smith (Zone 8), and Fayetteville (Zone 9).

Deemed savings are applicable to commercial buildings although only two different buildings were used for simulation of energy savings: a strip mall and a small office building. Savings for the east and west window surfaces were estimated based on a small office building with equal window surfaces on all four sides and for strip malls having glazing on one side. The deemed savings values presented herein represent the average savings per square foot of glazing for windows in each weather zone facing east and west. The prototype characteristics of the building models are outlined in Volume 3, Appendix A.

3.2.8 Window Film (Converted Residences)

Measure Description

This measure involves adding solar film to windows that face east or west.

Baseline and Efficiency Standards

This measure is applicable to existing homes only. The existing windows must be single- or double-pane clear glass. Low E windows and tinted windows are not applicable for this measure. The existing windows should have no existing awnings, exterior curtains, blinds, solar films or solar screens.

In order to qualify for deemed savings, solar film should be applied to glass that faces east or west. The solar heat gain factor (SHGC) of the films must be less than 0.50.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 10 years, according to DEER 2008.

Deemed Savings Values

The building load simulation software EnergyGauge[®] was used to estimate energy savings for a prototype Arkansas single-family home.

A series of models were created to determine the difference in weather data throughout the four weather regions in Arkansas as defined in IECC 2003. Since building-shell measures are sensitive to weather, available TMY3 weather data specific to Arkansas was used for the analysis. The prototype characteristics of the building models are outlined in Volume 3, Appendix A.

Please note that the savings per square foot is a factor to be multiplied by the square footage of the window area to which the films are being added. Gas Heat (no AC) kWh applies to forced-air furnace systems only.

Existing Window Pane Type	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
Tune Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Single Pane	3.006	-0.162	-0.248	-2.372	0.778	0.00199	-0.00091
Double Pane	1.985	-0.107	-0.164	-1.480	0.495	0.00133	-0.00061

Table 328: Window Film (CR) – Deemed Savings Values - Zone 9 Northern

Existing Window	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
Pane Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Single Pane	3.328	-0.157	-0.237	-1.839	1.163	0.00187	-0.00019
Double Pane	2.255	-0.104	-0.158	-1.182	0.810	0.00124	-0.00005

Table 329: Window Film (CR) – Deemed Savings Values - Zone 8 Northeast/North Central Region

Table 330: Window Film (CR) – Deemed Savings Values - Zone 7 Central Region

Existing Window	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
Pane Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Single Pane	3.143	-0.126	-0.193	-1.118	1.391	0.00195	-0.00204
Double Pane	2.101	-0.086	-0.132	-0.670	0.961	0.00132	-0.00136

Table 331: Window Film (CR) – Deemed Savings Values - Zone 6 South Region

Existing Window	AC/Gas Heat kWh	Gas Heat (no AC) kWh	Gas Heat therms	AC/Electric Resistance kWh	Heat Pump kWh	AC Peak Savings (kW)	Peak Gas Savings (therms)
Pane Type	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²	per ft ²
Single Pane	3.872	-0.104	-0.158	0.349	2.425	0.00195	-0.00038
Double Pane	2.589	-0.068	-0.103	0.296	1.640	0.00130	-0.00025

3.2.9 Window Film (Small Commercial)

Measure Description

This measure consists of the addition of solar film to the inside of glazing on the east and west windows of commercial buildings less than 15,000 gross square feet (any direction except 45 degrees of true north). This measure is based on square footage of qualifying windows.

Baseline and Efficiency Standards

This measure is applicable to existing commercial buildings with clear single- or double-pane glazing with a solar heat gain factor (SHGC) greater than 0.66. Existing Low E windows, windows with existing solar films or solar screens are not eligible for this measure.

In order to qualify for deemed savings, solar film should be applied to glass facing east or west. The SHGC of the films must be less than 0.50.

The windows must not be shaded by existing awnings, exterior curtains or blinds or any other shading device. They must be installed in a space conditioned by refrigerated air conditioning (central, window or wall unit).

The windows must meet all applicable codes and standards, including:

- ASTM-408: Standard Method for Total Normal Emittance by inspection meter.
- ASTM E-308: Standard Recommended Practice for Spectro-Photometry and Description of Color in CIE1931 (this is an indicator of luminous reflection and visibility).
- ASTM-E903: Standard Methods of Test for Solar Absorbance, Reflectance and Transmittance using an integrated sphere.
- ASTM G-90: Standard Practice for Performing Accelerated Outdoor Weatherizing for Non-Metallic Materials Using Concentrated Natural Light.
- ASTM G26: Xenon arc weathering to accelerate natural aging.
- ASTM E-84: Flammability for commercial and residential structures.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 10 years, according to DEER 2008.

Deemed Savings Values

Deemed savings were calculated using an eQuest model populated as shown in the following section. Model runs were performed with TMY3 data for each weather zone: El Dorado (Zone 6), Little Rock (Zone 7), Fort Smith (Zone 8), and Fayetteville (Zone 9). Deemed savings values for annual electric energy use (kWh), peak demand (kW), and annual and peak gas usage (therms) are provided in the following tables.

Deemed savings are applicable to commercial buildings and were calculated using two representative buildings: a strip mall and a small office building. Estimated savings for the east and west window surfaces were based on a small office building with equal window surfaces on all four sides and for strip malls having glazing on one side. The deemed savings values presented herein represent the average savings per square foot of glazing for windows in each weather zone facing east and west. The prototype characteristics of the building models are in Appendix A.

		Gas	-Electric		All Electric				
		DX Coils	with Furnac	e	Heat	Pump	Electric I	Clectric Resistance	
Direction of Window	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced*	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
Film	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
East	8.489	2.942	-232.477	-3.051	1.373	2.507	3.819	2.511	
West	8.424	4.209	-133.134	-0.654	3.320	3.676	4.944	3.682	

Table 332: Window Film (SC) – Deemed Savings Values - Zone 9 Northern Region

Table 333: Window Film (SC) – Deemed Savings Values - Zone 8 Northeast/North Central Region

		Gas	-Electric		All Electric				
		DX Coils	with Furnac	Heat	Pump	Electric Resistance			
Direction of Window	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced*	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
Film	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
East	9.033	3.136	-256.111	-4.034	1.312	1.785	3.974	1.787	
West	8.975	3.965	-146.865	-1.756	3.339	2.377	5.072	2.383	

Table 334: Window Film (SC) – Deemed Savings Values - Zone 7 Central Region

		Gas	-Electric		All Electric				
		DX Coils	with Furnac	e	Heat Pump Electric Resista				
Direction of Window	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced*	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
Film	kWh per ft ²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
East	9.134	2.922	-217.063	-4.148	2.253	2.704	4.626	2.710	
West	8.623	3.801	-123.805	-1.382	3.542	3.669	5.018	3.684	

		Gas	Electric		All Electric				
		DX Coils	with Furna	ce	Heat Pump Electric Resistance				
Direction of Window	Energy Savings	Peak Demand Savings	Annual Gas Savings	Peak Gas Reduced*	Energy Savings	Peak Demand Savings	Energy Savings	Peak Demand Savings	
Film	kWh per ft²	kW per 1000 ft ²	therms per 1000 ft ²	therms per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	kWh per ft ²	kW per 1000 ft ²	
East	7.575	1.878	-150.978	-1.412	2.281	1.918	3.724	1.918	
West	9.113	3.909	-95.226	-0.986	4.532	4.015	5.742	4.015	

Table 335: Window Film (SC) – Deemed Savings Values - Zone 6 South Region

3.2.10 Commercial Door Air Infiltration

Measure Description

This measure applies to the installation of weather stripping on entrance/exit doors for a contained, pressurized space. Entrance and exit doors often leave clearance gaps to allow for proper operation. The gaps around the doors allow unconditioned air to infiltrate the building, adding to the cooling and heating load of the HVAC system. Door sweeps and weather stripping are designed to be installed along the bottom and jambs of exterior doors to prevent air infiltration to conditioned space.

Estimated Useful Life (EUL)

According to the DEER 2014, air infiltration measures are assigned an EUL of 11 years.⁴⁶⁷ This measure life is consistent with residential and converted residence infiltration measures in the Arkansas TRM.

Baseline & Efficiency Standard

The baseline standard for this measure is a commercial building with exterior doors that are not sealed from unconditioned space. Doors must have visible gaps of at least 1/8 - 3/4 inches along the outside edge of the door. A space with interior vestibule doors is not eligible. Interior space must be conditioned and/or heated.

The efficiency standard for this measure is a commercial building with exterior doors that have been sealed from unconditioned space using brush style door sweeps and/or weather stripping on entrance/exit doors.

Calculation of Deemed Savings

This savings methodology was derived by analyzing TMY3 weather data for each Arkansas weather zone representative city. To calculate HVAC load associated with air infiltration, the following sensible heat equation is used:

Electric Cooling Savings

$$Electric Clg \, kWh_{savings,day} = CFM_{pre,day} \times CFM_{reduction} \times 1.08 \times \Delta T \times Hours_{day} \times \frac{1}{12000}$$

$$(252)$$

$$Electric Clg \, kWh_{savings,day} = CFM_{reduction} \times CFM_{reduction} \times 1.08 \times \Delta T \times Hours_{righ} \times \frac{1}{12000}$$

 $Electric Clg \ kWh_{savings,nigh} = CFM_{pre,nigh} \times CFM_{reduction} \times 1.08 \times \Delta T \times Hours_{nigh} \times \frac{1}{12000}$ (253)

 $kWh_{savings,elect\ clg} = Electric\ Clg\ kWh_{savings,day} + Electric\ Clg\ kWh_{savings,nigh}$

(254)

$$kW_{savings,elect\ clg} = \frac{kWh_{savings,elect,clg}}{ELFH_C}$$

(255)

⁴⁶⁷ Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

Electric Heating Savings

$$Electric Htg \, kWh_{savings,day} = \frac{CFM_{pre,day} \times CFM_{reduction} \times 1.08 \times \Delta T \times Hours_{day}}{COP \times 3412}$$
(256)

$$Electric Htg \, kWh_{savings,nigh} = \frac{CFM_{pre,night} \times CFM_{reduction} \times 1.08 \times \Delta T \times Hour_{night}}{COP \times 3412}$$
(257)

 $kWh_{savings,elect\ htg} = Electric\ Htg\ kWh_{savings,day} + Electric\ Htg\ kWh_{savings,night}$

Gas Heating Savings

$$Gas Htg Therms_{savings,day} = CFM_{pre,day} \times CFM_{reduction} \times 1.08 \times \Delta T \times Hours_{day} \times \frac{1}{0.80} \times \frac{1}{100000}$$
(259)

Gas Htg Therms_{savings,night}

$$= CFM_{pre,night} \times CFM_{reduction} \times 1.08 \times \Delta T \times Hours_{night} \times \frac{1}{0.80} \times \frac{1}{100000}$$
(260)

 $Therms_{savings,gas\,htg} = Gas\,Htg\,Therms_{savings,day} + Gas\,Htg\,Therms_{savings,night}$

(261)

(2621)

$$Peak Therms_{savings,gas htg} = \frac{Therms_{savings,gas htg}}{ELFH_H}$$

Where:

 CFM_{pre} = Calculated pre-retrofit air infiltration rate (ft³/min)

 $CFM_{reduction} = 79\%^{468}$

1.08 = Sensible heat equation conversion⁴⁶⁹

 ΔT = Change in temperature across gap barrier

⁴⁶⁸ CLEAResult, "*Commercial Door Air Infiltration Memo*". March 18, 2015. Average reduction based on the preliminary test results from the CLEAResult Brush Weather Stripping Testing Method & Results (59% infiltration reduction) averaged with the 98% infiltration reduction claimed by brush sweep manufacturing companies.

⁴⁶⁹ 2013 ASHRAE Handbook of Fundamentals; Equation 33, pp. 16, 11.

 $Hours_{day} = 12$ hour cycles per day, per month = 4,380 hours

 $Hours_{night} = 12$ hour cycles per day, per month = 4,380 hours

COP = Heating coefficient of performance; 1.0 for Electric Resistance and 3.3 for Heat Pumps

12,000 =Conversion constant from Btuh to tons

3,412 = Btuh to kW

0.80 = Assumed efficiency for furnace or boiler

 $EFLH_{c}$ = Average cooling equivalent full-load hours across all building types (section 4.3)

 $EFLH_H$ = Average heating equivalent full-load hours across all building types (section 4.3)

100,000 = Btuh to therms

Derivation of Pre-Retrofit Air Infiltration Rate

The pre-retrofit air infiltration rate for each crack width is calculated by applying the methodologies presented in Chapter 5 of the ASHRAE Cooling and Heating Load Calculation Manual (CHLCM).⁴⁷⁰ Building type characteristics for a typical commercial building were found in the DOE study PNNL-20026⁴⁷¹, and an average building height of 20 feet (for typical Arkansas building stock) is assumed for the deemed savings approach.

Because air infiltration is a function of the differential pressure due to stack effect, wind speed, velocity head, and the design conditions of the building, TMY3 for each Arkansas weather zone was applied to account for the varying weather conditions that are characteristic throughout an average year.

Figure 5.13 from the ASHRAE CHLCM provides the infiltration rate based on various crack width and the corresponding pressure difference across a door. Figures 5.1 and 5.2 (CHLCM) provide the differential pressure due to stack and wind pressure necessary to determine the total pressure difference across the door.

Applying a regression analysis to Figure 5.1 (CHLCM) returns an equation which allows solving for the pressure difference due to stack effect, Δp_s . The aggregate curve fit for Figure 5.1 (CHLCM) is shown below where x is the based on the dry bulb temperature from the TMY3 data and the design temperature based on the appropriate seasonal condition.

$$\frac{\Delta p_s}{C_d} = 0.0000334003x - 0.000144683$$

(263)

Where C_d is an assumed constant, 0.63, and the neutral pressure distance is 10 feet.

⁴⁷⁰ ASHRAE Cooling and Heating Load Calculation Manual, p. 5.8. 1980. http://portal.hud.gov/hudportal/documents/huddoc?id=doc_10603.pdf

⁴⁷¹ Cho, H., K. Gowri, & B. Liu, "Energy Saving Impact of ASHRAE 90.1 Vestibule Requirements: Modeling of Air Infiltration through Door Openings." November 2010. http://www.pnl.gov/main/publications/external/technical reports/PNNL-20026.pdf

From Figure 5.2, $\Delta p_w/C_p$ is determined by applying a polynomial regression, which returns an equation for solving for the pressure difference due to wind, Δp_w . The curve fit for Figure 5.2 is shown below where *x* is the wind velocity based on TMY3 data.

$$\frac{\Delta p_w}{C_p} = 0.00047749x^2 - 0.00013041x$$
(264)

Where C_p is an assumed constant, 0.13 (average wind pressure coefficient from Table 5.5 from CHLCM). This yields the total pressure difference across the door, Δp_{Total} .

$$\Delta p_{Total} = \Delta p_s + \Delta p_w \tag{265}$$

Solving for Δp_{Total} allows for the air infiltration rate per linear foot to be determined in Figure 5.13 (CHLCM). Applying a power regression analysis for each crack width represented in Figure 5.13 (CHLCM) returns the equations listed below:

$$Q/P_{(1/8")} = 41.572x^{0.512}$$

(266)
 $Q/P_{(1/4")} = 81.913x^{0.5063}$

(267)

$$Q/P_{-}(1/2") = 164.26x^{0.5086}$$
(268)

$$Q/P_{-}(3/4") = 246.58x^{0.5086}$$

(269)

These infiltration rates were further disaggregated based on TMY3 average monthly day and night conditions.

Derivation of Design and Average Outside Ambient Temperatures

Taking average daytime and nighttime outdoor temperature values, standard set points and setbacks for daytime and nighttime design cooling and heating will yield the temperature difference needed for the sensible heat equation:

$$\Delta T = T_{design} - T_{avg outside ambient}$$

(270)

Where:

 T_{design} = Daytime and nighttime design temperatures, in °F (Table 336)

 $T_{avg outside ambient}$ = Average outside ambient temperatures, specified by month in °F (Table 337)

Temperature Description	T _{Design} (°F)
Daytime Cooling Design Temperature	74
Daytime Heating Design Temperature	72
Nighttime Cooling Design Temperature (assuming 4 degree setback)	78
Nighttime Heating Design Temperature (assuming 4 degree setback)	68

Table 336: Daytime and Nighttime Design Temperatures

		ne 9 gers		Zone 8 Fort Smith		ne 7 Rock	Zone 6 El Dorado		
Month	Day	Night	Day	Night	Day	Night	Day	Night	
	T _{avg} (°F)								
Jan	35.6	30.6	38.8	32.6	39.4	34.2	45.2	39.7	
Feb	45.3	36.7	40.8	33.8	50.0	42.3	49.1	38.6	
Mar	45.5	37.5	56.9	46.2	56.3	48.0	65.8	54.7	
April	60.0	50.1	64.4	55.1	67.3	57.3	71.2	57.3	
May	70.5	59.7	73.9	64.0	74.6	65.3	80.2	69.6	
Jun	80.9	70.4	83.6	71.4	84.4	73.1	84.8	72.9	
July	82.9	72.3	86.9	76.2	87.1	76.0	85.7	74.2	
Aug	88.4	76.1	85.8	73.7	87.0	75.4	95.8	77.7	
Sept	79.1	67.9	82.2	69.6	79.9	69.7	85.0	72.3	
Oct	61.1	51.5	66.8	54.4	67.6	56.5	67.3	52.4	
Nov	50.8	45.2	56.4	48.1	57.4	49.5	59.5	51.7	
Dec	45.9	40.1	44.4	35.3	45.4	38.7	47.0	38.5	

 Table 337: Average Monthly Ambient Temperatures472

⁴⁷² National Solar Radiation Database; 1991-2005 Update: TMY3. https://www.nrel.gov/grid/solarresource/renewable-resource-data.html

http://rredc.nrel.gov/solar/old data/nsrdb/1991-2005/tmy3/by state and city.html.

Deemed Savings

Weather Zone and	Gap Width (inches)								
Location	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1	
Zone 9 - Rogers	2.73	5.54	8.25	10.99	13.74	16.49	19.24	21.99	
Zone 8 - Fort Smith	3.34	6.78	10.08	13.43	16.80	20.16	23.52	26.88	
Zone 7 - Little Rock	3.30	6.69	9.96	13.26	16.59	19.91	23.23	26.55	
Zone 6 - El Dorado	4.63	9.40	13.98	18.63	23.31	27.97	32.63	37.29	

 Table 338: Door Sweeps – Deemed Electric Cooling Energy Savings Values (kWh per linear foot)

Table 339: Door Sweeps – Deemed Electric Resistance Heating Energy Savings Values (kWh per linear foot)

Weather Zone and	Gap Width (inches)								
Location	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1	
Zone 9 - Rogers	125.19	253.13	377.05	502.35	628.41	754.10	879.79	1005.49	
Zone 8 - Fort Smith	108.71	219.82	327.42	436.22	545.69	654.84	763.99	873.13	
Zone 7 - Little Rock	91.75	185.61	276.41	368.27	460.68	552.83	644.97	737.12	
Zone 6 - El Dorado	67.78	137.41	204.47	272.41	340.77	408.93	477.09	545.25	

Table 340: Door Sweeps – Deemed Electric Heat Pump Heating Energy Savings Values (kW	h per
linear foot)	_

Weather Zone and	Gap Width (inches)								
Location	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1	
Zone 9 - Rogers	37.94	76.71	114.26	152.23	190.43	228.51	266.60	304.69	
Zone 8 - Fort Smith	32.94	66.61	99.22	132.19	165.36	198.44	231.51	264.59	
Zone 7 - Little Rock	27.80	56.24	83.76	111.60	139.60	167.52	195.45	223.37	
Zone 6 - El Dorado	20.54	41.64	61.96	82.55	103.26	123.92	144.57	165.23	

Weather Zone and	Gap Width (inches)							
Location	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1
Zone 9 - Rogers	0.0023	0.0047	0.0071	0.0094	0.0118	0.0141	0.0165	0.0188
Zone 8 - Fort Smith	0.0024	0.0048	0.0071	0.0095	0.0118	0.0142	0.0166	0.0190
Zone 7 - Little Rock	0.0022	0.0045	0.0068	0.0090	0.0113	0.0135	0.0158	0.0180
Zone 6 - El Dorado	0.0027	0.0055	0.0082	0.0109	0.0136	0.0164	0.0191	0.0218

Table 341: Door Sweeps – Deemed Electric Cooling Demand Savings Values (kW per linear foot)

 Table 342: Door Sweeps – Deemed Gas Energy Savings Values (therms per linear foot)

Weather Zone and	Gap Width (inches)							
Location	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1
Zone 9 - Rogers	5.34	10.80	16.08	21.43	26.80	32.16	37.52	42.88
Zone 8 - Fort Smith	4.64	9.38	13.96	18.60	23.27	27.93	32.58	37.24
Zone 7 - Little Rock	3.91	7.92	11.79	15.71	19.65	23.58	27.51	31.44
Zone 6 - El Dorado	2.89	5.86	8.72	11.62	14.53	17.44	20.35	23.25

 Table 343: Door Sweeps – Deemed Gas Demand Savings Values (peak therms per linear foot)

Weather Zone and	Gap Width (inches)							
Location	1/8	1/4	3/8	1/2	5/8	3/4	7/8	1
Zone 9 - Rogers	0.0057	0.0114	0.0170	0.0227	0.0284	0.0341	0.0397	0.0454
Zone 8 - Fort Smith	0.0056	0.0112	0.0167	0.0223	0.0279	0.0335	0.0391	0.0447
Zone 7 - Little Rock	0.0050	0.0101	0.0151	0.0201	0.0251	0.0302	0.0352	0.0402
Zone 6 - El Dorado	0.0051	0.0104	0.0154	0.0206	0.0257	0.0309	0.0360	0.0412

3.3 Domestic Hot Water3.3.1 Water Heater Replacement

Measure Description⁴⁷³

This measure involves:

- The replacement of electric storage water heaters by either high efficiency electric storage tank water heaters or electric tankless water heaters
- The replacement of electric water heaters by heat pump water heaters (HPWH)
- The replacement of gas water heaters by more efficient gas storage tank water heaters or gas tankless (instantaneous) water heaters

Commercial water heater savings are measured per location and are calculated for new construction or replace-on-burnout. Storage tank models and tankless models, utilizing either electricity or natural gas, are eligible.

Baseline and Efficiency Standards

IECC 2003 and 2009 commercial standards specify the baseline and efficiency standards for this measure. These are detailed in the next table. The 2003 IECC standard applies only in jurisdictions that have not yet adopted the 2009 IECC standard. Differences in performance requirements between IECC 2003 and 2009 standards have been noted where appropriate.

When determining the appropriate baseline efficiency, the existing water heater type should be used. For example, if a customer is replacing an older storage water heater with a more efficient one of any type, the storage type water heater baseline efficiencies should be used. If a customer is replacing a storage type water heater, storage water heater baseline efficiencies should be used. If a customer is replacing an existing tankless water heater with a newer, more efficient tankless water heater, then the tankless baseline efficiencies must be used.

⁴⁷³ The previously filed version of the Arkansas TRM version contained separate measures for Commercial Water Heater Replacements and Water Heater Replacements for Converted Residences (3.35 in the initial filing). This version has combined the two measures, and Water Heater Replacements for Converted Residences is now empty.

Equipment Type	Size Category (Input)	Subcategory or Rating Condition	Performance Required ^{474,475}	Test Procedure	
	< 75.000 Dtu/ha	> 20 cc1	IECC 2003: 0.62 - 0.0019V, EF	DOE 10 CFR Part	
	≤ 75,000 Btu/hr	≥ 20 gal	IECC 2009: 0.67 - 0.0019V, EF	430	
Storage water heaters, gas	> 75,000 Btu/hr and ≤ 155,000 Btu/hr	<4,000 Btu/hr/gal	80% <i>E_t</i> (Q/800 +110√V), SL (Btu/hr)	ANSI Z21.10.3	
	> 155,000 Btu/hr	<4,000 Btu/hr/gal	80% E_t (Q/800 +110√V), SL (Btu/hr)	ANSI 221.10.5	
	> 50,000 Btu/hr and < 200,000 Btu/hr ⁴⁷⁶	\geq 4,000 (Btu/hr)/gal and < 2 gal	0.62 - 0.0019V, EF	DOE 10 CFR Part 430	
Tankless water	≥ 200,000 Btu/hr	\geq 4,000 Btu /hr/gal and < 10 gal	80% E_t		
heaters, gas	> 200,000 Btu/hr	\geq 4,000 Btu/hr/gal and \geq 10 gal	80% E_t (Q/800 +110√V), SL (Btu/hr)	ANSI Z21.10.3	
	< 12 LW	Desistance	IECC 2003: 0.93 - 0.00132V, EF	DOE 10 CFR Part	
Water	\leq 12 kW Resistance		IECC 2009: 0.97 - 0.00132V, EF		
heaters, electric	> 12 kW	Resistance	1.73V + 155, SL (Btu/hr)	ANSI Z21.10.3	
	\leq 24 amps and \leq 250 volts	Heat Pump	0.93 - 0.00132V, EF	DOE 10 CFR Part 430	

Table 344: Commercial Water Heaters – Water Heater Performance Requirements

⁴⁷⁴ Energy factor (EF) and thermal efficiency (E_t) are minimum requirements. In the EF equation, V is the rated volume in gallons.

⁴⁷⁵ Standby loss (SL) is the maximum Btu/hr based on a nominal 70°F temperature difference between stored water and ambient requirements. In the SL equation, Q is the nameplate input rate in Btu/hr. In the SL equation for electric and gas water heaters and boilers, V is the rated volume in gallons.

⁴⁷⁶ Tankless water heaters with input rates below 200,000 Btu/hr must comply with these requirements if the water heater is designed to heat water to temperatures 180°F or higher.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

For smaller water heaters where energy factor (EF) is used, EF takes into account the overall efficiency, including combustion efficiency and standby loss (SL). Regulated by DOE as "residential water heaters", these smaller water heaters manufactured on or after April 16, 2015 must comply with the amended standards found in the Code of Federal Regulations, 10 CFR 430.32(d), by April 16, 2015.

Product class	Rated storage volume and input rating (if applicable)	Draw pattern	Uniform Energy Factor (EF)
		Very Small	$0.3456 - (0.0020 \times Vr)$
		Low	$0.5982 - (0.0019 \times Vr)$
	≥ 20 gal and ≤ 55 gal	Medium	$0.6483 - (0.0017 \times Vr)$
Gas-fired Storage		High	$0.6920 - (0.0013 \times Vr)$
Water Heater		Very Small	$0.6470 - (0.0006 \times Vr)$
	> 55 1 1 < 100 1	Low	$0.7689 - (0.0005 \times Vr)$
	> 55 gal and ≤ 100 gal	Medium	$0.7897 - (0.0004 \times Vr)$
		High	$0.8072 - (0.0003 \times Vr)$
		Very Small	$0.2509 - (0.0012 \times Vr)$
Oil-fired Storage	< 50 1	Low	$0.5330 - (0.0016 \times Vr)$
Water Heater	≤ 50 gal	Medium	$0.6078 - (0.0016 \times Vr)$
		High	$0.6815 - (0.0014 \times Vr)$
		Very Small	$0.8808 - (0.0008 \times Vr)$
	> 20 - 1 - 1 - 55 - 1	Low	$0.9254 - (0.0003 \times Vr)$
	≥ 20 gal and ≤ 55 gal	Medium	$0.9307 - (0.0002 \times Vr)$
Electric Storage		High	$0.9349 - (0.0001 \times Vr)$
Water Heaters		Very Small	$1.9236 - (0.0011 \times Vr)$
	55 and an 1 < 100 a 1	Low	$2.0440 - (0.0011 \times Vr)$
	> 55 gal and ≤ 120 gal	Medium	$2.1171 - (0.0011 \times Vr)$
		High	$2.2418 - (0.0011 \times Vr)$

Table 345: "Residential Water Heater" Standards477

⁴⁷⁷ <u>https://energy.gov/energysaver/sizing-new-water-heater</u>. Accessed August 7, 2017

Product class	Rated storage volume and input rating (if applicable)	Draw pattern	Uniform Energy Factor (EF)	
		Very Small	$0.6323 - (0.0058 \times Vr)$	
Tabletop Water		Low	$0.9188 - (0.0031 \times Vr)$	
Heater	\geq 20 gal and \leq 120	Medium	$0.9577 - (0.0023 \times Vr)$	
	_	High	$0.9884 - (0.0016 \times Vr)$	
		Very Small	0.80	
Instantaneous	< 2 gal and > 50,000	Low	0.81	
Gas-fired Water Heater	Btu/h	Medium	0.81	
		High	0.81	
		Very Small	0.91	
Instantaneous		Low	0.91	
Electric Water Heater	< 2 gal	Medium	0.91	
		High	0.92	
		Very Small	$1.0136 - (0.0028 \times Vr)$	
Grid-Enabled Water	~ 75 1	Low	$0.9984 - (0.0014 \times Vr)$	
Heater	>75 gal	Medium	$0.9853 - (0.0010 \times Vr)$	
		High	$0.9720 - (0.0007 \times Vr)$	

The new code requires that a draw pattern be determined in order to calculate the correct energy factor. The draw pattern is calculated based on the first hour rating (FHR) of the installed water heater, and is defined as the number of gallons of hot water the heater can supply per hour.⁴⁷⁸

Table 346, Table 347 and Table 348 provide the FHR ranges and corresponding draw pattern designation.

⁴⁷⁸ <u>https://energy.gov/energysaver/sizing-new-water-heater</u>. Accessed August 7, 2017

New FHR greater than or equal to:	and new FHR less than:	Draw pattern
0 gallons	18 gallons	Very Small
18 gallons	51 gallons	Low
51 gallons	75 gallons	Medium
75 gallons	No upper limit	High

Table 346: Tank Water Heater Draw Pattern⁴⁷⁹

Table 347: Instantaneous Water Heater Draw Pattern480

New max GPM greater than or equal to:	And new max GPM rating less than:	Draw pattern
0 gallons/minute	1.7 gallons/minute	Very Small
1.7 gallons/minute	2.8 gallons/minute	Low
2.8 gallons/minute	4 gallons/minute	Medium
4 gallons/minute	No upper limit	High

Table 348: Heat Pump Water Heater Draw Pattern⁴⁸¹

Draw pattern	DV
Very Small	10 gallons
Low	38 gallons
Medium	55 gallons
High	84 gallons

For larger water heaters, thermal efficiency (E_t) is used and does not factor into SL; however, a limitation on SL is noted.

The savings calculations consider the minimum water heater efficiency requirements listed in

⁴⁷⁹ <u>https://www.regulations.gov/document?D=EERE-2015-BT-TP-0007-0042.</u> Accessed August 26, 2019

⁴⁸⁰ Ibid.

⁴⁸¹ Ibid.

Table 344 to be the baseline.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is dependent on the type of water heating. According to DEER 2008, the following measure lifetimes should be applied.⁴⁸²

- 10 years for Heat Pump Water Heater (HPWH)
- 15 years for High Efficiency Commercial Storage Water Heater
- 20 years for Commercial Tankless Water Heater

Calculation of Deemed Savings

Typically, two types of ratings exist for water heaters: energy factor (EF) for smaller units, and thermal efficiency (E_t) for larger water heaters. Large heat pump water heaters may also be rated by a third method, coefficient of performance (COP), which is the ratio of heat energy output to electrical energy input, and is analogous to thermal efficiency. EF includes standby losses, while E_t and COP only consider the amount of energy required to heat the water. Therefore, in the formulas below, the baseline and energy efficiency measure may be compared for each type of water heater.

The electricity and natural gas savings for this measure are highly dependent on the estimated hot water consumption, which varies significantly by building type. The following tables list estimated hot water consumption for various building types by number of units, occupants, or building size.

Building Type	Daily Demand (Gallons/Unit/ Day)	Unit	Units/ 1,000 ft ²	Applicable Days/Year	Gallons/ 1,000 ft²/day
Small Office	1	person	2.3	250	2.3
Large Office	1	person	2.3	250	2.3
Fast Food Restaurant	0.7	meal/day	784.6	365	549.2
Sit-Down Restaurant	2.4	meal/day	340	365	816.0
Retail	2	employee	1	365	2.0
Grocery	2	employee	1.1	365	2.2
Warehouse	2	employee	0.5	250	1.0
Elementary School	0.6	person	9.5	200	5.7
Jr. High/ High School	1.8	person	9.5	200	17.1
Health	90	patient	3.8	365	342.0
Motel	20	unit(room)	5	365	100.0
Hotel	14	unit(room)	2.2	365	30.8

Table 349: Hot Water Requirements by Building Type⁴⁸³

⁴⁸² <u>http://www.deeresources.com/files/deer2008exante/downloads/EUL_Summary_10-1-08.xls</u>

⁴⁸³ Osman S, & Koomey, J. G J1995, National Laboratory 1995. *Technology Data Characterizing Water Heating in Commercial Buildings: Application to End-Use Forecasting*. December.

Building Type	Daily Demand (Gallons/Unit/ Day)	Unit	Units/ 1,000 ft ²	Applicable Days/Year	Gallons/ 1,000 ft²/day
Other	1	employee	0.7	250	0.7

Table 350: Hot Water Requirements by Unit or Person^{484,485,486}

Building Type	Size Factor	Average Daily Demand
Commercial/Industrial Laundry Facility	Pounds of Laundry	2.0 Gallons per pound
Demuitania	Men	13.1 Gallons per man
Dormitories	Women	12.3 Gallons per woman
Hospitals	Per Bed	90.0 Gallons per patient
Hath	Single Room with Bath	50.0 Gallons per unit
Hotels	Double Room with Bath	80.0 Gallons per unit
Laundromat	Pounds of Laundry	0.56 Gallons per pound
	No. of Units:	
Madela	Up to 20	20.0 Gallons per unit
Motels	21 to 100	14.0 Gallons per unit
	101 and up	10.0 Gallons per unit
Nursing Homes	Per Bed	18.4 Gallons per bed
D to to	Full Meal Type	2.4 Gallons per meal
Restaurants	Drive-in Snack Type	0.7 Gallons per meal
Salasala	Elementary	0.6 Gallons per student
Schools	Secondary and High School	1.8 Gallons per student

⁴⁸⁴ Figure for Commercial/Industrial laundry facilities from Sacramento M.U.D.

⁴⁸⁵ Figure for laundromats calculated from San Diego County Water Authority "Report on the Monitoring and Assessment of Water Savings from the Coin-operated Multi-load Clothes Washers Voucher Initiative Program" published in 2006.

⁴⁸⁶ All other figures come from TEXAS LoanSTAR PROGRAM GUIDEBOOK VOLUME II. 2002

Weather Zone and Location	Average Water Main Temperature (°F)	
Zone 9 - Fayetteville	65.6	
Zone 8 - Fort Smith	66.1	
Zone 7 - Little Rock	67.8	
Zone 6 - El Dorado	70.1	

Table 351: Average Supply (Water Main) Temperature⁴⁸⁷

Small Electric Storage Water Heaters

As small (≤ 12 kW) electric water heaters are typically rated by EF, this section of this measure includes both higher-efficiency resistance water heaters and small (≤ 24 amps and ≤ 250 volts) heat pump water heaters. Deemed annual energy savings for small electric water heater replacements are calculated by formulas as follows:

$$kWh_{Savings} = \rho \times C_P \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{EF_{pre}} - \frac{1}{EF_{pos}}\right) \times \frac{Days}{Year} \times \frac{1}{3412}$$
(271)

Where:

 ρ = Water density = 8.33 lb/gallon

 C_P = Specific heat of water = 1 Btu/lb °F

GPD = Average daily hot water use (gallons per day); see Table 349 and

Table 350, for estimates of water consumption

 $T_{SetPoint}$ = Water heater set point; if unavailable, use 120°F

 T_{Supply} = Water-Main temperature, see Table 351

 EF_{pre} = Calculated energy factor of existing water heater, based on the water heater tank volume; Table 345

 V_{Tank} = Volume of tank (gallons)

3,412 =Conversion constant from Btu to kW

 EF_{post} = Energy Factor of replacement water heater (taken from nameplate); the replacement water heater may be either a high efficiency electric storage water heater or a heat pump water heater

 $\frac{Days}{Year}$ = Days of operation per year; appropriate values by building type are provided in Table 349; however, if using hot water requirements from

⁴⁸⁷ Water main temperature data were approximated using an algorithm (Burch, J., Christensen, C.) 2007. "Towards Development of an Algorithm for Mains Water Temperature." Proceedings of the 2007 ASES Annual Conference, Cleveland, OH.

Table 350, use 365 days

Deemed demand savings for small electric water heater replacements are calculated by formula as follows:

$$kW_{Savings} = \rho \times C_P \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{EF_{pre}} - \frac{1}{EF_{post}}\right) \times \frac{1}{24} \times \frac{1}{3412}$$
(272)

Where all variables are the same as in the energy equation and the $\frac{1}{24}$ ratio is a best estimate of peak coincidence for commercial hot water heater replacements.⁴⁸⁸

Large Electric Storage Water Heaters

Large (> 12 kW) electric resistance water heaters can be replaced with heat pump water heaters.

For replacement of large electric resistance water heaters with a heat pump water heater, deemed annual energy savings are calculated by the following formula:

$$kWh_{Savings} = \rho \times C_P \times GPD \times \left(T_{Setoint} - T_{Supply}\right) \times \left(\frac{1}{E_{t,base}} - \frac{1}{COP_{post}}\right) \times \frac{Days}{Year} \times \frac{1}{3412}$$
(273)

Where:

 ρ = Water density = 8.33 lb/gallon

 C_P = Specific heat of water = 1 Btu/lb·°F

GPD = Average daily hot water use (gallons per day); see Table 349 and

Table 350, for estimates of water consumption

 $T_{SetPoint}$ = Water heater set point, if unavailable, use 120°F

*T*_{Supply} = Water-Main temperature, see Table 351

 $E_{t,base} = 0.98$

3,412 =Conversion constant from BTU to kW

 COP_{post} = Coefficient of performance of new heat pump water heater

 $\frac{Days}{Year}$ = Days of operation per year; appropriate values by building type are provided in Table 349; however, if using hot water requirements from

Table 350, use 365 days

⁴⁸⁸ For replacement with high-efficiency electric storage water heaters and tankless water heaters, the 1/24 peak coincidence factor accurately reflects that improvements in the efficiency of electric resistance storage water heaters are driven almost entirely by reductions in storage losses (conversion efficiency, RE, is close to 1), which are distributed evenly throughout the day.

Deemed demand savings for replacement of large electric resistance water heaters with a heat pump water heater are calculated by the following formula:

$$kW_{Savings} = \rho \times C_P \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{E_{t,base}} - \frac{1}{COP_{post}}\right) \times \frac{1}{24} \times \frac{1}{3412}$$
(274)

Where all variables are the same as in the annual energy savings equation and $\frac{1}{24}$ represents the fraction of daily hot water use that occurs during the peak hour.

Natural Gas Storage Water Heaters

Deemed annual natural gas savings for high-efficiency natural gas water heaters should be calculated by the formulas listed below. Two types of ratings exist for gas water heaters: energy factor (EF), which includes standby losses, for water heaters rated $\leq 75,000$ Btu/h and thermal efficiency (*E*_*t*), which only includes the energy required to heat the water for water heaters larger than 75,000 Btu/hr. When making comparisons or savings estimations, only similarly rated systems can be directly compared. The following equations apply to replacement of a natural gas storage water heater with a higher efficiency gas storage water heater or a gas tankless water heater.

Deemed annual gas savings for natural gas water heaters up to 75,000 Btu/h should be calculated by the following formulas:

$$Therms_{Savings} = \rho \times C_P \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{EF_{base}} - \frac{1}{EF_{post}}\right) \times \frac{Days}{Year} \times \frac{1}{100000}$$
(275)

Where:

 ρ = Water density = 8.33 lb/gallon

 C_P = Specific heat of water = 1 Btu/lb °F

GPD = Average daily hot water use (gallons per day); see Table 349 and

Table 350, for estimates of water consumption

 V_{Tank} = Volume of tank (gallons)

 $T_{SetPoint}$ = Water heater set point; if unavailable, use 120°F

 T_{Supply} = Water-Main temperature, see Table 351

100,000 =Conversion constant from Btu to therms

 $\frac{Days}{Year}$ = Days of operation per year; appropriate values by building type are provided in Table 349; however, if using hot water requirements from

Table 350, use 365 days

Deemed peak day gas savings for natural gas water heaters \leq 75,000 Btu/h should be calculated by the following formula:

$$Peak \ Day \ Therm_{Savings} = \rho \times C_P \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{EF_{base}} - \frac{1}{EF_{post}}\right) \times \frac{1}{100000}$$

(276)

Where all variables are the same as in the formula for deemed annual gas savings for natural gas water heaters up to 75,000 Btu/h.

Deemed annual energy savings for natural gas water heaters larger than 75,000 Btu/hr (rating in E_t) should be calculated by the following formulas:

$$Therm_{Savings} = \rho \times C_P \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{E_{t,base}} - \frac{1}{E_{t,post}}\right) \times \frac{Days}{Year} \times \frac{1}{100000}$$
(2776)

Where:

 ρ = Water density = 8.33 lb/gallon

 C_P = Specific heat of water = 1 Btu/lb °F

GPD = Average daily hot water use (gallons per day); see Table 349 and

Table 350, for estimates of water consumption

 $T_{SetPoint}$ = Water heater set point; if unavailable, use 120°F

 $T_{Supply} =$ Water-Main temperature

 $E_{t,base} = 80\%$ per

Table 344

 $E_{t,post}$ = Thermal efficiency of new water heater

100,000 =Conversion constant from Btu to therms

 $\frac{Days}{Year}$ = Days of operation per year; appropriate values by building type are provided in Table 349; however, if using hot water requirements from

Table 350, use 365 days

Deemed peak day savings for natural gas water heaters larger than 75,000 Btu/hr (rating in E_t) should be calculated by the following formulas:

$$Peak Day Therm_{Savings} = \rho \times C_P \times GPD \times \left(T_{SetPoint} - T_{Supply}\right) \times \left(\frac{1}{E_{t,base}} - \frac{1}{E_{t,post}}\right) \times \frac{1}{100000}$$
(278)

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Where all variables are the same as in the formula for deemed annual gas savings for natural gas water heaters \geq 75,000 Btu/h. For large gas water heaters, additional gas savings can be achieved by replacing a water heater with one having lower standby losses. The deemed savings can be calculated using the following equation:

$$Therms_{Savings} = \frac{(SL_{base} - SL_{post}) \times Hours_{Annual}}{100000}$$
(279)

Where:

100000 =Btuh to therms

Hour_{Annual} = 8,760 hours per year

 $SL_{base} = Q/800 + 110\sqrt{V}$ where Q = nameplate input rating (Btu/hr)

 SL_{post} = nameplate standby loss of new water heater (Btu/hr)

Associated additional peak day gas savings can be calculated using the following equation:

$$Peak \ DayTherm_{Savings} = \frac{SL_{base} - SL_{post}}{100000}$$
(280)

Where SL_{base} and SL_{post} have the same definition as in the preceding formula.

3.3.2 Faucet Aerators

Measure Description

This measure consists of installing low-flow faucet aerators in commercial facilities which reduce water usage and save energy associated with heating the water.

Baseline & Efficiency Standard

The savings values for low-flow faucet aerators are for the retrofit of existing operational faucet aerators with a flow rate of 2.2 gallons per minute or higher. Facilities that use both gas and electric water heaters are eligible for this measure.

The baseline faucet aerators are assumed to have a flow rate of 2.2 gallons per minute.⁴⁸⁹ To qualify for this measure, the flow rate of installed low-flow faucet aerators must be at most 1.5 gallon per minute.⁴⁹⁰

Estimated Useful Life (EUL)

The estimated useful life (EUL) for this measure is 10 years.⁴⁹¹

Deemed Savings Values

Annual gas savings and peak day gas savings can be calculated by using the following equations.

$$\Delta Therms = \rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times \frac{Days}{Year} \times \frac{1}{100000}$$
(281)

$$\Delta Peak Therms = \rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times P \times \frac{1}{100000}$$

Annual kWh electric and peak kW savings can be calculated using the following equations:

$$\Delta kWh = \rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times \frac{Days}{Year} \times \frac{1}{3412}$$
(283)

$$\Delta kW = \rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times P \times \frac{1}{3412}$$
(284)

(2821)

⁴⁸⁹ Maximum flow rate federal standard for lavatories and aerators set in Federal Energy Policy Act of 1992 and codified at 2.2 GPM at 60 psi in 10CFR430.32.

⁴⁹⁰ <u>https://lookforwatersense.epa.gov/partners/</u>

⁴⁹¹ Database for Energy Efficiency Resources, 2008.

Parameter	Description	Value
F _B	Average baseline flow rate of aerator (GPM)	2.2
F _P	Average post measure flow rate of aerator (GPM)	≤ 1.5
Days /Year	 Annual building type operating days for the applications: 1. Prison 2. Hospital, nursing home 3. Dormitory 4. Multifamily 5. Lodging 6. Commercial 7. School 	365 ⁴⁹² 365 274 ⁴⁹³ 365 365 250 200 Zone 9: 65.6
T _{supply}	Average supply (cold) water temperature (°F) from Table 351	Zone 9: 65.6 Zone 8: 66.1 Zone 7: 67.8 Zone 6: 70.1
T _H	Average mixed water (after aerator) temperature (°F)	105 ⁴⁹⁴
U	 Baseline water usage duration, following applications ⁴⁹⁵ 1. Prison 2. Hospital, nursing home 3. Dormitory 4. Multifamily 5. Lodging 	30 min/day/unit 3.0 min/day/unit 30 min/day/unit 3.0 min/day/unit 30 min/day/unit 30 min/day/unit 30 min/day/unit

⁴⁹² Sezgen, O. &. Koomey, J.. Lawrence Berkeley National Laboratory 1995. *Technology Data Characterizing Water Heating in Commercial Buildings: Application to End-Use Forecasting.* December 1995.

⁴⁹³ Dormitories with few occupants in the summer: $365 \ge (9/12) = 274$.

⁴⁹⁴ ASHRAE Handbook 2011. HVAC Applications. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE), Inc., Atlanta, GA.

⁴⁹⁵ Three minutes per day of usage is assumed for private lavatories used in multifamily, hotel guest rooms, hospital patient rooms, nursing homes; Connecticut UI and CLP Program Savings Documentation, September 25, 2009 uses assumption of three faucets per household and one minute per faucet; 30 minutes per day faucet use for commercial lavatories from Federal Energy Management Program Energy Cost Calculator for Faucets and Showerheads, default for aerators in commercial applications.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Description	Value
6. Commercial	
7. School	
Unit conversion: 8.33 pounds/gallon	8.33
Heat capacity of water – 1 Btu/lb °F	1
Thermal Efficiency of water heater	Default values: 0.98 for electric resistance 2.2 (COP) for heat pump, 0.80 ⁴⁹⁶ for gas
 Hourly water consumption during peak period as a fraction of average daily consumption for applications: 497 1. Prison 2. Hospital, nursing home 3. Dormitory 4. Multifamily 5. Lodging 6. Commercial 7. School 	0.04 0.03 0.04 0.03 0.02 0.08 0.05
	 6. Commercial 7. School Unit conversion: 8.33 pounds/gallon Heat capacity of water – 1 Btu/lb °F Thermal Efficiency of water heater Hourly water consumption during peak period as a fraction of average daily consumption for applications: ⁴⁹⁷ 1. Prison 2. Hospital, nursing home 3. Dormitory 4. Multifamily 5. Lodging

⁴⁹⁶ Default values based on median thermal efficiency of commercial water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/Search/SearchHome</u>

⁴⁹⁷ Derived from *ASHRAE Handbook 2011. HVAC Applications*. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA. The peak factor is the ratio of the gallons of hot water used during the peak times of 3pm to 6pm, to the total amount of hot water used during the day. This factor was derived by facility type, and is the same regardless of water heater fuel.

The following are gas and electric example calculations for a 1.0 GPM aerator replacement for a school in Weather Zone 9 (e.g. Fayetteville) using the previous equations and information. Example electric savings are based on heating water with a conventional electric resistance storage tank water heater.

$$\Delta Therms = \frac{8.33 \times 30 \frac{min}{day} \times [2.2 - 1.0] GPM \times (105 - 65.6^{\circ}\text{F}) \times (\frac{1}{0.8}) \times 200 \frac{day}{year}}{100,000 \frac{Btu}{therm}} = 29.5 \text{ therms}$$

$$\Delta Peak Therms = \frac{8.33 \times 30 \frac{min}{day} \times [2.2 - 1.0] GPM \times (105 - 65.6^{\circ}\text{F}) \times (\frac{1}{0.8}) \times 0.05}{100,000 \frac{Btu}{therm}}$$

$$= 0.007 \text{ therms/day}$$

$$\Delta kWh = \frac{8.33 \times 30 \frac{min}{day} \times [2.2 - 1.0] GPM \times (105 - 65.6^{\circ}\text{F}) \times (\frac{1}{0.98}) \times 200 \frac{day}{year}}{3412 \frac{Btu}{kWh}} = 707 \text{ kWh}$$

$$\Delta kW = \frac{8.33 \times 30 \frac{min}{day} \times [2.2 - 1.0] GPM \times (105 - 65.6^{\circ}\text{F}) \times (\frac{1}{0.98}) \times 200 \frac{day}{year}}{3412 \frac{Btu}{kWh}} = 0.17 \text{ kW}$$

3.3.3 Water Heater Jackets

Measure Description

This measure involves the installation of water heater jackets (WHJ) on water heaters located in an unconditioned space in small commercial settings. These estimates apply to all weather regions.

Baseline and Efficiency Standards

The baseline is assumed to be a post-1991, storage-type water heater with no water heater jacket and manufactured R-value of six sq. ft. °F/Btu.

Water heater jackets must have a minimum fiberglass insulation thickness of 2 inches (R-value of approximately 6.6 h sq. ft. °F/Btu) and must be installed on storage water heaters having a capacity of 30 gallons or greater. Manufacturer's instructions on the water heater jacket and the water heater itself should be followed. If the water heater is electric, thermostat and heating element access panels must be left uncovered. If the water heater is a heat pump water heater, air intake and exhaust apertures must not be inhibited in any way. If it is gas, the water heater jacket installation instructions regarding combustion air and flue access must be followed.

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is seven years, according to DEER 2008.

Calculation of Deemed Savings

Energy Savings

Water heater jackets reduce water heater storage tank shell loss, bringing about savings which are calculated as follows:

$$Shell Loss Savings = \frac{\left(U_{pre} - U_{post}\right) \times A \times \left(T_{Water-} T_{ambient}\right) \times \frac{1}{E_t} \times Hours_{Annual}}{Conversion factor}$$

Where:

Shell Loss Savings = Annual energy savings in kWh/yr. for electric and therms/yr. for gas water heaters

 $U_{pre} = 1/(\text{R-value of tank manufacturer's original insulation})$ Btu/hr sq. ft. F°

 $U_{post} = 1$ (R-value of tank manufacturer's original insulation + R value of water jacket) Btu/hr sq. ft. F°

A = Surface area in square feet (for a cylinder = $2\pi rh + \pi r^2$) where r = radius of the tank; see Table 353

 $T_{water}(^{\circ}F) =$ Storage tank water temperature; if unknown, use 120°F

 $T_{ambient}$ (°F) = For water heaters not installed in conditioned space, use the values in Table 354

 E_t = Thermal efficiency (for heat pumps, COP)

(285)

 $Hours_{Annual} = 8,760$ hr per year ^{498,499}

Conversion factor = For electric water heating: 3,412 Btu/kWh; for gas water heating: 100,000 Btu/therm

Tank Size (gallons)	Height (feet)	Radius (feet)	Surface Area (square feet) 500
30 tall	4.67	0.67	20.94
30 short	2.50	0.92	17.04
40	4.67	0.75	23.76
50	4.75	0.83	27.05
75	4.92	1.00	34.03
100	5.38	1.18	44.11

Table 353: Approximate Surface Areas of Cylindrical Tanks

Weather Zone and Location	Average Ambient Temperature (°F)
Zone 9 - Fayetteville	59.6
Zone 8 - Fort Smith	60.1
Zone 7 - Little Rock	61.8
Zone 6 - El Dorado	64.1

⁴⁹⁸ Ontario Energy's Measures and Assumptions for Demand Side Management (DSM) Planning <u>https://www.oeb.ca/oeb/_Documents/EB-2008-0346/Navigant_Appendix_C_substantiation_sheet_20090429.pdf</u>

⁴⁹⁹ New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs Residential, Multi-Family, and Commercial/Industrial Measures <u>https://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/72c23decff52920a85257f1100671</u> <u>bdd/\$FILE/NYS%20TRM%20V9.pdf</u>

⁵⁰⁰ Note: Bottom of tank is not affected by measure so that area is not included in the surface area calculation.

Example: A 2-inch-thick fiberglass insulating jacket is installed on a 50-gallon electric water heater in Weather Zone 9 (e.g. Fayetteville).

R value before = 6 sq. ft. °F/Btu R value after = 12.6 sq. ft. °F/Btu Surface Area of tank = 27 sq. ft. $T_{ambient} = 59.6$ and $T_Water = 120$ °F $E_t = 0.98$

Shell Loss Savings =
$$\frac{(0.1667 - 0.0793) \times 27 \times (120 - 59.6) \times 8760 \times \frac{1}{0.98}}{3412} = 373 \frac{kWh}{yr}$$

Demand Savings

Demand savings were calculated using the following formula for electric:

Demand Shell Loss Savings (kW) =
$$(U_{pre} - U_{post}) \times A \times (T_{Water} - T_{ambientMAX}) \times \frac{1}{E_t} \times \frac{1}{3412}$$
(286)

Where:

 $U_{pre} = 1/(\text{R-value of tank manufacturer's original insulation})$ Btu/hr sq. ft. F°

 $U_{post} = 1/(\text{R-value of tank manufacturer's original insulation + water jacket) Btu/hr sq. ft. F^{\circ}$

A = Surface area in square feet (for a cylinder = $2\pi rh + \pi r^2$); see Table 353

 T_{water} (°F) = Storage tank water temperature. If unknown, use 120°F

 $T_{ambientMAX}$ (°F) =Use the maximum annual ambient temperatures in Table 355

 E_t = Thermal Efficiency (or in the case of heat pumps, COP)

3,412 =Conversion constant from BTU to kW

	Ambient Temperature (°F)			
Weather Zone and Location	Unconditioned Space			
	Maximum	Minimum		
Zone 9 - Fayetteville	101	4.3		
Zone 8 - Fort Smith	101	13.5		
Zone 7 - Little Rock	97	12.1		
Zone 6 - El Dorado	107	27.8		

Table 355: Maximum and Minimum Temperatures per Weather Zone

For gas, peak day demand savings were calculated using the following formula:

Demand Savings (therms/day)

$$= (U_{pre} - U_{post}) \times A \times (T_{Water} - T_{ambientMIN}) \times \frac{1}{E_t} \times 24 \times \frac{1}{100000}$$
(287)

Where:

 $U_{pre} = 1/(R$ -value of tank manufacturer's original insulation) Btu/hr sq. ft. F°

 $U_{post} = 1/(R$ -value of tank manufacturer's original insulation plus water jacket)

A = Surface area in square feet (for a cylinder = $2\pi rh + \pi r^2$); see Table 353

 T_{water} (°F) = Storage tank water temperature; if unknown, use 120 °F

 $T_{ambientMIN}$ (°F) = Use the minimum annual ambient temperatures in Table 355

 E_t =Thermal efficiency; if unknown, use 0.8 as a default (Not to be confused with the Energy Factor (EF))

24 = Hours per day

100,000 =Conversion constant from Btu to therm

3.3.4 Water Heater Pipe Insulation

Measure Description

This measure consists of installing water heater pipe insulation exceeding the IECC mandated standard (0.5-inch of insulation that delivers an R-value of at least 3.7 per inch) over at least the first 8 feet of exposed pipe in small commercial settings. Water heaters plumbed with heat traps or automatic-circulating systems are not eligible to receive incentives for this measure.⁵⁰¹

Baseline and Efficiency Standards

Baseline insulation is R = 1.85 sq. ft. h °F/Btu, the mandated standard since IECC 2000.

Estimated Useful Life

The estimated useful life (EUL) of this measure is the remaining service life of the water heater.

Calculation of Deemed Savings

Energy Savings

Hot water pipe insulation energy savings are calculated using the following formula:

Annual Energy Savings =
$$\frac{(U_{pre} - U_{post}) \times A \times (T_{Pipe} - T_{ambient}) \times \frac{1}{E_t} \times Hours_{Annual}}{Conversion \ factor}$$

Where:

 $U_{pre} = 1/(2.03^{502}+1.85) = 0.26$ Btu/hr sq. ft. °F

 $U_{post} = 1/(1.85+2.03+R_{Additional})$ Btu/hr sq. ft. °F

- $R_{Additional}$ = R-value of additional insulation that exceeds IECC standard
- A = Surface Area in square feet (πDL) with L (length) and D pipe diameter in feet
- T_{Pipe} (°F) = Average temperature of the pipe; default value = 90 °F (average temperature of pipe between water heater and the wall)
- $T_{ambient}$ (°F) = For water heaters not installed in conditioned space, use the values in Table 356; for water heaters inside the building envelope, use an average ambient temperature of 75 °F
- E_t = Thermal efficiency (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric water heaters, 2.2 for a heat pump water heater, or 0.8 for natural gas water

(288)

 $^{^{501}}$ A survey of several large online home-improvement retailers shows three general classes of commercially available pipe insulation: one around R-2.3 (typically 5/8" thick foam), another around R-3 (typically 1/2" thick rubber) and lastly high-end insulation in the R-6 to R-7 range (1" thick rubber).

⁵⁰² 2.03 is the R-value representing the film coefficients between water and the inside of the pipe and between the surface and air. *Mark's Standard Handbook for Mechanical Engineers*, 8th edition.

heaters.503

 $Hours_{Annual} = 8,760$ hr per year ^{504,505}

Conversion factor = For electric water heating: 3,412 Btu/kWh; for gas water heating: 100,000 Btu/therm

Table 356: Average	Ambient Temperature	by Weather Zone

Weather Zone and Location	Average Ambient Temperature (°F)
Zone 9 - Fayetteville	59.6
Zone 8 - Fort Smith	60.1
Zone 7 - Little Rock	61.8
Zone 6 - El Dorado	64.1

Demand Savings

Electric peak demand savings for hot water heaters installed in conditioned space is calculated using the following formula:

Demand Savings (kW) =
$$\frac{\left(U_{pre} - U_{post}\right) \times A \times \left(T_{Pipe} - T_{ambientMAX}\right) \times \frac{1}{E_t}}{Conversion factor}$$
(289)

Where:

 $U_{pre} = 1/(2.03^{506}+1.85) = 0.26$ Btu/hr sq. ft. degree F

 $U_{post} = 1/(1.85+2.03+R_Additional)$ Btu/hr sq. ft. degree F

 $R_{Additional} = R$ -value of additional insulation that exceeds IECC standard

A = Surface area in square feet (πDL) with L (length) and D pipe diameter in feet

 T_{Pipe} (°F) = Average temperature of the pipe. Default value = 90 °F (average temperature of pipe

https://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/72c23decff52920a85257f1100671 bdd/\$FILE/NYS%20TRM%20V9.pdf

⁵⁰³ Default values based on median thermal efficiency of commercial water heaters by fuel type in the AHRI database, at <u>https://www.ahridirectory.org/Search/SearchHome?ReturnUrl=%2f</u>

⁵⁰⁴ Ontario Energy's Measures and Assumptions for Demand Side Management (DSM) Planning <u>https://www.oeb.ca/oeb/_Documents/EB-2008-0346/Navigant_Appendix_C_substantiation_sheet_20090429.pdf</u>

⁵⁰⁵ New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs Residential, Multi-Family, and Commercial/Industrial Measures

between water heater and the wall)

- $T_{ambientMAX}$ (°F) =For water heaters not installed in conditioned space, no savings can be claimed; for water heaters inside the building envelope, use an average ambient temperature of 78 °F
- E_t =Thermal efficiency (or in the case of heat pump water heater, COP); if unknown, use 0.98 as a default or 2.2 for a heat pump water heater

3,412 = Btu to kWh

	Ambient Temperature (°F)			
Weather Zone and Location	T _{ambientMAX} (Electric)		TambientMIN (Gas)	
	Conditioned Space	Unconditioned Space	Conditioned Space	Unconditioned Space
Zone 9 - Fayetteville	78	Not Applicable	70	4.3
Zone 8 - Fort Smith				13.5
Zone 7 - Little Rock				12.1
Zone 6 - El Dorado				27.8

For gas, peak day demand savings were calculated using the following formula:

$$=\frac{\left(U_{pre}-U_{post}\right)\times A\times\left(T_{Pipe}-T_{ambientMIN}\right)\times\frac{1}{E_{t}}\times24}{Conversion\ factor}$$

Where:

 $U_{pre} = 1/(2.03 + 1.85)$

 $U_{post} = 1/(1.85 + 2.03 + R_Additional)$

 $R_{Additional}$ = R-value of additional insulation that exceeds IECC standard

A = Surface area in square feet (for a length of pipe = $2\pi rL$) with L and r in feet

- T_{Pipe} (°F) = Average temperature of the pipe; default value = 90 °F (average temperature of pipe between water heater and the wall)
- $T_{ambientMIN}$ (°F) =For water heaters not installed in conditioned space, use the minimum annual ambient temperatures in Table 357; for water heaters inside the building envelope, use an average ambient temperature of 70 °F
- E_t = Thermal efficiency; if unknown, use 0.8 as a default (Not to be confused with the Energy Factor (EF))
- 24 = Hours per day

Conversion factor = 100,000 Btu/therm

(290)

For example, energy savings for water heater pipe insulation adding an additional 1.85 R-value on a conventional electric resistance storage water heater in Weather Zone 8 (e.g. Fort Smith) in an unconditioned space would be:

 $U_{pre} = 0.26$ $R_{Additional} = 1.85$ $U_{post} = 0.17$ Pipe Length = 8 feet Pipe diameter = 1 inch $A = 2.1 \text{ sq ft (Pipe surface area} = 2\pi rL)$ $T_{ambient} (^{\circ}F) = 60.1 \text{ degrees F}$ $T_{Pipe} (^{\circ}F) = 90 \text{ degrees F}$ $E_t = 98\%$ kWh per year = 14.8 kWh

kW = 0, since no peak savings are available on hot water heaters in unconditioned space for electric.

3.3.5 Low-Flow Showerheads

Measure Description

This measure consists of removing existing showerheads and installing low-flow showerheads at the following commercial building types: hospitals and nursing homes, lodging facilities, commercial facilities (offices or other commercial buildings in which showers are provided for employees), fitness centers, and schools.⁵⁰⁷

Baseline and Efficiency Standards

The savings values for low-flow showerheads are for the retrofit of existing operational showerheads with a flow rate of 2.5 gallons per minute (GPM) or higher.⁵⁰⁸ Facilities that use both gas and electric water heaters are eligible for this measure.

The baseline showerhead has an average flow rate of 2.5 GPM based on the current DOE standard. To qualify for the deemed savings, replacement showerheads must have a flow rate of 2.0 GPM or less.⁵⁰⁹

Additional Requirement for Contractor-Installed Showerheads

Existing showerheads that have been defaced so as to make the flow rating illegible are not eligible for replacement. Low-flow shower heads that are easily tampered with should not be used. Removed showerheads shall be collected by the contractor and held for possible inspection by the utility until all inspections for invoiced installations have been completed.

Measure	New Showerhead Flow Rate ⁵¹⁰	Existing Showerhead Baseline Flow Rate
2.0 gpm showerhead	2.0 gpm	2.5 gpm
1.75 gpm showerhead	1.75 gpm	2.5 gpm
1.5 gpm showerhead	1.5 gpm	2.5 gpm

Table 358: Low-Flow Showerhead – Baseline and Efficiency Standards

⁵⁰⁷ This measure draws from multiple sources, including the residential low flow showerhead measure and commercial faucet aerator measure. Information specific to hot water use in commercial market sectors was drawn from CLEAResult, Inc. draft white paper: *Work Papers for Low Flow Shower Heads with Gas or Electric Water Heaters: Savings Calculation Methodology for Application in Arkansas Energy Efficiency Programs*, February 2014.

⁵⁰⁸ 10 CFR Part 430, Energy Conservation Program for Consumer Products: Test Procedures and Certification and Enforcement Requirements for Plumbing Products; and Certification and Enforcement Requirements for Residential Appliances; Final Rule, March 1998. Online.Available: <u>http://www.regulations.gov/#!documentDetail;D=EERE-2006-TP-0086-0003</u>.

⁵⁰⁹ The U.S. Environmental Protection Agency (EPA) WaterSense Program has a thorough specification for showerheads that meet a maximum flow rate of 2.0 gpm. The specification is available on the EPA website at: <u>https://www.epa.gov/watersense/showerheads</u>

⁵¹⁰ All flow rate requirements listed here are the rated flow of the showerhead measured at 80 pounds per square inch of pressure (psi).

Estimated Useful Life (EUL)

The estimated useful life (EUL) of this measure is 10 years.⁵¹¹

Deemed Savings Calculations

Energy and demand savings are estimated as functions of the reduction in daily water use (ΔV) attributable to installation of low flow showerheads in a given commercial building type. Reduction in water use and deemed savings calculations make use of the data provided by building type in Table 359 and by weather zone in Table 360.

Table 359: Showers	per Dav (pei	· Showerhead)	and Days of Ope	ration by Building Type
		Showerneady	and Days of Ope	action by bundling Type

Building Type	Ν	Days/Year
Hospital/Nursing Home	0.89	365
Hospitality	1.25	365
Commercial	0.97	250
Fitness Center	19.94	365
School	1.32	200

Table 360: Average Inlet Water Temperature (T_{supply}) and Hot Water Fraction (F_{HW}) by Weather Zone

Weather Zone and Location	T _{supply} (^o F)	F _{HW} (%)
Zone 9 - Fayetteville	65.6	72.4%
Zone 8 - Fort Smith	66.1	72.2%
Zone 7 - Little Rock	67.8	71.3%
Zone 6 - El Dorado	70.1	69.9%

Estimated Hot Water Usage Reduction

Reduction in annual hot water usage is estimated based on the typical duration of a shower and the expected number of showers per year for an installed showerhead in a given facility.

⁵¹¹ Database for Energy Efficient Resources, 2008.

Reduction in daily hot water consumption is estimated on a per-showerhead basis using the following formula:

$$\Delta V = U \times N \times (Q_B - Q_P) \times F_{HW}$$
(291)

Where:

 ΔV = Reduction in daily hot water use in gallons per day (GPD)

- U = Typical shower duration of 7.8 (minutes/shower)
- N = Number of showers per day (per showerhead); (N) is a function of the commercial building type, values for N are provided in

Table 362: Parameters for Annual Energy and Peak Demand Savings Calculations

 Q_B = Baseline showerhead flow rate, 2.5 GPM

 Q_P = Flow rate of installed showerhead (in GPM)

 F_{HW} = Hot Water Fraction (share of water flowing through showerhead from the water heater, %)

The fraction of hot water is a function of the inlet water temperature (T_{supply}) the temperature of water from the hot water heater $(T_{HW} = 120 \text{ }^{\circ}\text{F})$, and the desired temperature at the showerhead $(T_{mixed} = 105 \text{ }^{\circ}\text{F})$.

Reduction in daily hot water usage is provided for reference in Table 361.

Table 361: Reduction in Daily Hot Water Usage, ΔV (GPD)

		Building Type					
Flow Rate of Installed Showerhead	Weather Zone	Hospital/ Nursing Home	Hospitality	Commercial (General) – Employee Shower	Fitness Center	Schools	
	Fayetteville	2.51	3.53	2.74	56.30	3.73	
2.0 CDM	Fort Smith	2.51	3.52	2.73	56.15	3.72	
2.0 GPM	Little Rock	2.47	3.48	2.70	55.45	3.67	
	El Dorado	2.43	3.41	2.64	54.36	3.60	
	Fayetteville	3.77	5.29	4.11	84.45	5.59	
1.75 CDM	Fort Smith	3.76	5.28	4.10	84.22	5.58	
1.75 GPM	Little Rock	3.71	5.21	4.05	83.17	5.51	
	El Dorado	3.64	5.11	3.97	81.54	5.40	
1.5 GPM	Fayetteville	5.03	7.06	5.48	112.61	7.45	
	Fort Smith	5.01	7.04	5.46	112.29	7.43	
	Little Rock	4.95	6.95	5.39	110.89	7.34	

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

	El Dorado	4.85	6.82	5.29	108.72	7.20
--	-----------	------	------	------	--------	------

Energy Savings

The deemed energy savings are calculated as follows:

$$Energy Savings = \frac{\rho \times C_P \times \Delta V \times (T_{HW} - T_{Supply}) \times \frac{1}{E_t} \times \frac{Days}{Year}}{Conversion Factor}$$
(2921)

Where:

 ρ = Water density = 8.33 lb/gallon

 C_P = Specific heat of water = 1 Btu/lb·°F

 ΔV = gallons saved per day (GPD, calculated from Equation (291) and identified in Table 361)

 T_{HW} = Temperature to which water is heated in the water heater, 120°F

 T_{Supply} = Average inlet water temperature (water mains temperature), from Table 360

- E_t = Thermal efficiency of water heater (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.80 for natural gas water heaters⁵¹²
- *Conversion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/therm for gas water heating

 $\frac{Days}{Year}$ = annual operating days for the building type in which the retrofit is being implemented (see

Table 362: Parameters for Annual Energy and Peak Demand Savings Calculations

)

Demand Savings

The deemed demand savings are calculated as follows:

$$Demand Savings = \frac{\rho \times C_P \times \Delta V \times (T_{HW} - T_{Supply}) \times \frac{1}{E_t} \times P}{Conversion Factor}$$

Where:

 ρ = Water density = 8.33 lb/gallon

(293)

⁵¹² Default values based on median recovery efficiency of commercial water heaters by fuel type in the AHRI database as cited in previous iterations of the AR TRM. Online: available at https://www.ahridirectory.org/Search/SearchHome

 C_P = Specific heat of water = 1 Btu/lb·°F

- ΔV = gallons saved per day (GPD, calculated from the above equation or taken from Table 361)
- T_{HW} = Temperature to which water is heated in the water heater, 120°F
- T_{Supply} = Average inlet water temperature (water mains temperature), from Table 360
- E_t = Thermal efficiency of the water heater (or in the case of heat pump water heaters, COP); if unknown, use 0.98 as a default for electric resistance water heaters, 2.2 for heat pump water heaters, or 0.80 for natural gas water heaters⁵¹³
- *Convesion Factor* = 3,412 Btu/kWh for electric water heating or 100,000 Btu/therm for gas water heating
- P = gas and electric peak coincidence factors, as provided for each building type in
- Table 362: Parameters for Annual Energy and Peak Demand Savings Calculations

Electric peak coincidence factors are derived from AHSRAE.⁵¹⁴ The peak day therm ratio from Appendix G for residential gas water heater replacement (0.003) is adopted for peak gas savings. However, that multiplier is for annual energy savings, so it is multiplied by operating days for each building type to arrive at appropriate gas peak coincidence factors.

Table 362: Parameters for Annual Energy and Peak Demand Savings Calculations

⁵¹³ Default values based on median recovery efficiency of commercial water heaters by fuel type in the AHRI database as cited in previous iterations of the AR TRM. Online: available at <u>https://www.ahridirectory.org/Search/SearchHome?ReturnUrl=%2f</u>

⁵¹⁴ For all building types except 24-Hour Fitness Centers, derived from *ASHRAE Handbook 2011. HVAC Applications*. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA. The peak factor is the ratio of the gallons of hot water used during the peak times of 3pm to 6pm, to the total amount of hot water used during the day. 24-Hour Fitness Center is assigned the same value as Commercial.

Parameter	Description	Va	alue
U	Baseline shower duration ⁵¹⁵ (min/shower)	7	'. 8
	Number of showers per day per showerhead ⁵¹⁶		
	1. Hospital, Nursing Home		.89
Ν	2. Lodging		.25
	3. Commercial		.97
	 Fitness Center Schools 		0.94 .32
0.0			
<i>Q_B</i>	Average baseline flow rate of showerhead (GPM)		2.5
Q_P	Flow rate of installed showerhead (GPM)	<u> </u>	2.0
	Share of water flowing through showerhead coming from the water heater (%)		
F_HW	Zone 9: Fayetteville	7	2.4
1 _11 //	Zone 8: Fort Smith	7	2.2
	Zone 7: Little Rock	7	1.3
	Zone 6: El Dorado	6	9.9
ρ	Density of water (lb/gal)	8	.33
Ср	Heat capacity of water (Btu/lb-°F) 1		1
T_HW	Temperature to which water is heated by the water heater (°F) ⁵¹⁷	120	
	Average supply (cold) water temperature (°F)		
	Zone 9: Fayetteville	6	5.6
T_supply	Zone 8: Fort Smith	6	6.1
Zone 7: Little Rock		67.8	
	Zone 6: El Dorado	7	0.1
	Thermal Efficiency of hot water heater:		
Et	Conventional Electric Storage Water Heater	0.98	
	Heat Pump Water Heater (COP) 2.2		
	Gas Storage Water Heater0.80		.80
	Annual building type operating days for the applications: ⁵¹⁸		
	1. Hospital, Nursing Home	365	
Days	2. Lodging 365		
/year	3. Commercial 250		
	4. Fitness Center	365	
	5. School	2	00
		Gas ⁵¹⁹	Electric ⁵²⁰

Parameter	. Description Value		
	Peak Factor:		
	1. Hospital, Nursing Home	8.2 e ⁻⁶	0.03
Р	2. Lodging	8.2 e ⁻⁶	0.02
	3. Commercial	1.2 e ⁻⁵	0.08
	4. Fitness Center	8.2 e ⁻⁶	0.08
	5. School	1.5 e ⁻⁵	0.05

Example energy and demand savings calculations are provided for a 2.0 GPM showerhead installation in a hospital in Weather Zone 9 (e.g. Fayetteville) with a conventional gas storage water heater.

$$Energy Savings = \frac{8.33 \frac{lb}{gal} \times 1 \frac{Btu}{lb^{.0} F} \times 2.51 \text{ GPD} \times (120 - 65.6) \times (\frac{1}{0.80}) x 365 \frac{days}{yr}}{100,000 \frac{Btu}{therm}}$$

= 5.2 therms/yr
$$Peak Gas Savings = \frac{8.33 \frac{lb}{gal} \times 1 \frac{Btu}{lb^{.0} F} \times 2.51 \text{ GPD} \times (120 - 65.6) \times (\frac{1}{0.80}) x 8.2x10^{-6}}{100,000 \frac{Btu}{therm}}$$

=4.2x10⁻⁵ therms/day

⁵¹⁵ Hendron, R., & Engebrech, C. 2010, "Building America Research Benchmark Definition, Updated December 2009, *Technical Report NREL/TP-550-47246*, January. National Renewable Energy Laboratory The average shower duration taken from Table 12, p. 20.

⁵¹⁶ Primary source is Northern Power and Conservation Council ProCost V2.3. The number of showers per day per showerhead is back-calculated for hospitals and nursing homes, lodging and commercial building types, coefficients from annual minutes per showerhead estimates. N = (Minutes/year) x (year/days) x (Shower/minutes) = Showers/day. For fitness centers, minutes per year were taken from informal telephone survey of Fitness Centers in the Northern, conducted by Northern Power and Conservation Council Regional Technical Forum staff in June, 2013. The estimate for schools is derived from Water consumption from Planning and Management Consultants, Ltd., Aquacraft, Inc. and John Olaf Nelson, Water Resources Management. "*Commercial and Institutional End Uses of Water*," American Water Works Association Research Foundation, 2000.

⁵¹⁷ ASHRAE Handbook 2011. HVAC Applications. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE), Inc., Atlanta, GA.

⁵¹⁸ All values except Fitness Center from Osman , S. & Koomey, J. Lawrence Berkeley National Laboratory 1995. *Technology Data Characterizing Water Heating in Commercial Buildings: Application to End-Use Forecasting.* December 1995. Value for Fitness Center based on observation.

⁵¹⁹ See Appendix G for peak rationale.

⁵²⁰ Derived from *ASHRAE Handbook 2011. HVAC Applications*. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA. The peak factor is the ratio of the gallons of hot water used during the peak times of 3 pm to 6pm, to the total amount of hot water used during the day.

3.4 Motors

3.4.1 Electronically Commutated Motors for Refrigeration and HVAC Applications

Measure Description

An electronically commutated motor (ECM) is a fractional horsepower direct current (DC) motor used most often in commercial refrigeration applications such as display cases, walk-in coolers/freezers, refrigerated vending machines, and bottle coolers. ECMs can also be used in HVAC applications, primarily as small fan motors for packaged terminal units or in terminal air boxes. ECMs generally replace shaded pole (SP) or permanent split-capacitor (PSC) motors and offer energy savings of at least 50 percent.

Estimated Useful Life (EUL)

In accordance with DEER 2008, the estimated useful life (EUL) is 15 years.

Baseline and Efficiency Standards

The standard motor type for this application is a shaded pole or permanent split-capacitor motor.

Any ECM up to 746 W in size will meet the minimum requirements for both retrofit and new construction installations.

Calculation of Deemed Savings

Measure/Technology Review

The measure is designed to be flexible for various sized motors for both HVAC and refrigeration application. The minimum information needed is rated wattage for both the base motor and replacement ECM as well as application type (HVAC or refrigeration). Variables related to operation such as COP, phase, and power factor are added in to allow for customization as needed based on application.

Unit Electrical Measure Savings

Total demand and energy savings for replacing an existing evaporator fan shaded-pole motor with a higherefficiency, electronically-commutated motor are represented by the following equation:

Deemed energy savings should be calculated by the following formula for refrigeration and HVAC applications:

$$kWh_{Savings,hvac} = (kW_{Base} - kW_{ECM}) \times Hrs \times DC \times (1 + \frac{1}{COP_e})$$
(294)

$$kWh_{Savings, refrigeration} = (kW_{Base} - kW_{ECM}) \times Hrs \times DC \times (1 + \frac{1}{COP_r})$$
(295)

Where:

- kW_{Base} = Power of the motor being replaced; use known wattage of motor, or if unknown, use 132 W (SP motors)⁵²¹ or 72 W (PSC motors)⁵²²
- kW_{ECM} = Power of the replacement EC motor; use known wattage of motor, or if unknown, use 40 W⁵²³

The motor's power for either Base or ECM can be calculated using the following equation if power is not known. The values for rated wattage and phase can be found on motor's nameplate:

$$kW_{Motor} = \frac{Volts \times Amperage}{1000} \times \sqrt{Phase} \times PF$$
(296)

- Hrs = Hours of yearly operation, use actual hours if known, otherwise 8,760 hrs for refrigeration and 4,386 for HVAC
- DC = Duty cycle, only use a value of 0.94 if the application of the motor being replaced is for a freezer refrigeration. This is because the freezer will complete 4 20-min defrost cycles per day where the evaporator fan will not be used. Use a value of 1 if the application is for a cooler refrigeration or HVAC.
- PF = Power factor of the motor, if not known an average value of 0.55 can be used for ECM in refrigeration, 0.7 for ECM in HVAC, and 0.85 for base motor in both applications.⁵²⁴
- COP_d = Coefficient of Performance under peak demand conditions for the motors operation based on application. For HVAC demand calculations, use the EER value from the install spec sheet and the conversion COP = EER/3.412.
- COP_e = Coefficient of Performance average over the cooling season for the motors operation based on application. Where available, use the IEER (or SEER) value from the cooling equipment spec sheet and the conversion COP = IEER/3.412 or COP = SEER/3.412. If IEER or SEER rating is not available, use the systems EER and the conversion COP = EER/3.412.
- COP_r = Coefficient of Performance of refrigeration systems for the motors operation based on application. COP value depends on the end temperature of the refrigeration process. The COP values

⁵²¹ California Workpapers for ECM applications, <u>http://www.deeresources.net/workpapers</u>

⁵²² The Massachusetts TRM specifies a load factor of 54% for SP motors and a load factor of 29% for PSC motors, as specified by National Resource Management (NRM). Multiplying the 132 W default value for SP motors by the ratio of PSC load factor to SP load factor results in a default PSC motor wattage of 72 watts.

⁵²³ California Workpapers for ECM applications, <u>http://www.deeresources.net/workpapers</u>

⁵²⁴ PSC of Wisconsin, Focus on Energy Evaluation, Business Programs: Deemed Savings Manual V1.0, pp. 4-103 - 4-106.

to use for refrigeration analysis are 1.3 for freezers and 2.5 for coolers⁵²⁵.

Deemed demand savings should be calculated by the following formulas:

$$kW_{savings,hvac} = (kW_{Base} - kW_{ECM}) \times CF \times (1 + \frac{1}{COP_d})$$

$$kW_{savings,refrigeration} = (kW_{Base} - kW_{ECM}) \times DC \times CF \times (1 + \frac{1}{COP_r})$$
(298)

Where:

CF = Coincidence Factor, use values from

⁵²⁵ ibid.

Table 495 for HVAC applications; default value of 1.0 for refrigeration applications⁵²⁶

DC = Duty cycle, only use a value of 0.94 if the application of the motor being replaced is for a freezer refrigeration. This is because the freezer will complete four 20-min defrost cycles per day where the evaporator fan will not be used. Use a value of 1 if the application is for a cooler refrigeration of HVAC.

⁵²⁶ CF set to 1.0 for refrigeration applications based on annual run-time assumption of 8,760 hours

3.4.2 Premium Efficiency Motors

Measure Description

Currently a wide variety of NEMA premium efficiency motors from 1 to 500 hp are available. Deemed saving values for demand and energy savings associated with this measure must be for motors with an equivalent operating period (hours x Load Factor) over 1,000 hours.

Baseline and Efficiency Standards

Replace on Burnout

The EISA 2007 Sec 313^{68} adopted the new federal standard and required that electric motors that are manufactured and sold in the United States meet the new standard by December 19, 2010. The standards can also be found in sections 431.25(c)-(f) of the Code of Federal Regulations (10 CFR Part 431).¹⁰

With these changes, any 1-500 hp motor bearing the "NEMA Premium" trademark will align with national energy efficiency standards and legislation. The Federal Energy Management Program (FEMP) has already adopted NEMA MG 1-2006 Revision 1 2007 in its Designated Product List for federal customers.

In addition to the new standards for 200-500 hp motors, additional motors in the 1-200 hp range are now included in the NEMA Premium standard. These new motors are referred to as "General Purpose Electric Motors (Subtype II)". These additional types of motors include:

- U-Frame Motors
- Design C Motors
- Close-coupled pump motors
- Footless motors
- Vertical solid shaft normal thrust (tested in a horizontal configuration)
- 8-pole motors
- All poly-phase motors with voltages up to 600 volts other than 230/460 volts (230/460 volt motors are covered by EPAct-92)

Early Retirement

The baseline for early retirement projects is the nameplate efficiency of the existing motor to be replaced, if known. If the nameplate is illegible and the in situ efficiency cannot be determined, then the baseline should be based on the minimum efficiency allowed under the Federal Energy Policy Act of 1992 (EPAct), as listed in Table 365.

NEMA Premium Efficiency motor levels continue to be industry standard for minimum-efficiency levels. The savings calculations assume that the minimum motor efficiency for both replace on burnout and early retirement projects exceeds that listed in Table 364.

For early retirement, the maximum age of an eligible piece of equipment is capped at the point at which it is expected that 75 percent of the equipment has failed. Where the age of the unit exceeds the 75 percent failure age, ROB savings should be applied. This cap prevents early retirement savings from being applied to projects where the age of the equipment greatly exceeds the estimated useful life of the measure.

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is 15 years.

Calculation of Deemed Savings

Actual motor operating hours are expected to be used to calculate savings. Every effort should be made to capture the estimated operating hours. Short and/or long term metering can be used to verify estimates. If metering is not possible, interviews with facility operators and review of operations logs should be conducted to obtain an estimate of actual operating hours. If there is not sufficient information to accurately estimate operating hours, then use the annual operating hours in Table 367.

Measure/Technology Review

Premium efficiency motors are a mature technology and a wealth of information exists on the measure. A summary of the key resources is included in Table 363.

Resource	Notes
PG&E 2006 ⁴²	Savings for common motor retrofits
Xcel Energy 2006 ⁵³	Program level savings estimates for high-efficiency motors
DEER 2008 ⁶³	Savings and cost for common motor retrofits
KEMA 2010 ²⁴	Motor savings included in comprehensive potential study
CEE ⁶¹	Industrial motor efficiency initiative
RTF ⁷⁹	Savings for common motor retrofits
ITP ⁷¹	Savings for common motor retrofits
NPCC 2010 ³⁸	Market information and overview of savings potential
NEMA 2009 ²⁹	Minimum efficiency levels for premium efficiency motors
MotorMaster+ (see note)	Comprehensive resource of motor efficiencies and tools to calculate savings
PacifiCorp 200944	Motor savings included in comprehensive potential study

Table 363: Premium Efficiency Motors – Review of Motor Measure Information

Note: Italic numbers are endnotes not footnotes. (See Section 4.4 Commercial Measure References)

Deemed electric motor demand and energy savings should be calculated by the following formulas: *Replace on Burnout (ROB)*

 $kWh_{Savings} =$

Rated HorsePower × Conversion Factor × LF ×
$$\left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right)$$
 × Hours_{Annual}
(299)

 $kW_{Savings} =$

Rated HorsePower × Conversion Factor × LF ×
$$\left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right)$$
 × CF (300)

Where:

Rated HorsePower = Nameplate horsepower data of the motor

Conversion Factor = 0.746 kW/hp

- LF = Estimated load factor for the motor; if load factor is not available, deemed load factors in Table 367 can be used
- $\eta_{baseline}$ = Efficiencies listed in Table 364 should be used (in the case of rewound motors, in situ efficiency may be reduced by a percentage as found in Table 366)

 η_{post} = Efficiency of the newly installed motor

 $Hours_{Annual}$ = Approximate annual operating hours for the motor; if unavailable, annual operating hours in Table 367 can be used

CF = Coincidence Factor = 0.74^{527}

Early Retirement (ER)

Annual kWh and kW savings must be calculated separately for two time periods:

- 1. The estimated remaining life (RUL, see Table 368) of the equipment that is being removed, designated the first N years, and
- 2. Years EUL N through EUL, where EUL is 15 years.

⁵²⁷Itron 2004-2005 DEER Update Study, Dec 2005; Table 3-25. <u>https://www.calmac.org/%5C/publications/2004-05_DEER_Update_Final_Report-Wo.pdf</u> Accessed May 2013.

For the first N years:

$$kWh_{Savings} = Rated HorsePower \times Conversion Factor \times LF \times \left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right)$$
$$\times Hours_{Annual}$$

$$kW_{Savings} = Rated Horseower \times Conversion Factor \times LF \times \left(\frac{1}{\eta_{baseline}} - \frac{1}{\eta_{post}}\right) \times CF$$
(302)

Where:

Rated HorsePower = Nameplate horsepower data of the motor

Conversion Factor = 0.746 kW/hp

- LF = Estimated load factor for the motor; if load factor is not available, deemed load factors in Table 367 can be used
- $\eta_{baseline}$ = In situ efficiency of the baseline motor; if unavailable, efficiencies listed in Table 365 can be used (in the case of rewound motors, in situ efficiency may be reduced by a percentage as found in Table 366)
- η_{post} = Efficiency of the newly installed motor
- *Hours*_{Annual} = Estimated annual operating hours for the motor; if unavailable, annual operational hours in Table 367 can be used
- CF = Coincidence Factor = 0.74^{528}

For Years EUL - N through EUL: Savings should be calculated exactly as they are for replace on burnout projects, referred to as $kWh_{SavingsROB}$.

Total lifetime savings for early retirement projects are then determined by adding the savings calculated under the two preceding equations as follows:

Lifetime kWh savings for Early Retirement Projects
=
$$[(kWh_{SavingsRUL} \times RUL) + (kWh_{SavingsROB} \times (EUL - RUL))]$$

Where:

RUL= The Remaining Useful Life of the equipment, in years, see Table 368

EUL = The Estimated Useful Life of the equipment, deemed at 15 years

(303)

(301)

⁵²⁸ Itron 2004-2005 DEER Update Study, Dec 2005; Table 3-25. <u>https://www.calmac.org/%5C/publications/2004-05_DEER_Update_Final_Report-Wo.pdf</u> Accessed May 2013.

	η _b	aseline, Open Mo	otors	η _b	aseline, Closed M	otors
hp	6-Pole	4-Pole	2-Pole	6-Pole	4-Pole	2-Pole
1	82.5	85.5	77.0	82.5	85.5	77.0
1.5	86.5	86.5	84.0	87.5	86.5	84.0
2	87.5	86.5	85.5	88.5	86.5	85.5
3	88.5	89.5	85.5	89.5	89.5	86.5
5	89.5	89.5	86.5	89.5	89.5	88.5
7.5	90.2	91.0	88.5	91.0	91.7	89.5
10	91.7	91.7	89.5	91.0	91.7	90.2
15	91.7	93.0	90.2	91.7	92.4	91.0
20	92.4	93.0	91.0	91.7	93.0	91.0
25	93.0	93.6	91.7	93.0	93.6	91.7
30	93.6	94.1	91.7	93.0	93.6	91.7
40	94.1	94.1	92.4	94.1	94.1	92.4
50	94.1	94.5	93.0	94.1	94.5	93.0
60	94.5	95.0	93.6	94.5	95.0	93.6
75	94.5	95.0	93.6	94.5	95.4	93.6
100	95.0	95.4	93.6	95.0	95.4	94.1
125	95.0	95.4	94.1	95.0	95.4	95.0
150	95.4	95.8	94.1	95.8	95.8	95.0
200	95.4	95.8	95.0	95.8	96.2	95.4
250	94.5	95.4	94.5	95.0	95.0	95.4
300	94.5	95.4	95.0	95.0	95.4	95.4
350	94.5	95.4	95.0	95.0	95.4	95.4
400	n/a	95.4	95.4	n/a	95.4	95.4
450	n/a	95.8	95.8	n/a	95.4	95.4
500	n/a	95.8	95.8	n/a	95.8	95.4

Table 364: Premium Efficiency Motors – Replace on Burnout Baseline Efficiencies by Motor Size⁵²⁹

⁵²⁹ Federal Standards for Electric Motors, Table 1: Full Load Efficiencies for Standard Electric Motors, <u>https://www.energy.gov/eere/amo/articles/determining-electric-motor-load-and-efficiency</u>. Accessed June 2013.

	η _b	aseline, Open Mo	otors	${f \eta}$ baseline, Closed Motors			
hp	6-Pole	4-Pole	ole 2-Pole 6-Po		4-Pole	2-Pole	
1	80.0	82.5	75.5	80.0	82.5	75.5	
1.5	84.0	84.0	82.5	85.5	84.0	82.5	
2	85.5	84.0	84.0	86.5	84.0	84.0	
3	86.5	86.5	84.0	87.5	87.5	85.5	
5	87.5	87.5	85.5	87.5	87.5	87.5	
7.5	88.5	88.5	87.5	89.5	89.5	88.5	
10	90.2	89.5	88.5	89.5	89.5	89.5	
15	90.2	91.0	89.5	90.2	91.0	90.2	
20	91.0	91.0	90.2	90.2	91.0	90.2	
25	91.7	91.7	91.0	91.7	92.4	91.0	
30	92.4	92.4	91.0	91.7	92.4	91.0	
40	93.0	93.0	91.7	93.0	93.0	91.7	
50	93.0	93.0	92.4	93.0	93.0	92.4	
60	93.6	93.6	93.0	93.6	93.6	93.0	
75	93.6	94.1	93.0	93.6	94.1	93.0	
100	94.1	94.1	93.0	94.1	94.5	93.6	
125	94.1	94.5	93.6	94.1	94.5	94.5	
150	94.5	95.0	93.6	95.0	95.0	94.5	
200	94.5	95.0	94.5	95.0	95.0	95.0	
250	94.5	95.4	94.5	95.0	95.0	95.4	
300	94.5	95.4	95.0	95.0	95.4	95.4	
350	94.5	95.4	95.0	95.0	95.4	95.4	
400	n/a	95.4	95.4	n/a	95.4	95.4	
450	n/a	95.8	95.8	n/a	95.4	95.4	
500	n/a	95.8	95.8	n/a	95.8	95.4	

Table 365: Premium Efficiency Motors – Early Retirement Baseline Efficiencies by Motor Size⁵³⁰

⁵³⁰ Federal Standards for Electric Motor Efficiency from the Federal Energy Policy Act of 1992 (EPACT). <u>https://afdc.energy.gov/files/pdfs/2527.pdf</u>. Accessed June 2013.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Motor Horsepower	Efficiency Reduction Factor
< 40	0.01
≥ 40	0.005

Table 366: Rewound Motor Efficiency Reduction Factors531

Table 367: Premium Efficiency Motors – Operating Hours, Load Factor

Building Type	Load Factor ⁵³²	HVAC Fan Hours ⁵³³
College/University		4,581
Fast Food Restaurant		6,702
Full Menu Restaurant	0.75	5,246
Grocery Store		6,389
Health Clinic		7,243
Lodging		4,067
Large Office (>30k SqFt)		4,414
Small Office (≤30k SqFt)		3,998
Retail		5,538
School		4,165

⁵³¹ U.S. DOE, Preliminary Technical Support Document, "Energy Efficiency Program for Commercial Equipment: Energy Conservation Standards for Electric Motors, 2.7.2 Impact of Repair on Efficiency." July 23, 2012. https://www.energy.gov/sites/default/files/2023-05/em-ecs-dfr.pdf.

⁵³² Itron 2004-2005 DEER Update Study, Dec 2005; Table 3-25. <u>https://www.calmac.org/%5C/publications/2004-05_DEER_Update_Final_Report-Wo.pdf</u>

⁵³³ Fan schedule operating hours taken as the average of operating hours from the Connecticut, Maine, and Pennsylvania Technical Reference Manuals: CL&P and UI Program Savings Documentation for 2008 Program Year, Connecticut Lighting & Power Company; Efficiency Maine Technical Reference User Manual No. 2007-1; Pennsylvania Utility Commission Technical Reference Manual June 2012.

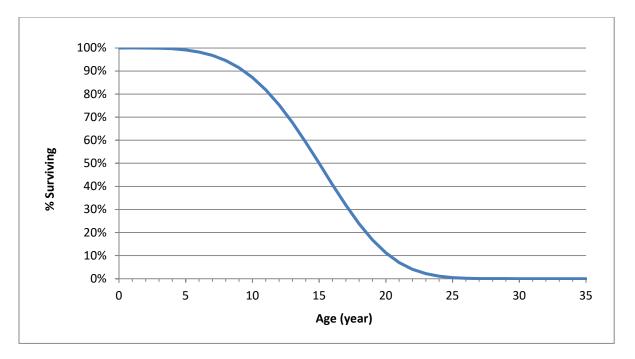
APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446
APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247
Arkansas TRM Version 10.0 Vol. 2

	Load	Hours ⁵³⁵					
Industrial Processing	Factor ⁵³⁴	Chem	Paper	Metals	Petroleum Refinery	Food Production	on Other
1-5 hp	0.54	4,082	3,997	4,377	1,582	3,829	2,283
6-20 hp	0.51	4,910	4,634	4,140	1,944	3,949	3,043
21-50 hp	0.60	4,873	5,481	4,854	3,025	4,927	3,530
51-100 hp	0.54	5,853	6,741	6,698	3,763	5,524	4,732
101-200 hp	0.75	5,868	6,669	7,362	4,170	5,055	4,174
201-500 hp		5,474	6,975	7,114	5,311	3,711	5,396
501-1,000 hp	0.58	7,495	7,255	7,750	5,934	5,260	8,157
>1,000 hp		7,693	8,294	7,198	6,859	6,240	2,601

Table 368: Premium Efficiency	y Motors - Remaining	Useful Life (RUL)	of Replaced Systems ^{536,537}
-------------------------------	----------------------	-------------------	--

Age of Replaced System (Years)	RUL (Years)
5	10.0
6	9.1
7	8.2
8	7.3
9	6.5
10	5.7
11	5.0
12	4.4
13	3.8

Age of Replaced System (Years)	RUL (Years
14	3.3
15	2.8
16	2.5
17	2.2
18	1.9
19	0.0


⁵³⁴ United States Industrial Electric Motor Systems Market Opportunities Assessment, Dec 2002; Table 1-19. Accessed May 2013. <u>www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/mtrmkt.pdf</u>.

⁵³⁵ United States Industrial Electric Motor Systems Market Opportunities Assessment, Dec 2002; Table 1-15. Accessed May 2013. <u>www1.eere.energy.gov/manufacturing/tech_assistance/pdfs/mtrmkt.pdf</u>.

⁵³⁶ Because the motor EUL is 15 years, it is consistent for use with the RUL determined using the Weibull distribution offered in the DOE's Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". <u>https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx</u>

⁵³⁷ Use of the early retirement baseline is capped at 18 years, representing the age at which 75 percent of existing equipment is expected to have failed. Systems older than 18 years should use the ROB baseline.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Figure 14: Survival Function for Premium Efficiency Motors⁵³⁸

The method used for estimating the RUL of a replaced system uses the age of the existing system to reestimate the survival function shown in Figure 14. The age of the system being replaced is found on the horizontal axis and the corresponding percentage of surviving systems is determined from the chart. The surviving percentage value is then divided in half, creating a new percentage. Then the age (year) that corresponds to this new percentage is read from the chart. RUL is estimated as the difference between that age and the current age of the system being replaced.

For more information regarding Early Retirement, see section 1.7.

⁵³⁸ Source: Weibull distribution based on the Life Cycle Cost Analysis Spreadsheet, "lcc_cuac_hourly.xls". https://www.swc.nd.gov/pdfs/life_cycle_cost_analysis_worksheet.xlsx

3.4.3 Variable Frequency Drives for HVAC Fans and Pumps

Measure Description

The Variable Frequency Drives (VFDs) for HVAC Fans and Pumps measure applies to the installation of VFDs on HVAC fans and pumps in commercial settings. VFDs are used to control the speed of motors, which allows for more efficient operation by matching the speed of the HVAC equipment to the actual load requirements. This results in significant energy savings as the motor does not have to run at full speed continuously.

Baseline and Efficiency Standards

The baseline equipment for this measure is an HVAC system fan or pump that has a varied demand but operates at a constant speed regardless of the actual demand, leading to inefficiencies and higher energy consumption.

The efficient case is a VFD-controlled motor serving the same load where the VFD is configured to adjust the motor speed to meet the variable load.

This measure applies to standard commercial building applications including supply and return fans, cooling tower fans, chilled water pumps, and heating water pumps.

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is 15 years.

Calculation of Deemed Savings

k

The energy and demand savings for this measure are a function of the affected motor and the load profile of that motor. Savings are calculated using the following algorithms:

$$kWh_{savings} = kWh_{baseline} - kWh_{post}$$

(304)

$$Wh_{baseline} = RatedHorsepower \times ConversionFactor \times LF \times \frac{1}{\eta_{motor}} \times Hours_{Annual} \\ \times \sum_{0\%}^{100\%} (FlowFraction \times PartLoadRatio_{baseline})$$
(305)

$$kWh_{post} = RatedHorsepower \times ConversionFactor \times LF \times \frac{1}{\eta_{motor}} \times Hours_{Annual} \\ \times \sum_{0\%}^{100\%} (FlowFraction \times PartLoadRatio_{post})$$
(306)

 $kW_{savings} = RatedHorsepower \times ConversionFactor \times LF \times \frac{1}{\eta_{motor}} \times (PartLoadRatio_{baseline,peakflow} - PartLoadRatio_{post,peakflow})$

(307)

Where:

RatedHorsepower = Nameplate horsepower of the motor

ConversionFactor = 0.746 kW/HP

- *LF*= Estimated load factor for the motor; if load factor is not available, deemed load factors from 3.4.2 Premium Efficiency Motors Table 367 can be used
- η_{motor} = Nameplate efficiency of the motor; if unavailable, efficiencies listed in Table 365 from 3.4.2 Premium Efficiency Motors should be used (in the case of rewound motors, in situ efficiency may be reduced by a percentage as found in Table 366)
- *HoursAnnual* = Estimated annual operating hours for the motor; if unavailable, annual operational hours from 3.4.2 Premium Efficiency Motors Table 367 can be used
- FlowFraction = Percent of motor runtime within a given range of fractional flow; if unavailable, flow fractions provided in Table 369 can be used for air handler supply and return fans and chilled water and heating water pumps. For other HVAC applications, site-specific inputs are required.

PartLoadRatio_{baseline} = Part load ratio of the motor for a given range of fractional flow based on the method of flow control in the baseline. See

Table 370 and

Table 371

 $PartLoadRatio_{post} = Part load ratio of the motor for a given range of fractional flow under VFD control. See$

Table 370 and

Table 371

- PartLoadRatio_{baseline,peakflow} = Part load ratio in the baseline condition for the average flow fraction during peak period; default = 0.90^{539}
- PartLoadRatio_{post,peakflow} = Part load ratio in the retrofit condition for the average flow fraction during peak period; default = 0.90^{539}

⁵³⁹ Default baseline and post peak flow part load ratios are set to equivalent, arbitrary values resulting in no demand savings. Site specific information can be used to inform these values for a specific project.

FlowFraction (%)	HVAC Supply and Return Fan ⁵⁴⁰	HVAC Pump – High Pump Loading ⁵⁴¹	HVAC Pump – Low Pump Loading ⁵⁴²
0% to 10%	0.0%	0.0%	0.0%
10% to 20%	1.0%	0.0%	0.0%
20% to 30%	5.5%	0.0%	0.0%
30% to 40%	15.5%	0.0%	15.0%
40% to 50%	22.0%	0.0%	20.0%
50% to 60%	25.0%	20.0%	25.0%
60% to 70%	19.0%	30.0%	15.0%
70% to 80%	8.5%	30.0%	10.0%
80% to 90%	3.0%	20.0%	5.0%
90% to 100%	0.5%	0.0%	0.0%

Table 369: HVAC Fans and Pumps Default Fractional Flow Profiles

⁵⁴⁰ 2012 ASHRAE Handbook; HVAC Systems and Equipment, page 45.11, Figure 12

⁵⁴¹ Bonneville Power Administration BPA ASD Calculator for Fan & Pump Applications – Summary of information provided in "Flow Control," a Westinghouse publication, Bulletin B-851, F/86/Rev–CMS 8121. Weblink, accessed July 2024: <u>https://www.bpa.gov/-/media/Aep/energy-efficiency/document-library/ASD-Calculator-for-fan-and-pump-applications.xls</u>

⁵⁴² ibid.

FlowFractio n (%)	Constan t Volume	Two- Spee d	Air Foil/Backwar d Incline	Air Foil/Backwar d Incline with Inlet Guide Vanes	Forwar d Curved	Forwar d Curved with Inlet Guide Vanes	Variable Frequenc y Drive
0% to 10%	1.00	0.50	0.53	0.53	0.22	0.21	0.05
10% to 20%	1.00	0.50	0.53	0.56	0.26	0.22	0.05
20% to 30%	1.00	0.50	0.57	0.57	0.30	0.23	0.08
30% to 40%	1.00	0.50	0.64	0.59	0.37	0.26	0.13
40% to 50%	1.00	0.50	0.72	0.60	0.45	0.31	0.20
50% to 60%	1.00	1.00	0.80	0.62	0.54	0.39	0.30
60% to 70%	1.00	1.00	0.89	0.67	0.65	0.49	0.43
70% to 80%	1.00	1.00	0.96	0.74	0.77	0.63	0.60
80% to 90%	1.00	1.00	1.02	0.85	0.91	0.81	0.80
90% to 100%	1.00	1.00	1.05	1.00	1.06	1.04	1.03

Table 370: Part Load Ratios for HVAC Fans⁵⁴³

FlowFraction (%)	Constant Volume	Throttle Valve	Variable Frequency Drive
0% to 10%	1.00	0.61	0.19
10% to 20%	1.00	0.67	0.14
20% to 30%	1.00	0.73	0.13
30% to 40%	1.00	0.78	0.15
40% to 50%	1.00	0.82	0.21
50% to 60%	1.00	0.87	0.30
60% to 70%	1.00	0.90	0.43
70% to 80%	1.00	0.94	0.60
80% to 90%	1.00	0.97	0.79
90% to 100%	1.00	1.00	1.03

 Table 371: Part Load Ratios for HVAC Pumps544

⁵⁴⁴ ibid.

3.5 Refrigeration and Refrigeration Controls3.5.1 Solid-Door Refrigerators and Freezers

Measure Description

Commercial refrigerators and freezers are commonly found in restaurants and other food service industries. Reach-in, solid-door refrigerators and freezers are significantly more efficient than regular refrigerators and freezers due to better insulation and higher-efficiency components. These efficiency levels relate the volume of the appliance to its daily energy consumption.

Baseline and Efficiency Standards

Baseline efficiency for commercial solid door refrigerators and freezers are defined by federal minimum efficiency levels that went into effect on March 28, 2014 (see Table 372). Efficient units are defined by minimum efficiency levels for the ENERGY STAR® specifications effective December 22, 2022.

Equipment Type	Efficiency Level	Maximum Daily Energy Consumption ⁵⁴⁵ (kWh/day)
Refrigerator	Baseline	0.05V + 1.36
		0 <v<15, +="" 0.022v="" 0.97<="" td=""></v<15,>
Defrigerator	ENERGY STAR®	$15 \le V \le 30, 0.066V + 0.31$
Refrigerator	ENERGI STAR®	$30 \le V \le 50, 0.04V + 1.09$
		$50 \le V, 0.024V + 1.89$
Freezer	Baseline	0.22V + 1.38
		0 < V < 15, 0.21V + 0.9
Freezer	ENERGY STAR®	$15 \le V \le 30, 0.12V + 2.248$
		30 <= V < 50, 0.285V - 2.703
		= V, 0.142V + 4.445

Table 372: Solid Door Refrigerators and Freezers – Efficiency Levels

The standard refrigerator/freezer efficiency is based on Table 373 which contains the baseline annual energy consumption, and demand, for solid-door refrigerators and freezers.

⁵⁴⁵ V is the volume of the refrigerator or freezer in cubic feet.

Туре	Size Range ⁵⁴⁶ (cubic ft.)	Annual Energy Consumption (kWh/unit)	Demand (kW/unit)
	0-15	770	0.09
Deficenter	15-30	1,044	0.12
Refrigerator	30-50	1,409	0.16
	<u>></u> 50	1,774	0.20
	0-15	1,708	0.20
Freezer	15-30	2,913	0.33
	30-50	4,519	0.52
	<u>></u> 50	6,125	0.70

Table 373: Solid-Door Refrigerators and Freezers – Baseline Measure Information

To qualify for this measure, new solid-door refrigerators and freezers must meet ENERGY STAR® minimum efficiency requirements. Table 374 summarizes the estimated performance information for qualifying units.

Table 374: Solid-Door Refrigerators and Fre	ezers – Qualifying Measure Information

Туре	Size Range ⁵⁴⁷ (cubic ft.)	Annual Energy Consumption (kWh/unit)	Demand (kW/unit)
	0-15	475	0.054
Definiscenter	15-30	836	0.095
Refrigerator	30-50	1,128	0.129
	<u>></u> 50	1,303	0.149
	0-15	1,478	0.169
Freezer	15-30	2,135	0.244
	30-50	4,215	0.481
	<u>></u> 50	5,251	0.599

⁵⁴⁶ Solid-door refrigerators and freezers were evaluated for four different sizes or volumes (V), 15, 30, 50 and 70 cubic feet. The unit will be operated for 365 days per year.

⁵⁴⁷ Ibid.

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is 12 years.

Deemed Savings Values

Deemed measure savings for qualifying solid-door refrigerators and freezers are presented in Table 375.

Table 375: Solid Door	· Refrigerators and	Freezers _ Deem	ed Savings Values ⁵⁴⁸
Table 5/5. Solid Dool	Ken iger ators and	Freezers – Deem	eu Savings values

Туре	Size Range ⁵⁴⁹ (ft ³)	Annual Energy Savings (kWh/unit)	Demand Savings (kW/unit)
	0-15	296	0.034
Definition	15-30	208	0.024
Refrigerator	30-50	281	0.032
	<u>></u> 50	471	0.054
	0-15	230	0.026
	15-30	778	0.089
Freezer	30-50	304	0.035
	<u>≥</u> 50	874	0.100

⁵⁴⁸ Savings represent gross savings at meter.

⁵⁴⁹ Solid-door refrigerators and freezers were evaluated for four different sizes or volumes (V), 15, 30, 50 and 70 cubic feet. The unit will be operated for 365 days per year.

3.5.2 Commercial Ice Makers

Measure Description

This measure applies to ENERGY STAR® air-cooled commercial ice makers in retrofit and new construction applications. Commercial ice makers are classified as either of two equipment types: batch type (also known as cube-type) and continuous type (also known as nugget or flakers). Both of these equipment types are eligible for ENERGY STAR® certification based on their configuration as ice-making heads (IMHs), remote condensing units (RCUs) and self-contained units (SCUs). Also eligible are remote condensing units designed for connection to a remote condenser rack.

The industry standard for energy and potable water use and performance of commercial ice makers is the Department of Energy (DOE) Standard 10 CFR Part 431 Subpart H⁵⁵⁰ and AHRI Standard 810. Key parameters reported for ice makers include the Equipment Type, Harvest Rate (lbs. of ice/24hrs) and Energy Consumption Rate (kWh/100lbs of ice). The AHRI Directory of Certified Equipment⁵⁵¹ lists these values by equipment manufacturer and model number.

Baseline & Efficiency Standard

The ENERGY STAR®⁵⁵² criteria for ice makers define efficiency requirements for both energy and potable water use. The baseline standard for batch ice makers are federal minimum levels that went into effect January 28, 2018.⁵⁵³

Equipment Type	Ice Harvest Rate (H) Range (lbs. of ice/24 hrs)	Batch Ice Makers Energy Consumption Rate (kWh/100 lbs. ice)	
	<300	10.0-0.01233H	
Lee Maline Heads	\geq 300 and < 800	7.05-0.0025H	
Ice Making Heads	≥800 and <1,500	5.55-0.00063H	
	≥1,500	4.61	
Remote Condensing Units	<988	7.97–0.00342H	
(w/out remote compressor)	≥988 and <4,000	4.59	
Remote Condensing Units	<930	7.97–0.00342H	
(w/ remote compressor)	≥934 and <4,000	4.79	
Self-Contained Units	<110	14.79 – 0.0469H	

 Table 376: Federal Minimum Standards for Air-Cooled Batch Ice Makers (H=Harvest Rate)

 manufactured on or after January 28, 2018

⁵⁵⁰ 10 CFR Part 431 Subpart H, Automatic Commercial Ice Makers. 77 FR 1591. January 11, 2012.

⁵⁵¹ Southern California Edison (SCE), 1999, "A Study of Energy Efficient Solutions for Anti-Sweat Heaters." Prepared for the Refrigeration Technology and Test Center (RTTC). December 14.

⁵⁵² ENERGY STAR® Commercial Ice Makers Version 3.0, effective on January 28, 2018.

⁵⁵³ U.S. DOE Report on Automatic Commercial Ice Machines (ACIM) on baseline values, <u>http://www1.eere.</u> energy.gov/buildings/appliance_standards/pdfs/acim_preliminary_tsd_ch5_engineering_2012_01_16.pdf

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

\geq 110 and $<$ 200	12.42-0.02533Н	
≥200 and <4,000	7.35	

Table 377:Federal Minimum Standards for Baseline Efficiency Levels for Air-Cooled Continuous Ice Makers (H=Harvest Rate) manufactured on or after January 28, 2018

Equipment Type	Ice Harvest Rate (H) Range (lbs. of ice/24 hrs)	Batch Ice Makers Energy Consumption Rate (kWh/100 lbs. ice)	
	<310	9.19– 0.00629H	
Ice Making Heads	≥310 and <820	8.23-0.0032H	
	≥4,000	5.61	
Remote Condensing Units (w/out remote compressor)	<800	9.7– 0.0058H	
	≥800 and <4,000	5.06	
Remote Condensing Units	<800	9.9– 0.0058H	
(w/ remote compressor)	≥800 and <4,000	5.26	
	<200	14.22–0.03H	
Self-Contained Units	≥200 and <700	9.47-0.00624H	
	≥700 and <4,000	5.1	

Table 378: ENERGY STAR® Requirements for Air-Cooled Batch Ice Makers (H = Harvest Rate) effective January 28, 2018

Equipment Type	Ice Harvest Rate (H) Range (lbs. of ice/24 hrs)	Batch Ice Makers Energy Consumption Rate (kWh/100 lbs. ice)	Potable Water Use (gal/100 lbs. ice)
	<300	$\leq 9.2 - 0.01134 H$	≤20.0
Lee Maleine Heede	\geq 300 and <800	≤ 6.49-0.0023H	≤20.0
Ice Making Heads	\geq 800 and <1,500	≤ 5.11-0.00058H	≤20.0
	≥1,500 and <4,000	≤ 4.24	≤20.0
Remote Condensing Units	<988	$\leq 7.17 - 0.00308 H$	≤20.0
(w/out remote compressor)	\geq 988 and <4,000	≤ 4.13	≤20.0
Remote Condensing Units	<988	$\leq 7.17 - 0.00308 H$	≤20.0
(w/ remote compressor)	≥ 988 and $< 4,000$	≤ 4.13	≤20.0
	<110	≤ 12.57 – 0.0399H	≤25.0
Self-Contained Units	$\geq 110 \text{ and } \leq 200$	≤ 10.56-0.0215H	≤25.0
	$\geq 200 \text{ and } < 4,000$	≤ 6.25	≤25.0

Equipment Type	Ice Harvest Rate (H) Range (lbs. of ice/24 hrs)	Batch Ice Makers Energy Consumption Rate (kWh/100 lbs. ice)	Potable Water Use (gal/100 lbs. ice)
	<310	≤7.90– 0.005409H	≤15.0
Ice Making Heads	\geq 310 and < 820	≤7.08-0.002752H	≤15.0
	≥4,000	≤4.82	≤15.0
Remote Condensing Units	<800	≤7.76– 0.00464H	≤15.0
(w/out remote compressor)	≥800 and <4,000	≤4.05	≤15.0
Remote Condensing Units (w/ remote compressor)	<800	≤7.76– 0.00464H	≤15.0
	≥800 and <4,000	≤4.05	≤15.0
Self-Contained Units	<200	≤12.37–0.0261H	≤15.0
	≥200 and <700	≤8.24-0.005429H	≤15.0
	≥700 and <4,000	≤4.44	≤15.0

 Table 379: ENERGY STAR® Requirements for Air-Cooled Continuous Ice Makers (H = Harvest Rate) effective January 28, 2018

Estimated Useful Life (EUL)

DEER 2011 database shows an estimated useful life (EUL) of 10 years for commercial ice makers.

Calculation of Deemed Savings

Annual electric savings can be calculated by determining the energy consumed for baseline ice makers compared against the energy consumed by the qualifying ENERGY STAR®⁵⁵⁴ product using the harvest rate of the more efficient unit.

Peak demand savings can then be derived from the electric savings.

$$\Delta kWh = \frac{\left(kWh_{base,per100lb} - kWh_{ee,per100lb}\right)}{100} \times DC \times H \times 365$$

$$\Delta kW = \frac{\Delta kWh}{hours_{annual}} \times CF$$
(308)

Where:

 $\Delta kWh =$ Annual energy savings

 $kWh_{base,per100lb}$ = Calculated based on the harvest rate and type of ice machine from the Federal Minimum

(309)

⁵⁵⁴ The ENERGY STAR® calculator was last updated on February 2015 to reflect efficiency levels adopted in February 1, 2013. It was not updated for the newer efficiency values defined on January 28, 2018. Assumptions for deemed savings are based on the values from this calculator.

Energy Consumption Rate relationships in Table 376.

- $kWh_{ee,per100lb}$ = Qualifying energy efficient model consumption found in the AHRI directory of certified products by model information.; use the equations in AHRI Table 3 and Table 4 to qualify products be deriving the maximum efficiency performance level⁵⁵⁵
- $100 = \text{conversion factor to convert } kWh_{base,per100lb}$ and $kWh_{ee,per100lb}$ into maximum kWh consumption per pound of ice
- DC = Duty Cycle of the ice maker representing the percentage of time the ice machine is making ice = 0.75
- H = Harvest Rate ⁵⁵⁶ (lbs. of ice made per day)
- 365 = days per year

*hours*_{annual} = Annual operating hours = $365 \times 24 = 8760$ hours/year

 $CF = 1.0^{557}$

⁵⁵⁵ <u>https://www.ahridirectory.org/Search/SearchHome</u>

⁵⁵⁶ Harvest Rate for all Ice Machines tested in accordance to AHRI 810-2007can be found at <u>https://www.ahridirectory.org/Search/SearchHome</u>

⁵⁵⁷A New England study, "Coincidence Factor Study for Residential and Commercial Industrial Lighting Measures", *RLW Analytics*, Spring 2007 shows a CF of 0.775 for restaurants; California uses 0.9, Ameren Missouri and Wisconsin uses 1.0. Due to the applicability of this measure in other building types, 1.0 will be used.

3.5.3 Beverage and Snack Machine Controls

Measure Description

This measure involves the installation of a beverage or snack machine control on an existing refrigerated beverage vending machine, refrigerated glass-front reach-in cooler, or non-refrigerated snack machine with a lighted display and no existing controls. Applicable control types include occupancy or schedule-based controls installed on the unit that will reduce energy consumption by powering down the refrigeration and lighting systems when the control does not detect human activity and by reducing the refrigeration process, while still maintaining product quality.

Baseline and Efficiency Standards

The baseline for this measure is an existing 120-volt single phase refrigerated or non-refrigerated beverage vending machine, refrigerated reach-in cooler, or non-refrigerated snack machine with a lighted display and no existing controls. Current federal regulations specify that refrigerated bottled or canned beverage vending machines manufactured on or after August 31, 2012 must meet increased energy conservation standards.^{558,559} Therefore, any vending machine occupancy controls installed on refrigerated beverage vending machines must be installed on machines that were manufactured and purchased before August 31, 2012 to be eligible for this measure.

Estimated Useful Life (EUL)

The estimated useful life (EUL) for this measure for occupancy-based vending controls is five years.⁵⁶⁰ The EUL for schedule-based controls is ten years.⁵⁶¹

Calculation of Deemed Savings

Deemed Savings Values

⁵⁵⁸ U.S. DOE. Refrigerated Beverage Vending Machines: Standards and Test Procedures. <u>https://www.energy.gov/sites/default/files/2022-03/bvm-tp-nopr.pdf</u>

⁵⁵⁹ Refrigerated bottled or canned beverage vending machines manufactured on or after August 31, 2012 must meet the energy conservation standards specified in the Code of Federal Regulations, 10 CFR 421.296. http://www.gpo.gov/fdsys/pkg/CFR-2012-title10-vol3/pdf/CFR-2012-title10-vol3-sec431-292.pdf

⁵⁶⁰ Database for Energy Efficiency Resources (DEER) 2014. Used value specified for Vending Machine Controllers.

⁵⁶¹ Energy & Resource Solutions (ERS), "Measure Life Study". Prepared for the Massachusetts Joint Utilities. November 17, 2005. Used median value specified for Novelty Cooler Shutoff.

Machine Type	Annual Energy Savings (kWh/unit)	Peak Demand Savings (kW/unit)
Refrigerated beverage vending machine	1,612	0.030
Refrigerated glass-front reach-in cooler	1,209	0.035
Non-refrigerated snack vending machine	343	0.006

Table 380: Occupancy-based Controls – Energy and Demand Savings by Machine Type

Table 381: Schedule-based Controls – Energy and Demand Savings by Machine Type

Machine Type	Annual Energy Savings (kWh/unit)	Peak Demand Savings (kW/unit)
Refrigerated beverage vending machine	Use energy savings	0
Refrigerated glass-front reach-in cooler	algorithms with site- specific annual operating	0
Non-refrigerated snack vending machine	hours	0

Energy Savings

The following energy savings estimates align conservatively with various other vending miser energy savings studies.^{562,563,564} Additionally, in comparing to savings calculation methodologies for schedule-based controls from other TRMs, the energy savings factors defined in this measure produce energy savings that are more in line with expected savings percentages. This is likely due to the exclusion of a morning start-up penalty, used to represent the additional energy required to return to typical operating temperatures, from some TRMs.⁵⁶⁵

$$kWh_{Savings} = \frac{W_{CL}}{1000} \times AOH \times ESF$$

(310)

Where:

- W_{CL} = Connected load of controlled beverage or snack machine; if unknown, use default values from Table 382
- AOH = Annual Operating Hours = 8,760 hours for occupancy-based controls; for schedule-based controls, assume one less hour than the number of hours that the installation location is closed per

⁵⁶² Deru, M., et. al. 2003, "Analysis of NREL Cold-Drink Vending Machines for Energy Savings". June. National Renewable Energy Laboratory (NREL). <u>http://www.nrel.gov/docs/fy03osti/34008.pdf</u>

⁵⁶³ Foster-Miller, Inc., "Vending Machine Energy Efficiency Device Engineering Evaluation and Test Report". June 1, 2000. Bayview Technology Group, Inc. <u>https://dokumen.tips/embed/v1/vending-machine-energy-efficiency-device-engineering</u>

⁵⁶⁴ Ritter, J & Hugghins, J. 2000 Joel Hugghins, "Vending Machine Energy Consumption and Vending Miser Evaluation". October 31. Texas A&M Energy Systems Laboratory. <u>http://repository.tamu.edu/bitstream/handle/1969.1/2006/ESL-TR-00-11-01.pdf</u>

⁵⁶⁵ Select Energy Services, Inc., "Analysis of Cooler Control Energy Conservation Measures: Final Report. March 3, 2004. Submitted to NSTAR Electric.

day

ESF = Energy Savings Factor (Table 383)

1,000 = Conversion constant for watts to kilowatts

Table 382: Default Connected Load by Machine Type

Machine Type	Connected Load (W)
Refrigerated beverage vending machine	400
Refrigerated glass-front reach-in cooler	460
Non-refrigerated snack vending machine	85

Table 383: Energy Savings Factor by Machine Type⁵⁶⁶

Machine Type	ESF
Refrigerated beverage vending machine	46%
Refrigerated glass-front reach-in cooler	30%
Non-refrigerated snack vending machine	46%

Demand Savings

Metered data from a Sacramento Municipal Utility District (SMUD) program evaluation found an average demand impact of 0.030 kW/unit using a peak definition of 2 PM to 6 PM.⁵⁶⁷ This impact equates to a 7.5% demand reduction, using the USA Technologies, Inc. controlled load estimate of 400 W for refrigerated beverage vending machines. Assuming a comparable load reduction for other equipment types, this measure estimates an average demand impact of 0.035 kW/unit for refrigerated reach-in coolers and 0.006 kW/unit for non-refrigerated snack vending machines.

No demand savings are claimed for schedule-based beverage and snack machine controls because energy savings typically occur during off-peak hours.

$$kW_{Savings} = \frac{W_{CL}}{1000} \times DSF$$
(311)

Where:

 W_{CL} = Connected load of controlled beverage or snack machine; if unknown, use default values from Table 382

DSF = Demand Savings Factor = 7.5% (occupancy controls); 0% (schedule controls)

⁵⁶⁶ Product data sheets from USA Technologies, Inc. <u>https://www.resourceefficiencysolutions.com/energy-miser-products.php</u>

⁵⁶⁷ Chappell, C., et. al. 2002 "Does It Keep The Drinks Cold and Reduce Peak Demand?: An Evaluation of a Vending Machine Control Program". Heschong Mahone Group, Sacramento Municipal Utility District (SMUD), RLW Analytics, Inc., and American Council for an Energy-Efficient Economy (ACEEE). <u>http://aceee.org/</u>

1,000 = Conversion constant for watts to kilowatts

3.5.4 Door Heater Controls for Refrigerated Display Cases (Retrofit Only)

Measure Description⁵⁶⁸

This measure refers to the installation of anti-sweat door heater controls on glass doors for reach-in commercial refrigerators and freezers. The added control reduces both heater operation time and cooling load.

Baseline and Efficiency Standards

Qualifying equipment includes any controls that reduce the run time of door and frame heaters for refrigerated cases. The baseline efficiency case is a cooler or freezer door heater that operates 8,760 hours per year without any controls. The high efficiency case is a cooler (medium temperature) or freezer (low temperature) door heater connected to a heater control system. There are no state or federal codes or standards that govern the eligibility of equipment.

Estimated Useful Life (EUL)

The estimated useful life (EUL) is 12 years as defined in the DEER database.⁵⁶⁹

Deemed Savings Values

Annual and Peak Energy Savings

Annual and peak energy savings due to anti-sweat door heater controls in medium and low temperature refrigerated cases for various Arkansas locations are provided in the following table. Savings provided in the table are per linear foot of glass door controlled heater.

Weather Zone and Location	Med-Temperature		Low-Temperature	
	Annual kWh/ft. Savings	kW/ft. Savings	Annual kWh/ft. Savings	kW/ft. Savings
Zone 9 - Fayetteville	219	0.0029	508	0.0112
Zone 8 - Fort Smith	215	0.0029	499	0.0110
Zone 7 - Little Rock	198	0.0026	459	0.0101
Zone 6 - El Dorado	184	0.0025	427	0.0094

Table 384: Anti-Sweat Heater Controls – Savings per Linear Foot of Case by Location

Calculation of Deemed Savings

A door heater controller senses dew point (DP) temperature in the store and modulates power supplied to the heaters accordingly. DP inside a building is primarily dependent on the moisture content of outdoor ambient air. Because the outdoor DP varies between weather zones, weather data from each weather zone must be analyzed to obtain a DP profile.

⁵⁶⁸ This work paper includes definitions and standards from the PG&E work paper "Anti-Sweat Heat (ASH) Controls" from May 2009.

⁵⁶⁹ California's Database for Energy Efficiency Resources (DEER 2008).

Indoor dew point (t_{d-i}) is related to outdoor dew point (t_{d-out}) according to the following equation. Indoor dew point was calculated at each location for every hour in the year.⁵⁷⁰

$$t_{d-in} = 0.005379 \times t_{d-out}^{2} + 0.171795 \times t_{d-out} + 19.870006$$
(312)

In the base case, the door heaters are all on and have a duty of 100% irrespective of the indoor DP temperature. For the post retrofit case, the duty for each hourly reading was calculated by assuming a linear relationship between indoor DP and duty cycle for each bin reading. It is assumed that the door heaters will be all off (duty cycle of 0%) at 42.89°F or lower DP and all on (duty cycle of 100%) at 52.87°F or higher DP for a typical supermarket. Between these values, the door heaters' duty cycle changes proportionally:

Door Heater
$$ON\% = \frac{t_{d-in} - All \ OFF \ Setpt \ (42.89^{\circ}F)}{All \ ON \ Setpt \ (52.87^{\circ}F) - All \ OFF \ Setpt \ (42.89^{\circ}F)}$$
(313)

Because the controller only changes the run-time of the heaters, instantaneous door heater power kW_{ASH} as a resistive load remains constant per linear foot of door heater at:

$$kW_{ASH} = \frac{kW}{ft} \times L_{DH}$$

(314)

Where kW/ft. = 0.0368 for medium temperature and 0.0780 for low temperature applications.

Door heater energy consumption for each hour of the year is a product of power and run-time:

$$kWh_{ASH-Hourly} = kW_{Ash} \times Door \ Heater \ ON\% \times 1 \ hour$$
(315)

Total annual door heater energy consumption (kWh_{SH}) is the sum of all hourly reading values:

 $kWh_{ASH} = kWh_{ASH-Hourly}$

(316)

Energy savings were also estimated for reduced refrigeration loads using average system efficiency and assuming that 35% of the anti-sweat heat becomes a load on the refrigeration system.⁵⁷¹ The cooling load contribution from door heaters can be given by:

$$Q_{ASH}(ton) = 0.35 \times kW_{ASH} \times \frac{3412(Btu/h)/ton}{12000(Btu/h)/ton} \times Door \ Heater \ ON\%$$
(317)

The compressor power requirements are based on calculated cooling load and energy-efficiency ratios obtained from the manufacturers' data. The compressor analysis is limited to the cooling load imposed by

⁵⁷¹ Southern California Edison (SCE), 1999, "A Study of Energy Efficient Solutions for Anti-Sweat Heaters." Prepared for the Refrigeration Technology and Test Center (RTTC). December 14. https://www.sce.com/NR/rdonlyres/B1F7A3B4-719D-4CBB-87EB-E27F7CE7ECE0/0/Anti Sweat Heater Report.pdf

⁵⁷⁰ Work Paper PGEREF108: Anti-Sweat Heat (ASH) Controls. Pacific Gas & Electric Company. May 29, 2009.

^{3.5.4} Door Heater Controls for Refrigerated Display Cases(Retrofit Only)

the door heaters, not the total cooling load of the refrigeration system.

The typical efficiency for a medium temperature case is 9 EER (1.33 kW/ton), and the typical efficiency for a low temperature case is 5 EER (2.40 kW/ton).⁵⁷²

Energy used by the compressor to remove heat imposed by the door heaters for each hourly reading is determined based on calculated cooling load and EER, as outlined below:

$$kWh_{Refrig-Hourly} = Q_{ASH} \times kW/ton \times 1 hour$$
(318)

Total annual refrigeration energy consumption is the sum of all hourly reading values:

$$kWh_{Refrig} = \sum kWh_{Refrig-Hourly}$$
(319)

Total annual energy consumption (direct door heaters and indirect refrigeration) is the sum of all hourly reading values:

$$kWh_{Total} = kWh_{Refrig} + kWh_{ASH}$$
(320)

Once the annual energy consumption (direct door heaters and indirect refrigeration) has been determined for the baseline and post-retrofit case, the total energy savings are calculated by the following equation:

$$\Delta kWh = kWh_{Total-Baseli} - kWh_{Total-Pos \ Retrofit}$$
(321)

It is important to note that while there might be instantaneous demand savings as a result of the cycling of the door heaters, peak demand savings will only be due to the reduced refrigeration load. Peak demand savings was calculated by the equation shown below:

$$\Delta kW = \frac{kWh_{Refrig-Basel} - kWh_{Refrig-Post Retrofit}}{8760}$$

(322)

⁵⁷² Chapter 15 of the 2010 ASHRAE Handbook for Refrigeration

3.5.5 Refrigerated Case Night Covers

Measure Description

This measure applies to the installation of night covers on otherwise open vertical (multi-deck) and horizontal (coffin-type) low-temperature (L) and medium temperature (M) display cases to decrease cooling load of the case during the night. It is recommended that these film-type covers have small, perforated holes to decrease the build-up of moisture.

Cases may be either: Self Contained (SC) having both evaporator and condenser coils, along with the compressor as part of the unit or Remote Condensing (RC) where the condensing unit and compressor are remotely located. Refrigerated case categories⁵⁷³ are as follows:

- Vertical Open (VO): Equipment without doors and an air-curtain angle $\ge 0^{\circ}$ and $< 10^{\circ}$
- Semivertical Open (SVO): Equipment without doors and an air-curtain angle $\geq 10^{\circ}$ and $< 80^{\circ}$
- Horizontal Open (HO): Equipment without doors and an air-curtain angle $\geq 80^{\circ}$

Baseline & Efficiency Standard

The baseline standard for this measure is an open low-temperature or medium temperature refrigerated display case (vertical or horizontal) that is not equipped with a night cover.

The efficiency standard for this measure is any suitable material sold as a night cover. The cover must be applied for a period of at least six hours per night.

Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), refrigerated case night covers are assigned an EUL of five years.⁵⁷⁴

Deemed Savings

Due to the relatively consistent summer dry-bulb temperature across the representative Arkansas weather zones, deemed savings values are only provided for the average dry-bulb temperature of 96°F.

Case Description	Temperature Range (°F)	kWh Savings (kWh/ft.)	kW Savings (kW/ft.)
Vertical Open, Remote Condensing Medium Temperature	10-35 °F	112	0.00
Vertical Open, Remote Condensing Low Temperature	< 10 °F	209	0.00

Table 385: Refrigerated Case Night Covers – Deemed Savings Values (per Linear Foot)⁵⁷⁵

⁵⁷³ U.S. DOE, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment, Commercial Refrigeration Equipment, Washington DC, p3-15

⁵⁷⁴ Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

⁵⁷⁵ Pacific Gas & Electric (PG&E), 2009, "Night Covers for Open Vertical and Horizontal Display Cases (Low and Medium Temperature Cases), May 29.

Vertical Open, Self-Contained Medium Temperature	10 – 35 °F	182	0.00
Semivertical Open, Remote Condensing Medium Temperature	10 – 35 °F	83	0.00
Semivertical Open, Self-Contained Medium Temperature	10 – 35 °F	162	0.00
Horizontal Open, Remote Condensing Medium Temperature	10 – 35 °F	42	0.00
Horizontal Open, Remote Condensing Low Temperature	< 10 °F	94	0.00
Horizontal Open, Self-Contained Medium Temperature	10 – 35 °F	132	0.00
Horizontal Open, Self-Contained Low Temperature	< 10 °F	288	0.00

Calculation of Deemed Savings

The following outlines the assumptions and approach used to estimate demand and energy savings due to installation of night covers on open low- and medium-temperature, vertical and horizontal, display cases. Heat transfer components of the display case include infiltration (convection), transmission (conduction), and radiation. This deemed savings approach assumes that installing night covers on open display cases will only reduce the infiltration load on the case. Infiltration affects cooling load in the following ways:

- Infiltration accounts for approximately 80% of the total cooling load of open vertical (or multi-deck) display cases.⁵⁷⁶
- Infiltration accounts for approximately 24% of the total cooling load of open horizontal (coffin or tub style) display cases.⁵⁷⁷

Installing night covers for a period of 6 hours per night can reduce the cooling load due to infiltration. This was modeled by the U.S. Department of Energy (DOE) for Vertical and Semivertical cases.

Table 386: Vertical & Semivertical Refrigerated Case Savings

Case Type ⁵⁷⁸	VO.RC.M	VO.RC.L	VO.SC.M	SVO.RC.M	SVO.SC.M
kWh per day- before Night Curtain	50.52	118.44	38.98	38.48	32.82
kWh per day - with Night Curtain	46.84	111.58	36.99	35.74	31.05

⁵⁷⁷ Ibid.

⁵⁷⁶ ASHRAE 2006. Refrigeration Handbook. Retail Food Store Refrigeration and Equipment. Atlanta, Georgia. pp. 46.1, 46.5, . 46.10.

⁵⁷⁸ U.S. DOE, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment, Commercial Refrigeration Equipment, Washington DC, pp.5-43- 5-47, 5A-5, 5A-6

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Percent kWh Savings per Day	7%	6%	5%	7%	5%
Annual kWh Savings	1,343	2,504	726	1,000	646
Test Case Length (ft.)	12	12	4	12	4

Table 387: Horizontal Refrigerated Case Savings

Case Type ⁵⁷⁹	HO.RC.M	HO.RC.L	HO.SC.M	HO.SC.L
kWh per day- before Night Curtain ⁵⁸⁰	15.44	34.23	16.06	35.02
kWh per day - with Night Curtain	14.05	31.15	14.61	31.87
Percent kWh Savings per Day ⁵⁸¹	9%	9%	9%	9%
Annual kWh Savings	507	1,124	528	1,150
Test Case Length (ft.)	12	12	4	4

While the DOE also modeled the energy consumption for horizontal open cases, there was not an efficient case modeled with a night cover. The nine percent energy savings as found by Faramarzi & Woodworth-Szleper⁶²⁸ was used to determine the post kWh per day.

⁵⁷⁹ U.S. DOE, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial Industrial Equipment, Commercial Refrigeration Equipment, Washington DC, pp. 5-48 - 5-51. The level AD3 was used for the baseline efficiency.

⁵⁸⁰ Ibid.

⁵⁸¹ ASHRAE 1999 Effects of Low-E Shields on the Performance and Power Use of a Refrigerated Display Case. Faramarzi & Woodworth-Szleper, p.8

3.5.6 Strip Curtains for Walk-in Coolers and Freezers

Measure Description

This measure applies to the installation of strip curtains on walk-in coolers and freezers to reduce the refrigeration load associated with the infiltration of non-refrigerated air into the refrigerated space. The avoided infiltration depends on the efficacy of the installed strip curtains as infiltration barriers and on the efficacy of the supplanted infiltration barriers, if applicable.

The most likely applications for this measure are supermarkets, convenience stores, restaurants, and refrigerated warehouses.

Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), strip curtains are assigned an EUL of four years.⁵⁸²

Baseline & Efficiency Standard

The baseline standard for this measure is a walk-in cooler or freezer that previously had either no strip curtain installed or an ineffective strip curtain installed.

The efficiency standard for this measure is a strip curtain added to a walk-in cooler or freezer. Strip curtains must be at least 0.06 inches thick. Low temperature strip curtains must be used for low temperature applications.

Calculation of Deemed Savings

$$\Delta kWh = \frac{\Delta kWh}{sqft} \times A$$
(323)
$$\Delta kW_{peak} = \frac{\Delta kW}{sqft} \times A$$

(324)

The annual energy savings due to infiltration barriers is quantified by multiplying savings per square foot by area using assumptions for independent variables described in the protocol introduction. The source algorithm from which the savings per square foot values are determined is based on Tamm's equation⁵⁸³ (an application of Bernoulli's equation) and the ASHRAE handbook.⁵⁸⁴ To the extent that evaluation findings are able to provide more reliable site specific inputs assumptions, they may be used in place of the default per square foot savings using the following equation.

⁵⁸² Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

⁵⁸³ Kalterveluste durch kuhlraumoffnungen. Tamm W,. Kaltetechnik-Klimatisierung 1966;18;142-144

⁵⁸⁴ American Society of Heating, Refrigeration, and Air-Conditioning Engineers (ASHRAE). 2010. ASHRAE Handbook, Refrigeration: 13.4, 13.6

$$\frac{\Delta kWh}{sqft} = \frac{365 \times t_{open} \times (\eta_{new} - \eta_{old}) \times 20 \times CD \times A \times \left\{ \left[\frac{T_i - T_r}{T_i} \right] \times g \times H \right\}^{0.5} \times \left[\rho_i \times h_i - \rho_r \times h_r \right]}{3412 \frac{Btu}{kWh \times COP_{adj}} \times COP_{adj} \times A}$$

(325)

The peak demand reduction is quantified by multiplying savings per square foot by area. The source algorithm is the annual energy savings divided by 8,760. This assumption is based on general observation that refrigeration is constant for food storage, even outside of normal operating conditions. This is the most conservative approach in lieu of a more sophisticated model.

$$\frac{\Delta k W_{peak}}{sqft} = \frac{\Delta k W h}{8760}$$

(326)

The ratio of the average energy usage during Peak hours to the total annual energy usage is taken from the load shape data collected by ADM for anevaluation for the CA Public Utility Commission⁵⁸⁵ in the study of strip curtains in supermarkets, convenience stores, and restaurants.

The default savings values are listed in Table 393. Default parameters used in the source equations are listed in Table 388 through Table 392. The source equations and the values for the input parameters are adapted from the 2006-2008 California Public Utility Commission's evaluation of strip curtains.⁵⁸⁶ The original work included 8,760-hourly bin calculations. The values used herein represent annual average values. For example, the differences in the temperature between the refrigerated and infiltrating airs are averaged over all times that the door to the walk-in unit is open.

Table 388: Strip Curtain	Calculation Assumptions
--------------------------	-------------------------

Term	Unit	Values	Source
$\Delta kWh/ft^2$, Average annual kWh savings per square foot of infiltration barrier	$\frac{\Delta kWh}{ft^2}$	Calculated	Calculated
$\Delta kW/ft^2$, Average kW savings per square foot of infiltration barrier	$\frac{\Delta kW}{ft^2}$	Calculated	Calculated
20, Product of 60 seconds per minute and an integration factor of 1/3	sec/min	20	4
g, Gravitational constant	ft/s ²	32.174	Constant
<i>3,412</i> , Conversion constant: number of BTUs in one kWh	Btu kWh	3,412	Conversion factor

⁵⁸⁵ <u>http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf</u>

⁵⁸⁶ <u>https://docs.cpuc.ca.gov/PUBLISHED/FINAL_RESOLUTION/108628.htm</u> The scale factors have been determined with tracer gas measurements on over 100 walk-in refrigeration units during the California Public Utility Commission's evaluation of the 2006-2008 CA investor owned utility energy efficiency programs. The door-open and close times, and temperatures of the infiltrating and refrigerated airs are taken from short-term monitoring of over 100 walk-in units. The temperature and humidity of the infiltrating air and the COP of the units have been modified to reflect the PA climate.

	TI •4	Va	lues	Source
Term	Unit	Cooler	Freezer	Source
η_{new} , Efficacy of the new strip curtain – an efficacy of 1 corresponds to the strip curtain thwarting all infiltration, while an efficacy of zero corresponds to the absence of strip curtains	None	0.88	0.88	1
η_{old} , Efficacy of the old strip curtain with Pre-existing curtain with no Pre-existing curtain unknown	None	0.58 0.00 0.00	0.58 0.00 0.00	1
C_d , Discharge Coefficient: empirically determined scale factors that account for differences between infiltration as rates predicted by application Bernoulli's law and actual observed infiltration rates	None	0.366	0.415	1
t_{open} , Minutes walk-in door is open per day	minutes day	132	102	1
A, Doorway area	ft ²	35	35	1
H, Doorway height	ft	7	7	1
T_i , Dry-bulb temperature of infiltrating air, Rankine = Fahrenheit + 459.67	°F	71	67	1 and 2
T_r , Dry-bulb temperature of refrigerated air, Rankine = Fahrenheit + 459.67	°F	37	5	1
ρ_i , Density of the infiltration air, based on 55% RH	$\frac{lb}{ft^3}$	0.074	0.074	3
h_i , Enthalpy of the infiltrating air, based on 55% RH	Btu lb	26.935	24.678	3
ρ_r , Density of the refrigerated air, based on 80% RH	$\frac{lb}{ft^3}$	0.079	0.085	3
h_r , Enthalpy of the refrigerated air, based on 80% RH	Btu lb	12.933	2.081	3
COP_{adj} , Time-dependent (weather dependent) coefficient of performance of the refrigeration system; based on nominal COP of 1.5 for freezers and 2.5 for coolers	None	3.07	1.95	1 and 2

Table 389: Strip Curtain Calculation Assumptions for Supermarkets

	TT •/	Va	lues	Samuel
Term	Unit	Cooler	Freezer	Source
η_{new} , Efficacy of the new strip curtain – an efficacy of 1 corresponds to the strip curtain thwarting all infiltration, while an efficacy of zero corresponds to the absence of strip curtains	None	0.79	0.83	1
η_{old} , Efficacy of the old strip curtain with Pre-existing curtain with no Pre-existing curtain unknown	None	0.58 0.00 0.34	0.58 0.00 0.30	1
C_d , Discharge Coefficient: empirically determined scale factors that account for differences between infiltration as rates predicted by application Bernoulli's law and actual observed infiltration rates	None	0.348	0.421	1
t_{open} , Minutes walk-in door is open per day	minutes day	38	9	1
A, Doorway area	ft ²	21	21	1
H, Doorway height	ft	7	7	1
T_i , Dry-bulb temperature of infiltrating air, Rankine = Fahrenheit + 459.67	°F	68	64	1 and 2
T_r , Dry-bulb temperature of refrigerated air, Rankine = Fahrenheit + 459.67	°F	39	5	1
ρ_i , Density of the infiltration air, based on 55% RH	$\frac{lb}{ft^3}$	0.074	0.075	3
h_i , Enthalpy of the infiltrating air, based on 55% RH	Btu lb	25.227	23.087	3
ρ_r , Density of the refrigerated air, based on 80% RH	$\frac{lb}{ft^3}$	0.079	0.085	3
h_r , Enthalpy of the refrigerated air, based on 80% RH	Btu lb	13.750	2.081	3
COP_{adj} , Time-dependent (weather dependent) coefficient of performance of the refrigeration system; based on nominal COP of 1.5 for freezers and 2.5 for coolers	None	3.07	1.95	1 and 2

Table 390: Strip Curtain Calculation Assumptions for Convenience Stores

	TT •/	Va	lues	Sauraa
Term	Term Unit		Freezer	Source
η_{new} , Efficacy of the new strip curtain – an efficacy of 1 corresponds to the strip curtain thwarting all infiltration, while an efficacy of zero corresponds to the absence of strip curtains	None	0.80	0.81	1
η_{old} , Efficacy of the old strip curtain with Pre-existing curtain with no Pre-existing curtain unknown	None	0.58 0.00 0.33	0.58 0.00 0.26	1
C_d , Discharge Coefficient: empirically determined scale factors that account for differences between infiltration as rates predicted by application Bernoulli's law and actual observed infiltration rates	None	0.383	0.442	1
t_{open} , Minutes walk-in door is open per day	minutes day	45	38	1
A, Doorway area	ft ²	21	21	1
H, Doorway height	ft	7	7	1
T_i , Dry-bulb temperature of infiltrating air, Rankine = Fahrenheit + 459.67	°F	70	67	1 and 2
T_r , Dry-bulb temperature of refrigerated air, Rankine = Fahrenheit + 459.67	°F	39	8	1
ρ_i , Density of the infiltration air, based on 55% RH	$\frac{lb}{ft^3}$	0.074	0.074	3
h_i , Enthalpy of the infiltrating air, based on 55% RH	Btu lb	26.356	24.678	3
ρ_r , Density of the refrigerated air, based on 80% RH	$\frac{lb}{ft^3}$	0.079	0.085	3
h_r , Enthalpy of the refrigerated air, based on 80% RH.	Btu lb	13.750	2.948	3
COP_{adj} , Time-dependent (weather dependent) coefficient of performance of the refrigeration system; based on nominal COP of 1.5 for freezers and 2.5 for coolers	None	3.07	1.95	1 and 2

Table 391: Strip Curtain Calculation Assumptions for Restaurants

Term	Unit	Values	Source
η_{new} , Efficacy of the new strip curtain – an efficacy of 1 corresponds to the strip curtain thwarting all infiltration, while an efficacy of zero corresponds to the absence of strip curtains	None	0.89	1
η_{old} , Efficacy of the old strip curtain	None	0.58	1
with Pre-existing curtain		0.00	
with no Pre-existing curtain		0.54	
unknown			
C_d , Discharge Coefficient: empirically determined scale factors that account for differences between infiltration as rates predicted by application Bernoulli's law and actual observed infiltration rates	None	0.425	1
t_{open} , Minutes walk-in door is open per day	minutes	494	1
	day	494	I
A, Doorway area	ft ²	80	1
H, Doorway height	ft	10	1
T_i , Dry-bulb temperature of infiltrating air, Rankine = Fahrenheit + 459.67	°F	59	1 and 2
T_r , Dry-bulb temperature of refrigerated air, Rankine = Fahrenheit + 459.67	°F	28	1
ρ_i , Density of the infiltration air, based on 55% RH	$\frac{lb}{ft^3}$	0.076	3
h_i , Enthalpy of the infiltrating air, based on 55% RH	$\frac{Btu}{lb}$	20.609	3
ρ_r , Density of the refrigerated air, based on 80% RH	$\frac{lb}{ft^3}$	0.081	3
h_r , Enthalpy of the refrigerated air, based on 80% RH	$\frac{Btu}{lb}$	9.462	3
COP_{adj} , Time-dependent (weather dependent) coefficient of performance of the refrigeration system; based on nominal COP of 1.5 for freezers and 2.5 for coolers	None	1.91	1 and 2

Table 392: Strip Curtain Calculation Assumptions for Refrigerated Warehouses

Sources

- The scale factors have been determined with tracer gas measurements on over 100 walk-in refrigeration units during the California Public Utility Commission's evaluation of the 2006-2008 CA investor owned utility energy efficiency programs. The door-open and close times, and temperatures of the infiltrating and refrigerated airs are taken from short-term monitoring of over 100 walk-in units.
- 2) <u>http://www.calmac.org/publications/ComFac_Evaluation_V1_Final_Report_02-18-2010.pdf</u> For refrigerated warehouses, we used a bin calculation method to weight the outdoor temperature by the infiltration that occurs at that outdoor temperature. This tends to shift the average outdoor temperature during times of infiltration higher (e.g. from 54 °F year-round average to 64 °F). We also performed the same exercise to find out effective outdoor temperatures to use for adjustment of nominal refrigeration system COPs.
- 3) Density and enthalpy of infiltrating and refrigerated air are based on psychometric equations based on the dry bulb temperature and relative humidity. Relative humidity is estimated to be 55% for infiltrating air and 80% for refrigerated air. Dry bulb temperatures were determined through the evaluation cited in Source 1.
- 4) In the original equation (Tamm's equation) the height is taken to be the difference between the midpoint of the opening and the 'neutral pressure level' of the cold space. In the case that there is just one dominant doorway through which infiltration occurs, the neutral pressure level is half the height of the doorway to the walk-in refrigeration unit. The refrigerated air leaks out through the lower half of the door, and the warm, infiltrating air enters through the top half of the door. We deconstruct the lower half of the door into infinitesimal horizontal strips of width W and height dh. Each strip is treated as a separate window, and the air flow through each infinitesimal strip is given by 60 x CD x A x {[(Ti Tr) / Ti] x g x Δ HNPL }^0.5 where Δ HNPL represents the distance to the vertical midpoint of the door. In effect, this replaces the implicit wh1.5 (one power from the area, and the other from Δ HNPL) with the integral from 0 to h/2 of wh'0.5 dh' which results in wh1.5/(3×20.5⁻).⁵⁸⁷

⁵⁸⁷ For more information see:" Alereza et al, 2008, " Are They Cool(ing)?:Quantifying the Energy Savings from Installing / Repairing Strip Curtains," IEPEC Conference 2008 Conference Proceedings.

Deemed Savings Values

Туре	Pre-existing Curtains	Energy Savings ∆kWh/ft ²	Demand Savings ∆ <i>kW/ft</i> ²
Supermarket - Cooler	Yes	37	0.0042
Supermarket - Cooler	No	108	0.0123
Supermarket - Cooler	Unknown	108	0.0123
Supermarket - Freezer	Yes	119	0.0136
Supermarket - Freezer	No	349	0.0398
Supermarket - Freezer	Unknown	349	0.0398
Convenience Store - Cooler	Yes	5	0.0006
Convenience Store - Cooler	No	20	0.0023
Convenience Store - Cooler	Unknown	11	0.0013
Convenience Store - Freezer	Yes	8	0.0009
Convenience Store - Freezer	No	27	0.0031
Convenience Store - Freezer	Unknown	17	0.0020
Restaurant - Cooler	Yes	8	0.0009
Restaurant - Cooler	No	30	0.0034
Restaurant - Cooler	Unknown	18	0.0020
Restaurant - Freezer	Yes	34	0.0039
Restaurant - Freezer	No	119	0.0136
Restaurant - Freezer	Unknown	81	0.0092
Refrigerated Warehouse	Yes	254	0.0290
Refrigerated Warehouse	No	729	0.0832
Refrigerated Warehouse	Unknown	287	0.0327

Table 393: Strip Curtains – Deemed Savings Values

3.5.7 Door Gaskets for Walk-in and Reach-in Coolers and Freezers

Measure Description

This measure applies to the installation of door gaskets on walk-in coolers and freezers to reduce the refrigeration load associated with the infiltration of non-refrigerated air into the refrigerated space. Additionally, the reduction in moisture entering the refrigerated space also helps prevent frost on the cooling coils. Frost build-up adversely impacts the coil's heat transfer effectiveness, reduces air passage (lowering heat transfer efficiency), and increases energy use during the defrost cycle. Therefore, replacing defective door gaskets reduces compressor run time and improves the overall effectiveness of heat removal from a refrigerated cabinet.

The most likely applications for this measure are supermarkets, convenience stores, restaurants, and refrigerated warehouses.

Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), door gaskets are assigned an EUL of 4 years.⁵⁸⁸

Baseline & Efficiency Standard

The baseline standard for this measure is a walk-in or reach-in cooler or freezer with worn-out, defective door gaskets.

The efficiency standard for this measure is a new better-fitting gasket. Tight fitting gaskets inhibit infiltration of warm, moist air into the cold refrigerated space, reducing the cooling load. Decrease in moisture entering the refrigerated space also prevents frost on cooling coils.

Calculation of Deemed Savings

$$\Delta kWh = \frac{\Delta kWh}{ft} \times L \tag{327}$$

$$\Delta k W_{peak} = \frac{\Delta k W h}{f t} \times \frac{1}{Hours_{annual}} \times L$$

⁵⁸⁸ Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

(328)

Table 394: Door Gasket Assumptions

Term	Unit	Values
$\Delta kWh/ft$, Annual energy savings per linear foot of gasket	∆kWh /ft	See Table 395
$\Delta kW/ft$, Demand savings per linear foot of gasket	(Δ <i>kWh</i> /ft) /8760	See Table 395
L, Total gasket length	ft.	As Measured
Hours _{annual}	Hours	8760

Deemed Savings Values

The demand and energy savings assumptions are based on DEER 2005 and analysis performed by Southern California Edison (SCE) and an evaluation of PG&E direct install refrigeration measures for program year 2006-2008.^{589,590}

Table 395: Door Gaskets Deemed Savings Values (per Linear Foot of Gasket)

	Walk-In or Reach In	
Refrigerator Type	$\Delta kW/ft$	$\Delta kWh/ft$
Cooler	0.0017	15
Freezer	0.0131	115

⁵⁸⁹ Southern California Edison (SCE). WPSCNRRN0013 – Door Gaskets for Glass Doors of Medium and Low Temperature Reach-in Display Cases & Solid Doors of Reach-in Coolers and Freezers. 2007.

⁵⁹⁰ Commercial Facilities Contract Group, 2006-2008 Direct Impact Evaluation Study ID: PUC0016.01.

3.5.8 Zero Energy Doors

Measure Description

This measure applies to the installation of zero energy doors for refrigerated cases. Zero energy doors eliminate the need for anti-sweat heaters to prevent the formation of condensation on the glass surface by incorporating heat reflective coatings on the glass, gas inserted between the panes, non-metallic spacers to separate glass panes, and/or non-metallic frames.

This measure cannot be used in conjunction with anti-sweat heat (ASH) controls.

Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2014), zero energy doors are assigned an EUL of 12 years.⁵⁹¹

Baseline & Efficiency Standard

The baseline standard for this measure is a standard vertical reach-in refrigerated cooler or freezer with antisweat heaters on the glass surface of the doors.

The efficiency standard for this measure is a reach-in refrigerated cooler or freezer with special doors installed to eliminate the need for anti-sweat heaters. Doors must have either heat reflective treated glass, be gas-filled, or both.

Calculation of Deemed Savings

The energy and demand savings from the installation of zero-energy doors are listed below:

$$kW_{savings} = kW_{door} \times BF$$
(329)

$$kWh_{savings} = kW_{savings} \times 8760$$

Where:

 kW_{door} = Connected load kW of a typical reach-in cooler or freezer door with a heater

BF = Bonus factor for reducing cooling load from eliminating heat generated by the door heater from entering the cooler or freezer

Hours_{annual} = 8760

(330)

⁵⁹¹ Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

Variable	Calculation Parameters
kW _{door} ⁵⁹²	Freezers: 0.245 Coolers: 0.131
BF ⁵⁹³	Low-Temp (-35° - 0°F): 1.36 Medium-Temp (0° - 20°F): 1.22 High-Temp (21° - 45°F): 1.15

Table 396: Assumptions for Savings Calculations

Deemed Savings Values

Table 397: Zero Energy Doors – Deemed Savings Values (per door)594

Equipment, Evaporator Temperature	kWh Savings	kW Savings	
Freezer, Low-Temperature	2,919	0.333	
Cooler, Medium-Temperature	1,400	0.160	
Cooler, High-Temperature	1,320	0.151	

⁵⁹² Based on two manufacturers and metered data (cooler 50-130W, freezer 200-320W). Efficiency Vermont Commercial Master Technical Reference Manual No. 2005-37.

⁵⁹³ Bonus factor (1+0.65/COP + $0.35 \times 0.75 \times 0.29/2.5$) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discuss compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F, and manufacturers assumption that 65% of heat generated by door enters the refrigerated case. Efficiency Vermont Commercial Master Technical Reference Manual No. 2005-37.

⁵⁹⁴ Temperature ranges based on Commercial Refrigeration Rebate Form, p, 3. Efficiency Vermont. https://www.efficiencyvermont.com/Media/Default/docs/rebates/forms/efficiency-vermont-commercial-refrigeration-rebate-form.pdf. and Energy Efficiency Supermarket Refrigeration, Wisconsin Electric Power Company, July 23, 1993.

3.5.9 Evaporator Fan Controls

Measure Description

This measure applies to the installation of evaporator fan controls. As walk-in cooler and freezer evaporators often run continuously, this measure consists of a control system that turns the fan on only when the unit's thermostat is calling for the compressor to operate.

Estimated Useful Life (EUL)

Evaporator fan controls are assigned an EUL of 13 years.⁵⁹⁵

Baseline & Efficiency Standard

The baseline standard for this measure is an existing shaded pole evaporator fan motor with no temperature controls with 8,760 annual operating hours.

The efficiency standard for this measure is an energy management system (EMS) or other electronic controls to modulate evaporator fan operation based on temperature of the refrigerated space.

Calculation of Deemed Savings

The energy savings from the installation of evaporator fan controls are a result of savings due to the reduction in operation of the fan. The energy and demand savings are calculated using the following equations:

$$kW_{savings} = \left[(kW_{evap} \times n_{fans}) - kW_{circ} \right] \times \left(1 - DC_{comp} \right) \times DC_{evap} \times BF$$
(331)

$$kWh_{savings} = kW_{savings} \times Hours_{annual}$$

Where:

 kW_{evap} = Nameplate connected load kW of each evaporator fan = 0.123 kW (default)⁵⁹⁶

 kW_{circ} = Nameplate connected load kW of the circulating fan = 0.035 kW (default) ⁵⁹⁷

 $n_{fans} =$ Number of evaporator fans

 DC_{comp} = Duty cycle of the compressor = 50% (default)⁵⁹⁸

(332)

⁵⁹⁵ As recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018.

⁵⁹⁶ Based on a weighted average of 80% shaded pole motors at 132 watts and 20% PSC motors at 88 watts.

⁵⁹⁷ Wattage of fan used by Freeaire and Cooltrol.

⁵⁹⁸ A 50% duty cycle is assumed based on examination of duty cycle assumptions from Richard Traverse (35%-65%), Control (35%-65%), Natural Cool (70%), Pacific Gas & Electric (58%). Also, manufacturers typically size equipment with a built-in 67% duty factor and contractors typically add another 25% safety factor, which results in a 50% overall duty factor.

 DC_{evap} = Duty cycle of the evaporator fan = Coolers: 100%; Freezers: 94% (default)⁵⁹⁹

BF = Bonus factor for reducing cooling load from replacing the evaporator fan with a lower wattage circulating fan when the compressor is not running = Low Temp.: 1.5, Medium Temp.: 1.3, High Temp.: 1.2 (default)⁶⁰⁰

 $Hours_{annual} = 8760$

⁵⁹⁹ An evaporator fan in a cooler runs all the time, but a freezer only runs 8273 hours per year due to defrost cycles (4 20-min defrost cycles per day).

⁶⁰⁰ Bonus factor (1+1/COP) assumes 2.0 COP for low temp, 3.5 COP for medium temp, and 5.4 COP for high temp, based on the average of standard reciprocating and discus compressor efficiencies with Saturated Suction Temperatures of -20°F, 20°F, and 45°F, respectively, and a condensing temperature of 90°F.

3.6 Lighting3.6.1 Light Emitting Diode (LED) Traffic Signals

Measure Description

This measure involves the installation of LED traffic signals, typically available in red, yellow, green, and pedestrian format, at a traffic light serving any intersection in retrofit applications. New construction applications are not eligible for this measure, as incandescent traffic signals are not compliant with the current federal standard,⁶⁰¹ effective January 1, 2006.

Baseline & Efficiency Standards

For all retrofit projects, the baseline is a standard incandescent fixture.

Due to the increased federal standard for traffic signals, the ENERGY STAR® LED Traffic Signal specification was suspended effective May 1, 2007.⁶⁰² ENERGY STAR® chose to suspend the specification rather than revise it due to minimal additional savings that would result from a revised specification.

Because the ENERGY STAR® specification no longer exists, the efficiency standard is considered to be an equivalent LED fixture for the same application. The equivalent LED fixture must be compliant with the federal standard. There is no current federal standard for yellow "ball" or "arrow" fixtures.

Measure	Nominal Wattage	Maximum Wattage	
12" Red Ball	17	11	
12" Green Ball	15	15	
8" Red Ball	13	8	
8" Green Ball	12	12	
12" Red Arrow	12	9	
8" Green Arrow	11	11	
Combination Walking Man/Hand	16	13	

Table 398: Federal Standard Maximum Nominal Wattages⁶⁰³ and Maximum Wattages⁶⁰⁴

⁶⁰¹ Current federal standards for traffic and pedestrian signals can be found at the DOE website at: <u>https://www.govinfo.gov/content/pkg/FR-2022-08-05/pdf/2022-16781.pdf</u>

⁶⁰². Memorandums related to this decision can be found on the ENERGY STAR® website at: <u>https://www.energystar.gov/sites/default/files/traffic_elig.pdf</u>

⁶⁰³ Nominal wattage is defined as power consumed by the module when it is operated within a chamber at a temperature of 25 °C after the signal has been operated for 60 minutes.

⁶⁰⁴ Maximum wattage is the wattage at which power consumed by the module after being operated for 60 minutes while mounted in a temperature testing chamber so that the lensed portion of the module is outside the chamber, all portions of the module behind the lens are within the chamber at a temperature of 74 $^{\circ}$ C, and the air temperature in front of the lens is maintained at a minimum of 49 $^{\circ}$ C.

Measure	Nominal Wattage	Maximum Wattage
Walking Man	12	9
Orange Hand	16	13

Typical incandescent and LED traffic signal fixture wattages can be found in the following table. These fixture wattages should be used in the absence of project specific fixture wattages.

Measure		LED Wattage ⁶⁰⁶
Replace 12" Red Incandescent Ball with 12" Red LED Ball		9
Replace 12" Yellow Incandescent Ball with 12" Yellow LED Ball	149	17
Replace 12" Green Incandescent Ball with 12" Green LED Ball		11
Replace 8" Red Incandescent Ball with 8" Red LED Ball		6
Replace 8" Yellow Incandescent Ball with 8" Yellow LED Ball	86	12
Replace 8" Green Incandescent Ball with 8" Green LED Ball		6
Replace 12" Red Incandescent Arrow with 12" Red LED Arrow		5
Replace 12" Yellow Incandescent Arrow with 12" Yellow LED Arrow	128	8
Replace 12" Green Incandescent Arrow with 12" Green LED Arrow		5
Replace Large (16"x18") Incandescent Pedestrian Signal with LED Pedestrian Signal (with Countdown)	149	17
Replace Small (12"x12") Incandescent Pedestrian Signal with LED Pedestrian Signal (with Countdown)	107	10
Replace Large (16"x18") Incandescent Pedestrian Signal with LED Pedestrian Signal (without Countdown)	116 ⁶⁰⁷	6
Replace Small (12"x12") Incandescent Pedestrian Signal with LED Pedestrian Signal (without Countdown)	68 ⁶⁰⁸	5

⁶⁰⁵ Northern Power & Conservation Council: Regional Technical Forum. Commercial LED Traffic Signals measure workbook. <u>http://rtf.nwcouncil.org/measures/measure.asp?id=114&decisionid=37</u>.

⁶⁰⁶ Typical practice for estimating fixture wattages is to take an average of the three leading manufacturers: GE, Philips, and Sylvania. Of the three, GE is the only manufacturer providing LED traffic signals. Other manufacturers excluded from averages. <u>http://www.gelightingsolutions.com/products--solutions/transportation-led-lighting/traffic-signals</u>.

⁶⁰⁷ Average high wattage A19, A21, and A23 incandescent fixture from Philips and Sylvania.

⁶⁰⁸ Ibid.

Estimated Useful Life (EUL)

According to the Northern Power & Conservation Council Regional Technical Forum, the estimated useful life (EUL) is five to six years, as shown in the following table.

Measure		
Replace 12" Red Incandescent Ball with 12" Red LED Ball		
Replace 12" Yellow Incandescent Ball with 12" Yellow LED Ball		
Replace 12" Green Incandescent Ball with 12" Green LED Ball		
Replace 8" Red Incandescent Ball with 8" Red LED Ball		
Replace 8" Yellow Incandescent Ball with 8" Yellow LED Ball		
Replace 8" Green Incandescent Ball with 8" Green LED Ball		
Replace 12" Red Incandescent Arrow with 12" Red LED Arrow		
Replace 12" Yellow Incandescent Arrow with 12" Yellow LED Arrow		
Replace 12" Green Incandescent Arrow with 12" Green LED Arrow		
Replace Large (16"x18") Incandescent Pedestrian Signal with LED Pedestrian Signal	5	
Replace Small (12"x12") Incandescent Pedestrian Signal with LED Pedestrian Signal	5	

Measure Savings Calculation

$$kW_{savings} = \sum \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times CF$$
(333)

$$kWh_{savings} = \sum \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times AOH$$
(334)

⁶⁰⁹ Northern Power & Conservation Council: Regional Technical Forum. Commercial LED Traffic Signals measure workbook. <u>http://rtf.nwcouncil.org/measures/measure.asp?id=114&decisionid=37</u>. EUL is determined by LED Traffic Signal replacement schedule, which is set to precede earliest burnout. All fixtures will be replaced at the same time to minimize maintenance interruptions.

Where:

- $N_{fixt(i),pre}$ = Pre-retrofit number of fixtures of type i.
- $N_{fixt(i),post}$ = Post-retrofit number of fixtures of type i.
- $W_{fixt(i),pre}$ = Rated wattage of pre-retrofit fixtures of type i (if unknown, use Table 399).
- $W_{fixt(i),post}$ = Rated wattage of post-retrofit fixtures of type i (if unknown, use Table 399).
- *CF* = Peak demand coincidence factor (Table 401).
- *AOH* = Annual operating hours for specified measure type (Table 401).

Table 401: Coincidence Factor and Annual Operating Hours by Measure

Measure	CF ⁶¹⁰	AOH ⁶¹¹
Replace 12" Red Incandescent Ball with 12" Red LED Ball	0.54	4,746
Replace 12" Yellow Incandescent Ball with 12" Yellow LED Ball	0.03	263
Replace 12" Green Incandescent Ball with 12" Green LED Ball	0.43	3,751
Replace 8" Red Incandescent Ball with 8" Red LED Ball	0.54	4,746
Replace 8" Yellow Incandescent Ball with 8" Yellow LED Ball	0.03	263
Replace 8" Green Incandescent Ball with 8" Green LED Ball	0.43	3,751
Replace 12" Red Incandescent Arrow with 12" Red LED Arrow	0.89	7,771
Replace 12" Yellow Incandescent Arrow with 12" Yellow LED Arrow	0.03	263
Replace 12" Green Incandescent Arrow with 12" Green LED Arrow	0.08	726
Replace Large (16"x18") Incandescent Pedestrian Signal with LED Pedestrian Signal		8,642
Replace Small (12"x12") Incandescent Pedestrian Signal with LED Pedestrian Signal	0.99	8,642

⁶¹⁰ CF = AOH / 8,760 hours

⁶¹¹ Northern Power & Conservation Council: Regional Technical Forum. Commercial LED Traffic Signals measure workbook. <u>http://rtf.nwcouncil.org/measures/measure.asp?id=114&decisionid=37</u>.

3.6.2 Lighting Controls

Measure Description

Automatic lighting controls save energy by switching off or dimming lights when they are not necessary. Some lighting control techniques, such as using photocell controls, can be coupled with a variety of control strategies, including daylighting controls, occupancy controls, timer controls, and time clocks.

Stepped Lighting Control Systems

When switching systems are used with entire circuits of lights, as opposed to individual light fixtures, the control protocol is usually described in terms of steps, with each "step" referring to a percentage of full lighting power. Stepped lighting control systems are a relatively inexpensive approach to controlling large individual spaces, but they can be distracting to occupants.

Continuous Dimming Control Systems

Continuous dimming control systems are designed to adjust electric lighting to maintain a designated light level. Continuous dimming systems eliminate distracting and abrupt changes in light levels, provide appropriate light levels at all times, and provide an increased range of available light level. Cost is the major disadvantage of this control.

Occupancy Sensors

Occupancy sensors use motion detection to control lights in response to the presence or absence of occupants in a space. Many different varieties of sensors are available, including passive infrared (PIR), Ultrasound detecting, dual-technology, and integral occupancy sensors. Occupancy sensors are most effective in spaces with sporadic or unpredictable occupancy levels.

Daylighting

Daylighting controls switch or dim electric lights in response to the presence or absence of daylight illumination in the space. Advanced daylighting controls incorporate occupancy and daylighting sensors into the same control.

Baseline and Efficiency Standards

IECC 2003 (Section 805.2) and IECC 2009 (Section 505.1) specify the conditions under which light reduction and automatic controls are mandatory for new construction and affected retrofit projects. See the Measure Baseline section under the lighting efficiency measure for a discussion of updated lighting fixture wattages.

There are no minimum efficiency requirements for lighting controls.

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is eight years for Daylighting Sensors and eight years for Occupancy Sensors.

Calculation of Deemed Savings

Measure/Technology Review

There have been many in-depth studies performed on the energy savings associated with occupancy and daylighting controls. Research by various organizations – including the Illuminating Engineering Society (IES), Canada National Research Council (CNRC), New Buildings Institute (NBI), Lighting Research Center (LRC) and multiple utilities – was included in this review. A summary of the findings of these reports are located in Table 402 and Table 403.

Location	IES ⁶¹²	CNRC ⁶¹³	NBI ⁶¹⁴	LRC ⁶¹⁵
Break Room	22%	-	-	-
Classroom	45%	63%	25%	-
Conference Room	43%	-	-	-
Corridor	-	24%	-	-
Office	32%	44%	35-45%	43%
Restroom	41%	-	-	-

Table 403: Lighting Controls – Energy Saving Estimates for Daylighting Sensors

Location	CNRC	NBI	So Cal Edison ⁶¹⁶	LRC
Classroom	16%	40%	-	-
Corridor	25%	-	-	-
Office	22%	35-40%	74%	24-59%
Grocery Stores	-	40%	-	-
Big Box Retail	-	60%	-	-

⁶¹² IES HB-9-2000. "Illuminating Engineering Society Lighting Handbook 9th Edition". 2000.

⁶¹³ Canada National Research Center, "Energy Savings from Photosensors and Occupant Sensors/Wall Switches". September 2009.

⁶¹⁴ New Buildings Institute. 2010. <u>https://newbuildings.org</u>.

⁶¹⁵ Lighting Research Center (LRC), Solid State Lighting Program. <u>https://www.lrc.rpi.edu/</u>

⁶¹⁶ Southern California Edison, "Energy Design Resources: Design Brief Lighting Controls". February 2000.

Lighting energy savings can be calculated using the following formula. The kWh savings for each combination of fixture type, fixture location, building type, and refrigeration type must be calculated separately:

$$kW_{savings} = \left(\frac{N_{fixt} \times W_{fixt}}{1000}\right) CF \times IEF_{D}$$

$$kWh_{savings} = \left(\frac{N_{fixt} \times W_{fixt}}{1000}\right) \times (1 - PAF) \times AOH \times IEF_{E}$$
(335)

Where:

 N_{fixt} = Number of fixtures

 W_{fixt} = Rated wattage of post-retrofit fixtures (Appendix E in TRM Volume 3)

- Note: If the fixture was retrofitted, use the installed fixture wattage; if fixture was not retrofitted, use the existing fixture wattage
- PAF = Stipulated power adjustment factor based on control type (Table 404)
- CF = Peak demand coincidence factor = 0.26^{617}
- AOH = Annual operating hours for specified building type (Table 410)
- IEF_D = Interactive effects factor for demand savings (Table 411)
- IEF_E = Interactive effects factor for energy savings (Table 411)

(336)

⁶¹⁷ RLW Analytics, "2005 Coincidence Factor Study," Connecticut Energy Conservation Management Board. January 4, 2007. Default value applicable to all building types. This coincidence factor is a combination of the savings factor and peak coincidence factor.

Control Type	Power Adjustment Factor (PAF)
No controls measures	1.00
Daylighting Control – Continuous Dimming	0.70
Daylighting Control – Multiple Step Dimming	0.80
Daylighting Control – ON/OFF (Indoor)	0.90
Daylighting Control – ON/OFF (Outdoor) 619	1.00
Occupancy Sensor	0.70
Occupancy Sensor w/ Daylighting Control – Continuous Dimming	0.60
Occupancy Sensor w/ Daylighting Control – Multiple Step Dimming	0.65
Occupancy Sensor w/ Daylighting Control – ON/OFF	0.65

Table 404: Lighting Controls – Power Adjustment Factors⁶¹⁸

⁶¹⁸ PAFs are adapted from ASHRAE Standard 90.1-1989, Table 6-3.

⁶¹⁹ ASHRAE 90.1-1989, Section 6.4.2.8 specifies that exterior lighting not intended for 24-hour continuous use shall be automatically switched by timer, photocell, or a combination of timer and photocell. This is consistent with current specifications in ASHRAE 90.1-2010, Section 9.4.1.3, which specifies that lighting for all exterior applications shall have automatic controls capable of turning off exterior lighting when sufficient daylight is available or when the lighting is not required during nighttime hours.

3.6.3 Lighting Efficiency

Measure Description

A variety of high-efficiency fixtures, ballasts and lamps exist in the market today, producing the same lighting level (in lumens) as their standard-efficiency counterparts while consuming less electricity. This measure provides energy and demand savings calculations for the replacement of commercial lighting equipment with energy efficient lamps or fixtures. The operating hours and demand factors for the different building types listed in this measure are based on a wide array of information available in the market.

Baseline & Efficiency Standard

The following sections explain the various codes, standards, and required processes to establish the applicability of the Lighting Efficiency savings calculation method.

State Commercial Energy Codes

Arkansas' state commercial energy code recognizes IECC 2009 and ASHRAE 90.1-2007⁶²⁰ for commercial structures. These standards specify the maximum lighting power densities (LPDs) by building type (building area method) and interior space type (space-by-space method). LPDs apply to all new construction and major renovation projects. The ASHRAE 90.1-2007 LPDs for various building types are outlined in Appendix F of TRM Volume 3. Agricultural lighting for animals will utilize recognized industry standards unique to the requirements of that animal to determine the LPD for the building housing those animals.

Per IECC 2009, buildings over 5,000 square feet are required to have one of three types of automatic shutoff lighting controls, as a minimum criterion, for each space⁶²¹. The simplest, least burdensome control mechanism of the three types listed is timer-based control. Some exceptions apply to this requirement. For most spaces in commercial buildings over 5,000 square feet, however, timer-based control should be considered the baseline for new construction.

High-Efficiency/Performance Linear Fluorescents

All installed 4-ft technologies must use electronic ballasts manufactured after November 2014⁶²² and high performance T8 lamps that are on the T8 Replacement Lamp⁶²³ qualified products list developed by the Consortium for Energy Efficiency (CEE) as published on its website. This is a requirement for all 4-ft T8 system projects.

If CEE does not have efficiency guidelines for a T8 system (such as for 8-foot, 3-foot, 2-foot, and U-bend T8 products), the product must have higher light output or reduced wattage than its standard equivalent product (minimum efficacy of 75 mean lumens per watt), while also providing a CRI (color rendition index)

⁶²⁰ Any references to any versions of this standard refer to the American National Standards Institute (ANSI) /American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE)/Illuminating Engineering Society of North America (IESNA) Standard 90.1

⁶²¹ 2009 International Energy Conservation Code (IECC), Section 505.2.2.2 Automatic lighting shutoff

⁶²² Changes to the DOE Federal standards for electronic ballasts effective November 2014 met both the CEE performance specification and the NEMA Premium requirements, so CEE discontinued their specification and qualifying product lists. A legacy ballast list from January 2015 is still available.

⁶²³ In March 2015, the CEE dropped the separate High Performance and Reduced Watt T8 lamp designations and product lists and created a single T8 Replacement Lamp qualified product list.

greater than 80, and an average rated life of 24,000 hours at 3 hours per start. In addition, 2-foot and 3-foot ballasts must also use electronic ballasts manufactured after November 2014.

Other high performance systems, including but not limited to T5 and LED systems, are allowed. T12s are no longer an eligible baseline technology for 4-foot, 8-foot, and U-tube lamps.

Federal Efficacy Standards

The Energy Independence and Security Act (EISA) of 2007 mandates minimum efficacy standards for general service incandescent lamps (GSILs), modified spectrum general service incandescent lamps, incandescent reflector lamps, fluorescent lamps and metal halide lamps.

Effective January 1, 2010, EISA increased minimum ballast efficacy factors and established pulse-start metal halides (PSMHs) as the new industry standard baseline for the metal halide technology (\leq 500 W). New construction projects must use PSMHs in metal halide applications.

Baseline wattages for GSILs should not exceed values specified by EISA. For convenience,

Table 405 provides the lumens and wattages required to meet EISA Tier 1 and Tier 2 standards for incandescent lamps.

Pre-EISA Incandescent Wattage	Rated Lumens	EISA Tier 1 Maximum Wattage	EISA Tier 2 Maximum Wattage
100	1490 - 2600	72	Watts = Lumens $/ 45$
75	1050 - 1489	53	Lumens/watt
60	750 - 1049	43	Where: Lumens = the
40	310 - 749	29	rated lumen output of the lamp

Table 405: New Maximum Wattages for General Service Incandescent Lamps, 2012-2014

The Energy Policy Act (EPAct) of 2005 and EISA of 2007 are two energy legislative rulings enacted to establish energy reduction targets for the United States. On July 14, 2009, the Department of Energy published a final rule for energy conservation standards for general service fluorescent lamps (GSFLs). These standards are shown in

Table 406. As a result of this rule, all GSFLs manufactured in the United States, or imported for sale into the United States on or after July 14, 2012 (three years from the ruling date) must meet new, more stringent efficacy standards (measured in lumens per watt, LPW).

Lamp Type	Nominal	Minimum Color	Minimum Average Lamp Efficacy
	Lamp Wattage	Rendering Index (CRI)	(Lumens/Watt, or LPW)
4-foot Medium	≥ 25W	69	92.4
Bi-Pin		45	88.7
2-foot U-Shaped	≥25W	69 45	85.0 83.0
8-foot Slimline	≥ 49W	69 45	97.0 93.0
8-foot High	All	69	92.0
Output		45	88.0

Table 406: Lighting Efficiency – Current Federal Efficiency Standards for GSFLs

Facilities with 4-foot and 8-foot T12s or with 2-foot U-Shaped T12s are still eligible to participate in lighting retrofit projects, but an assumed electronic T8 baseline should be used in place of the existing T12 equipment. These T12 fixtures will remain in the standard wattage table with the label "T12 (T8 baseline)" and will include adjusted wattages assumptions consistent with a T8 fixture with an equivalent length and lamp count. T12 fixtures not specified above will remain an eligible baseline technology.

T12 Length	Lamp Count	Revised Lamp Wattage	Revised System Wattage
48 inch-	1	32	31
	2	32	58
Std, HO,	3	32	85
and VHO	4	32	112
(4 feet)	6	32	170
	8	32	224
	1	59	69
96 inch-Std	2	59	110
(8 feet)	3	59	179
60/75W	4	59	219
	6	59	330
	8	59	438*
	1	86	101
96 inch-HO	2	86	160
and VHO	3	86	261
(8 feet)	4	86	319
95/110W	6	86	481
	8	86	638
	1	32	32
2 ft. U-Tube	2	32	60
	3	32	89
* 8 lamp fixture watt	age approximated by dou	ubling 4 lamp fixture wat	tage.
Key: HO = high outp	out, VHO = very high out	put	

Table 407: Adjusted Baseline Wattages for T12 Equipment

Fixture Qualification Process – High Performance and Reduced Wattage T-8 Equipment:

CEE developed and previously maintained energy specifications for High Performance and Reduced Wattage T8 equipment. As of November 14, 2014, the Federal Standard increased causing CEE to discontinue their ballast specification. A legacy qualification list for CEE high performance and reduced wattage T8 specifications can be found at:

- 1) <u>https://library.cee1.org/content/commercial-lighting-qualifying-products-lists</u> (High Performance products)
- 2) <u>https://library.cee1.org/content/commercial-lighting-qualifying-products-lists</u> (Reduced Wattage products)

CEE compiles a list of approved lamps and ballasts for T8 systems that are eligible for incentives for retrofits which is available for download on CEE's website at <u>http://library.cee1.org/content/commercial-lighting-qualifying-products-lists</u>.

For ballasts manufactured on or after November 14, 2014, refer to the NEMA Premium Electronic Ballast Program qualification list available at <u>http://www.nema.org/Technical/Pages/NEMA-Premium.aspx</u>.

Fixture Qualification Process – CFL and LED Products:

CFL and LED products must be pre-qualified under one of the following options:

- Product is on the ENERGY STAR® Qualified Product List or ENERGY STAR® Qualified Light Fixtures Product List (<u>http://www.energystar.gov</u>)
- Product is on the Northeast Energy Efficiency Partnerships (NEEP) DesignLights Consortium[™] (DLC) Qualified Products Listing (<u>www.designlights.org</u>)
- Product is on the Consortium for Energy Efficiency's (CEE) Commercial Lighting Qualifying Products List (<u>http://www.cee1.org/</u>)
- 4) Exceptions to the qualifying product requirements are allowed for unlisted lamps and fixtures that have already been submitted to one of the organizations for approval. If the lamp or fixture does not achieve approval within the AR DSM program year, however, then the lamp or fixture must immediately be withdrawn from the program. If withdrawn, savings may be claimed up to the point of withdrawal from the program. For Agricultural uses where the fixture is designed for animal use, if an LED bulb does not meet qualifying requirements, the bulb can be utilized if a thorough review of the bulb is conducted and verified by the program evaluator.

For LED Reflector Lamps. Please refer to the reflector baseline tables in the residential lighting section which rely on the same set of assumptions.

Input Wattages

Input wattages for pre-retrofit and qualifying fixtures are included in the Standard Fixture Wattage Table (Volume 3, Appendix E). This is a relatively comprehensive list of both old and new lighting technologies that could be expected for inclusion in a project. If there are fixtures identified that are not included in this table, those fixtures should be submitted to the IEM for review and incorporation into subsequent TRM updates. Interim approval may be made for certain fixtures at the discretion of the IEM. However, there may be eligible products that are not on the list. If a product is not on the list, then manufacturer's data should be reviewed prior to accepting the product into a program. LED products should be approved by DLC, CEE or ENERGY STAR® before being recognized as an eligible product.

Estimated Useful Life (EUL)

Table 408: Estimated Useful Life by Lamp Type

Lamp Type	EUL (years)	Source ⁶²⁴
Halogen	2	Based upon 5,000-hour manufacturer rated life and weighted- average 3,380 annual operating hours from Navigant U.S. Lighting Study. Rated life values assume the use of energy- efficient Halogen Infrared (IR) products.
High Intensity Discharge (HID)	16	Based upon 50,000 hour manufacturer rated life and weighted- average 3,205 annual operating hours from Navigant U.S. Lighting Study.
Integrated-Ballast Cold- Cathode Fluorescent Lamps (CCFL)	5	Based upon 25,000 hour manufacturer rated life and weighted- average 5,493 annual operating hours from Navigant U.S. Lighting Study.
Integrated-Ballast Compact Fluorescent Lamps (CFL)	2	Based upon 8,000 hour manufacturer rated life and weighted- average 3,253 annual operating hours from Navigant U.S. Lighting Study.
Linear LED Lamps ⁶²⁵	15	Based upon 50,200 hour manufacturer rated life and weighted- average 3,260 annual operating hours from Navigant U.S. Lighting Study. ⁶²⁶
LED Fixtures	15	Based upon 50,000 hour manufacturer rated life and weighted- average 3,260 annual operating hours from Navigant U.S. Lighting Study.
Linear Fluorescent Lamps (T5, T8)	9	Based upon 30,200 hour manufacturer rated life and weighted- average 3,211. ⁶²⁷
Linear Fluorescent Fixtures/Ballasts (T5, T8)	16	Based upon 50,000 hour manufacturer rated life and weighted- average 3,211.
Modular CFL and CCFL	16	Based upon 60,000 hour manufacturer rated life and weighted- average 3,251 annual operating hours from Navigant U.S. Lighting Study.
Screw-based LED Lamp	4	Based upon 15,000-hour manufacturer rated life and weighted- average 3,380 annual operating hours for halogen lamps from Navigant U.S. Lighting Study

⁶²⁴ Navigant Consulting, "U.S. Lighting Market Characterization, Volume I: National Lighting Inventory and Energy Consumption Estimate, Final Report." U.S. DOE. September 2002.

Calculation of Deemed Savings

New Construction (<5,000 sq.ft.) with no existing controls:

$$kW_{savings} = \left[\frac{SF \times LPD}{1000} - \sum \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000}\right)_{post}\right] \times CF \times IEF_D$$
(337)

$$kWh_{savings} = \left[\frac{SF \times LPD}{1000} - \sum \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000}\right)_{post}\right] \times AOH \times IEF_E$$
(338)

 $therms_{penalty} = kWh_{savings} \times IEF_G$

(339)

New Construction with code required controls:

$$kW_{savings} = \sum \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times CF \times (1 - CF_controls) \times IEF_D$$
(340)

$$kWh_{savings} = \sum \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times IEF_E \times AOH \times PAF$$
(341)

Where:

SF = Total affected square footage of the new construction facility

LPD = Maximum allowable power density by building type (W/ft²) (Appendix F Table F1-F4)

 $N_{fixt(i),post}$ = Post-retrofit # of fixtures of type i

 $W_{fixt(i),post}$ = Rated wattage of post-retrofit fixtures of type i (Appendix E)

1,000 = Conversion constant from watts to kilowatts

CF = Peak demand coincidence factor (Table 410)

⁶²⁵ Includes all lamp only replacements.

⁶²⁶ Linear LED lamp taken from average LED lamp lifetime of all LED lamps from CEE T8 Qualifying Products List as of April 2017. Annual operating hours from Navigant U.S. Lighting Study (See Footnote 504). https://library.cee1.org/content/commercial-lighting-qualifying-products-lists

⁶²⁷ Linear Fluorescent lamp life taken from average lamp lifetime of all fluorescent lamps from CEE T8 Qualifying Products List as of April 2017. Annual operating hours from Navigant U.S. Lighting Study (See Footnote 504). https://library.cee1.org/content/commercial-lighting-qualifying-products-lists

- $CF_{controls}$ = Controls peak demand coincidence factor = 0.26⁶²⁸
- PAF = Power adjustment factor for specified control type (Table 404)
- AOH = Annual operating hours for specified building type (Table 410)
- IEF_D = Interactive effects factor for demand savings, kW (Table 411)
- IEF_E = Interactive effects factor for energy savings, kWh (Table 411)
- IEF_G = Interactive effects factor for gas heating savings, therms (Table 412)

Retrofit with no existing controls:

$$kW_{savings} = \sum \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times CF \times IEF_D$$
(342)

$$kWh_{savings} = \sum \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times AOH \times IEF_E$$
(343)

$$therms_{penalty} = kWh_{savings} \times IEF_G$$

(344)

Retrofit with existing controls:

Note: For lighting systems with existing controls, no additional control savings should be claimed with the savings specified by the equations below.

$$kW_{savings} = \sum_{i} \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times CF \times (1 - CF_{controls})$$

$$\times IEF_{D}$$
(345)

$$kWh_{savings} = \sum \left[\left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{pre} - \left(N_{fixt(i)} \times \frac{W_{fixt(i)}}{1000} \right)_{post} \right] \times IEF_E \times AOH \times PAF$$
(346)

$$therms_{penalty} = kWh_{savings} \times IEF_G$$
(347)

Where:

 $N_{fixt(i),pre}$ = Pre-retrofit number of fixtures of type i

⁶²⁸ RLW Analytics, "2005 Coincidence Factor Study," Connecticut Energy Conservation Management Board. January 4, 2007. Default value applicable to all building types. This coincidence factor is a combination of the savings factor and peak coincidence factor.

 $N_{fixt(i),post}$ = Post-retrofit number of fixtures of type i

 $W_{fixt(i),pre}$ = Rated wattage of pre-retrofit fixtures of type i (Volume 3 Appendix E)

 $W_{fixt(i),post}$ = Rated wattage of post-retrofit fixtures of type i (Volume 3, Appendix E)

1,000 = Conversion constant from watts to kilowatts

CF = Peak demand coincidence factor (Table 410)

 $CF_{controls}$ = Controls peak demand coincidence factor = 0.26⁶²⁹

AOH = Annual operating hours for specified building type (Table 410)

PAF = Power adjustment factor for specified control type (Table 404)

 IEF_D = Interactive effects factor for demand savings, kW (Table 411)

 IEF_E = Interactive effects factor for energy savings, kWh (Table 411)

 IEF_G = Interactive effects factor for gas heating savings, therms (Table 412)

Operating Hours & Coincidence Factors (CF)

If the annual operating hours and/or CF for the specified building are not known, use the deemed average annual hours of operation and/or peak demand CF from Table 410.

Table 409 summarizes the general transferability ratings for the lighting end-use. Due to the low variability of schedules and weather for both indoor and outdoor lighting, there is a high degree of data transferability across regions and it is appropriate to assume very similar annual operating hours across different regions.⁶³⁰ To the extent that utility system peak periods are similar, it is also appropriate to assume very similar peak CFs across different regions.

 Table 409: Transferability of Data across Geographic Regions

Analysis Group	ScheduleVariability	WeatherVariability	TransferabilityRating
Lighting – Exterior	Low	Low	High
Lighting – Interior	Low	Low	High

Operating hours are the number of hours that a particular equipment type is in use over the course of a year. For the purpose of these recommendations, raw building lighting operating hour data were adjusted by Frontier Associates according to the percentage of wattage consumed by each space within a building. Subsequently, weighted average operating hours (AOH) were developed for a range of building types.

For facilities with multiple building types (i.e. office, warehouse, etc.), the building type and corresponding

⁶²⁹ RLW Analytics, "2005 Coincidence Factor Study," Connecticut Energy Conservation Management Board. January 4, 2007. Default value applicable to all building types. This coincidence factor is a combination of the savings factor and peak coincidence factor.

⁶³⁰ KEMA. End-Use Load Data Update Project Final Report: Phase 1: Cataloguing Available End-Use and Efficiency Measure Load Data. 2009. Prepared for the Northern Power and Conservation Council and Northeast Energy Efficiency Partnerships, November.

operating hours should be determined based on the space type that comprises the largest area of square footage at the facility. For example, if a building comprises of 80 percent warehouse space and 20 percent office space, the operating hours for a warehouse building type would be used for the energy savings calculations.

The operating hours specified below are at the building level. This is due to the sources referenced for the hours of use. The sources aggregated the hours of use at the building level, not space level. Thus, when using the values from Table 410, they should be applied to the main building type end use. For example, a warehouse that has a small portion of office space should still use the Warehouse building type from Table 410. There may be some exceptions, such as a church combined with a school or a former warehouse that was sub-divided for different customers, which should be determined on a case by case basis.

However, there are two "building-types" listed which are not actually building types: Exit Signs and Outdoor lighting. These are specific end uses which can be combined with the other building level hours of use specified in the table. For example, an office building that fully retrofits all of its interior lights, including exit signs, and the exterior façade and parking lot lights. In this case, three different hours of use could be applied. The exit signs only would use the exit sign hours. The remaining interior lighting fixtures would use the Office building type. The exterior parking lot and façade lighting would use the Outdoor hours.

The CF for lighting is the ratio of the lighting kW demand during the utility's peak period (defined in Appendix G) to the connected lighting kW ($\sum(N_i xW_i/1000)$) as defined above. Other issues are automatically accounted for, such as diversity and load factor. A portion of the CF values were arrived at through secondary research. In the cases where acceptable values were not available through other sources, Frontier Associates calculated values comprised of CF and building operating hour data available for the types of building spaces that would likely be found within that building type.

Building Type	АОН	CF
All Building Types: Exit Signs*	8,760	1.00
All Building Types: Outdoor*	3,996	0.00
Education: k-12, w/o Summer Session	2,777	0.47
Education: College, University, Vocational, Day Care, and K-12 w/ Summer Session	3,577	0.69
Food Sales: Non 24-hour Supermarket/Retail	4,706	0.95
Food Sales: 24-hour Supermarket/Retail	6,900	0.95
Food Service: Fast Food	6,188	0.81
Food Service: Sit-down Restaurant	4,368	0.81
Health Care: Out-patient	3,386	0.77

Table 410: Annual Operating Hours (AOH) and Coincidence Factors (CF)⁶³¹

⁶³¹ Unless otherwise noted, deemed AOH and CF values are based on Frontier Associates on behalf of Electric Utility Marketing Managers of Texas (EUMMOT). "Petition to Revise Existing Measurement & Verification Guidelines for Lighting Measures for Energy Efficiency Programs: Docket No. 39146." Public Utility Commission of Texas. Approved June 6, 2011. <u>https://interchange.puc.texas.gov/Search/Filings?ControlNumber=39146</u>

Building Type	АОН	CF
Health Care: In-patient	5,730	0.78
Lodging (Hotel/Motel/Dorm): Common Areas	6,630	0.82
Lodging (Hotel/Motel/Dorm): Rooms	3,055	0.25
Manufacturing – 1 and 2 Shift ⁶³²	4,547	0.64
Manufacturing – 3 Shift	6,631633	0.89634
Multi-family Housing: Common Areas	4,772	0.87
Nursing & Resident Care	4,271	0.78
Office ^{635,636}	3,227	0.54
Outdoor Athletic Fields	503 ⁶³⁷	0.00
Parking Structure	7,884	1.00
Public Assembly	2,638	0.56
Public Order and Safety	3,472	0.75
Religious	1,824	0.53
Retail: Excluding Malls & Strip Centers	3,668	0.69638
Retail: Enclosed Mall	4,813	0.93
Retail: Strip Shopping & Non-enclosed Mall	3,965	0.90
Service (Excluding Food)	3,406	0.90
Warehouse: Non-refrigerated	3,501	0.77
Warehouse: Refrigerated	3,798	0.84

*Note that exit signs and outdoor lighting can be used across different building types (e.g., an office building that does a full retrofit would use the AOH and CF for offices for all space types except exit signs and outdoor lighting, which could use the specific AOH and CF for those space types noted in this table).

⁶³³ UI and CL&P Program Savings Documentation for 2013 Program Year, United Illuminating Company. October 2012.

637 Determined from literature review of past projects completed in various jurisdictions throughout the United States

⁶³⁸ The Cadmus Group, Inc, "*Entergy Energy-Efficiency Portfolio Evaluation Report 2014 Program Year*". April 1, 2015. Annual operating hours based on metering at a total of 35 manufacturing and retail buildings in Arkansas.

⁶³² The Cadmus Group, Inc, "Entergy Energy-Efficiency Portfolio Evaluation Report 2014 Program Year". April 1, 2015. Annual operating hours based on metering at a total of 35 manufacturing and retail buildings in Arkansas.

⁶³⁴ DEER 2011 report. Average of coincidence factor for Manufacturing – Bio-Tech and Manufacturing – Light building types.

⁶³⁵ The Cadmus Group, Inc, "*Entergy Energy-Efficiency Portfolio Evaluation Report 2013 Program Year*". March 14, 2014. Annual operating hours based on metering 139 circuits at 18 office buildings in Arkansas.

⁶³⁶ The Cadmus Group, Inc, "*Entergy Energy-Efficiency Portfolio Evaluation Report 2014 Program Year*". April 1, 2015. Annual operating hours based on metering at an additional nine office buildings in Arkansas.

Interactive Effects

Lighting in air conditioned and refrigerated spaces adds heat to the space, increasing the cooling requirement during the cooling season and decreasing the heating requirement during the heating season. The decrease in waste heat from lighting mitigates these effects, thus reducing electricity used for cooling and increasing electricity or gas used for heating.

Deemed interactive effects factors for both demand and energy savings are presented in Table 411 and Table 412. These factors represent the percentage increase or decrease in energy savings for the HVAC system's electric and gas load attributed to the heat dissipated by the more efficient lighting system. For example, a factor of 1.20 indicates a 20% savings. For the gas heating penalty, the factor of -0.008 therms/kWh means for every 1,000 kWh saved from efficient lighting an additional 8 therms of gas is needed for heating.

Note that the interactive effects for demand (kW), energy (kWh) and natural gas (therms) should be calculated for all programs and installations of lamps covered by this measure, including single fuel (electric-only) programs.⁶³⁹⁶⁴⁰

A detailed description of the derivation of interactive effects is available in Volume 3, Appendix I.

Table 411: Comm	ercial	Conditioned	and l	Refrigerated	Space	Interactive	Effects	Factors,	Electric
Energy and Dema	nd								

Building Type	Temperature Description	Heating Type	IEFD	IEF _E
	Heating only	Electric Resistance	1.00	0.78
		Gas		1.09
All building	Air Conditioned Space –	Electric Resistance	1.20	0.87
types	Normal Temps. (>41°F)	Heat Pump	1.20	1.02
(Except Outdoor &		Heating Unknown ⁶⁴¹		0.98
Parking Structure)	Refrigerated Space – Med. Temps. (33-41°F)	All	1.25	1.25
	Refrigerated Space – Low Temps. (-10-10°F)	All	1.30	1.30

Table 412: Commercial Conditioned Space Gas Heating Penalty

Building Type	Heating Type	IEF _G (Therms/kWh)
All building types (Except Outdoor & Parking Structure)	Gas	-0.008

⁶³⁹ Note the exception to this would be for poultry house applications, which do not require interactive effects since the waste heat generated by poultry will differ significantly from the assumptions shown in Appendix I.

⁶⁴⁰ Evaluators should provide calculations showing both positive and negative NEBs until this issue has been resolved with the PWC and/or clarified by the APSC.

⁶⁴¹ These values should be used for programs where heat type cannot be determined.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

	Heating Unknown ⁶⁴²	-0.004
--	--------------------------------	--------

⁶⁴² Ibid.

3.6.4 Indoor Horticultural Lighting

Measure Description

This measure involves the installation of high efficacy LED lighting for indoor controlled-environment horticulture spaces. LED grow lights must meet the Design Lights Consortium (DLC) Horticultural Technical Specification 3.0 or later.

The measure is limited to facilities not using central plant systems (i.e., chilled water systems, water source heat pump systems or large multi-zone direct expansion systems with four-pipe air handling units). The eligible facilities must have packaged unitary or split systems (including mini-split heat pumps) for cooling flower, vegetative or other cultivation areas with either in-room standalone dehumidifiers, electric or thermal reheat coils, or hot gas reheat coils selected to provide all the required dehumidification.

Baseline & Efficiency Standard

The baseline equipment is the industry established "grow light" technology typically found for specific horticulture crop types. HID fixtures are assumed for flowering and vegetative crops. T5 high-output fixtures are assumed for seedling and microgreen crops.

The efficient equipment is a qualifying Design Lights Consortium (DLC) horticultural lighting fixture that meets or exceeds a photosynthetic photon efficacy (PPE) of no less than 2.3 micromoles per joule (μ mol/J).

Сгор Туре	Baseline Technology Type	Baseline PPE (µmol/J) ⁶⁴³
Flowering Crops (Tomatoes and Peppers)	High Pressure Sodium	1.7
Vegetative Growth (including Medical Cannabis)	Metal Halide	1.25 ⁶⁴⁴
Microgreens	T5 HO Fixture	1.0 ⁶⁴⁵
Propagation	T5 HO Fixture	1.0 ⁶⁴⁶
Medical Cannabis – Flowering Stage	High Pressure Sodium	1.7

 Table 413: Baseline Fixture Specifications by Crop Type

⁶⁴³ Erik Runkle and Bruce Bugbee "Plant Lighting Efficiency and Efficacy: μmols per joule." Accessed 8/1/2024.

⁶⁴⁴ Jacob A. Nelson, Bruce Bugbee, "Economic Analysis of Greenhouse Lighting: Light Emitting Diodes vs. High Intensity Discharge Fixtures." Utah State University. Accessed 8/1/2024.

 ⁶⁴⁵ D.S. de Villiers, L.D. Albright, and R. Tuck, "Next Generation, Energy Efficient, Uniform Supplemental Lighting for Closed System Plant Production." International Society for Horticultural Science. Accessed 8/1/2024.
 ⁶⁴⁶ Ibid.

Estimated Useful Life (EUL)

The measure life is 7.4 years for vertical farming, 9.6 years for high intensity sole source, and 25 for supplemental greenhouse applications. This is based on 50,000 hours life for LED-based Horticultural Lighting requirement by DLC and the annual operating hours described below.⁶⁴⁷

Table 414 shows the daily and annual operating hours by crop type.

Сгор Туре	Hours of Operation per Day ⁶⁴⁸	Annual Operating Hours ⁶⁴⁹
Flowering Crops (Tomatoes and Peppers)	12	4,200
Vegetative Growth (including Medical Cannabis)	18	6,300
Microgreens	18	6,300
Propagation	12	4,200
Medical Cannabis – Flowering Stage	12	4,200

Table 414: Annual Operating Hours (AOH) by Crop Type

Calculation of Deemed Savings

$$kW_{savings} = \left[\frac{PPF_{Total,i}}{PPE_{Base,i} \times 1000} - kW_{EE,i}\right] \times CF \times IEF_D$$
(348)

$$PPF_{Total,i} = Quantity_{ee} \times PPF_{per\ fixture}$$

(349)

$$kWh_{savings} = \left[\frac{PPF_{Total,i}}{PPE_{Base,i} \times 1000} - kW_{EE,i}\right] \times AOH \times IEF_E$$
(350)

⁶⁴⁷ https://www.designlights.org/default/assets/File/Horticultural/DLC_Hort-V2-0-Interim-Application-Period-Guidance_V2%206_4_21.pdf

⁶⁴⁸ Sole-Source Lighting of Plants. Technically Speaking by Erik Runkle. Michigan State University Extension. September 2017. Accessed 8/2/24.

⁶⁴⁹ Annual hours of operation were calculated by multiplying hours per day by 350 operating days per year. Assuming 5 crop cycles with 3 days of downtime between each cycle.

Where:

- $PPF_{perfixture}$ = Photosynthetic photon flux output of the installed efficient fixtures for a specific growth phase, i, in units of micromoles per second (µmol/s) from DLC qualifying products list (QPL).
- PPE_{base} = Total photosynthetic- photon efficacy of the assumed baseline fixture for a specific growth phase, i, in units of micromoles per joule (µmol/J), found in Table 413.
- kW_{ee} = Rated wattage of installed efficient fixtures for growth phase *i*.
- AOH = Annual operating hours, see 3.6.3 Lighting Efficiency

Table 414.

- i = An indicator used to separate growth phases or different plants.
- CF = Peak demand coincidence factor, use AOH (
- Table 414) divided by 8760.
- IEF_D = Interactive effects factor for demand savings, kW (see 3.6.3 Lighting Efficiency, Table 411)
- IEF_E = Interactive effects factor for energy savings, kWh (see 3.6.3 Lighting Efficiency, Table 411)

3.7 Food Service Equipment 3.7.1 Commercial Griddles

Measure Description

This measure applies to ENERGY STAR® or its equivalent natural gas and electric commercial griddles in retrofit and new construction applications. This appliance is designed for cooking food in oil or its own juices by direct contact with either a flat, smooth, hot surface or a hot channeled cooking surface where plate temperature is thermostatically controlled.

Energy-efficient commercial electric griddles reduce energy consumption primarily through application of advanced controls and improved temperature uniformity. Energy efficient commercial gas griddles reduce energy consumption primarily through advanced burner design and controls.

Baseline & Efficiency Standard

Key parameters for defining griddle efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. There are currently no federal minimum standards for Commercial Griddles, however, the American Society of Testing and Materials (ASTM) publishes Test Methods⁶⁵⁰ that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

ENERGY STAR® efficiency requirements apply to single and double sided griddles. The ENERGY STAR® criteria should be reviewed on an annual basis to reflect the latest requirements.

Performance Parameters	Electric Griddles	Gas Griddles
Heavy-Load Cooking Energy Efficiency	>= 70%	>= 38%
Idle Energy Rate	≤ 320 watts per ft ²	<= 2,650 Btu/h per ft ²

Estimated Useful Life (EUL)

According to DEER 2008, commercial griddles are assigned an estimated useful life (EUL) of 12 years.⁶⁵²

⁶⁵⁰ The industry standard for energy use and cooking performance of griddles are ASTM F1275-03: Standard Test Method for the Performance of Griddles and ASTM F1605-01: Standard Test Method for the Performance of Double-Sided Griddles

⁶⁵¹ ENERGY STAR® Commercial Griddles Program Requirements Version 1.1, effective May 2009 for gas griddles and effective January 1, 2011 for electric.

⁶⁵² Database for Energy Efficient Resources, 2008, <u>https://cedars.sound-data.com/deer-resources/deer-versions/archive/</u>

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency griddle as compared with an ENERGY STAR® rated griddle.

For electric savings,

$$\Delta kWh = kWh_{base} - kWh_{eff}$$
(351)

$$kWh_{(base or eff)} = kWh_{cooking} + kWh_{idle} + kWh_{prehe}$$

(352)

$$kWh_{cooking} = LB_{food} \times \frac{E_{food}}{CookEff} \times Days$$

(353)

$$kWh_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB_{food}}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(354)

$$kWh_{prehe} = PreheatEnergy \times Days$$

For gas savings,

$$\Delta Btu = Btu_{base} - Btu_{eff}$$
(356)

$$\Delta Therms = \frac{\Delta Btu}{100,000}$$

(357)

(355)

$$Btu_{(base \ or \ eff)} = Btu_{cooking} + Btu_{idle} + Btu_{prehe}$$

(358)

$$Btu_{cooking} = LB_{food} \times \frac{E_{food}}{CookEff} \times Days$$

(359)

$$Btu_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB_{food}}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(360)

$$Btu_{prehe} = PreheatEnergy \times Days$$
(361)

Key parameters used to compute savings are defined in Table 416.

Parameter	Description	Value	Source
hours _{daily}	Daily Operating Hours	12 hours	FSTC
PreheatTime	Time to Preheat (min)	15 min	FSTC
E _{food}	ASTM defined Energy to Food	0.139 kWh/lb, 475 Btu/lb	FSTC
Days	Number of days of operation	365 days	FSTC
CookEff	Cooking energy efficiency (%)		FSTC,
IdleEnergy	Idle energy rate (kW), (Btu/h)	For electric, see	ENERGY STAR®
Capacity	Production capacity (lbs./hr)	Table 417 For gas, see	FSTC
PreheatEnergy	kWh/day, Btu/day	Table 418	FSTC
LB _{food}	Food cooked per day (lb/day)		FSTC

Table 416: Energy Consum	ption Related Parameter	rs for Commercial Griddles ⁶⁵³

General assumptions used for deriving deemed electric and gas savings are values are taken from the Food Service Technology Center (FSTC) work papers.⁶⁵⁴ These deemed values assume that the griddles are 3 x 2 feet in size. Parameters in the table are per linear foot, with an assumed depth of 2 feet.

Parameter	Baseline Electric Griddles	Efficient Electric Griddles
Preheat Energy (kWh/ft.)	1.33	0.67
Idle Energy Rate (kW/ft.)	0.80	0.64
Cooking Energy Efficiency (%)	65%	Use actual
Production Capacity (lbs./h/ft.)	11.7	Use actual
Lbs. of food cooked/day/ft.	33.33	33.33

⁶⁵³ Assumptions based on PG&E Commercial Griddles Work Paper developed by FSTC, May 22, 2012.

⁶⁵⁴ FSTC food service equipment work papers submitted to CPUC for Energy Efficiency 2013-2014 Portfolio; document titled EnergyEfficiency2013-2014-Portfolio_Test_PGE_20120702_242194.zip

Parameter	Baseline Gas Griddles	Efficient Gas Griddles
Preheat Energy (Btu/ft.)	7,000	5,000
Idle Rate (Btu/hr/ft.)	7,000	Use actual
Cooking Efficiency (%)	32%	Use actual
Production Capacity (lbs./h/ft.)	8.33	Use actual
Lbs. of food cooked/day/ft.	33.33	33.33

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \frac{\Delta kWh}{HOU} \times CF \tag{362}$$

Where:

 $\Delta kWh =$ Annual energy savings (kWh)

HOU = Annual hours of use = 365 x 12 = 4380 hours

 0.84^{655} = Coincidence Factor (*CF*)

⁶⁵⁵ Coincidence factors utilized in other jurisdictions for Commercial Griddles vary from 0.84 to 1.0. The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

3.7.2 Convection Ovens

Measure Description

This section applies to electric and gas convection ovens. This equipment consists of a fully enclosed, insulated chamber that heats food by forcing hot dry air over the surface of the food product. High efficiency convection ovens exhibit better baking uniformity and higher production capacities while also including high-quality components and controls.

Estimated Useful Life (EUL)

According to the California Database of Energy Efficiency Resources (DEER 2008), commercial convection ovens are assigned an estimated useful life (EUL) of 12 years.⁶⁵⁶

Baseline & Efficiency Standard

Efficient convection ovens are defined by ENERGY STAR® or its equivalent and apply to electric full-size and half-size convection ovens and gas full-size convection ovens. The baseline is a standard efficiency convection oven.

Table 419: ENERGY STAR® Criteria for Electric Convection Ovens⁶⁵⁷

	Half Size Fleetric Orong	Full Size Electric Ovens	
Performance Parameters	Half Size Electric Ovens	< 5 Pans	≥5 Pans
Heavy-Load Cooking Energy Efficiency	≥ 71%	2	276%
Idle Energy Rate	\leq 1.0 kW	$\leq 1.0 \text{ kW}$	\leq 1.4 kW

Table 420: ENERGY STAR® Criteria for Gas Convection Ovens⁶⁵⁸

Performance Parameters	Full Size Gas Ovens
Heavy-Load Cooking Energy Efficiency	\geq 49%
Idle Energy Rate	<= 9,500 Btu/h

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency convection oven as compared with an ENERGY STAR® rated convection oven.

For electric savings,

$$\Delta kWh = kWh_{base} - kWh_{eff}$$

(363)

658 Ibid.

3.7.2 Convection Ovens

⁶⁵⁶ Database for Energy Efficient Resources, 2008, <u>https://cedars.sound-data.com/deer-resources/deer-versions/archive/</u>

⁶⁵⁷ ENERGY STAR® Program Requirements Product Specification for Commercial Ovens, Eligibility Criteria <u>Version</u> <u>3.0</u>, effective January 12, 2023

$$kWh_{(base or eff)} = kWh_{cooking} + kWh_{idle} + kWh_{prehe}$$

(364)

$$kWh_{cooking} = LB \times \frac{E_{food}}{CookEff} \times Days$$
(365)

$$kWh_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(366)

$$kWh_{preheat} = PreheatEnergy \times Days$$

(367)

For gas savings,

$$\Delta B t u = B t u_{base} - B t u_{eff}$$

$$\Delta T herms = \Delta B t u / 100,000$$
(368)

(369)

$$Btu_{(base \ or \ eff)} = Btu_{cooking} + Btu_{idle} + Btu_{prehe}$$

. .

(370)

$$Btu_{cooking} = LB \times \frac{E_{food}}{CookEff} \times Days$$

(371)

$$Btu_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(372)

$$Btu_{preheat} = PreheatEnergy \times Days$$

(373)

General assumptions in the tables below are from the ENERGY STAR® Commercial Kitchen Equipment Savings Calculator.⁶⁵⁹

⁶⁵⁹ ENERGY STAR® Commercial Food Service Calculator, dated 03-02-2021

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

	Half-Size Electric Ovens		Fully Size Electric Ovens	
Parameter	Baseline Model	Efficient Model	Baseline Model	Efficient Model
Preheat Energy (kWh/day)	0.9	0.7	1.6	1.4
Idle Energy Rate (kW)	1.03	Use actual	2.0	Use actual
Cooking Energy Efficiency (%)	68%	Use actual	65%	Use actual
Production Capacity (lbs./hour)	45	Use actual	90	Use actual
Hours _{daily}	12	12	12	12
Days	365	365	365	365
Preheat Time (min)	9	8	9	9
Lbs. of food cooked/day	61	61	122	122
Efood (kWh/lb)	0.0732	0.0732	0.0732	0.0732

Table 421: Baseline and Efficient Assumptions for Electric Convection Ovens

Table 422: Baseline and Efficient Assumptions for Full-Size Gas Convection Ovens

	Full-Size Gas Ovens		
Parameter	Baseline Model	Efficient Model	
Preheat Energy (Btu/day)	13,000	9,500	
Idle Rate (Btu/h)	15,100	Use actual	
Cooking Efficiency (%)	44%	Use actual	
Production Capacity (lbs./hour)	83	Use actual	
Preheat Time (min)	12	11	
Lbs. of food Cooked/Day	100	100	
Efood (Btu/lb)	250	250	

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \frac{\Delta kWh}{HOU} \times CF \tag{374}$$

Where:

 $\Delta kWh =$ Annual energy savings (kWh)

HOU= Annual hours of use = 365 x 12 = 4,380 hours ⁶⁶⁰

⁶⁶⁰ ENERGY STAR® Commercial Kitchen Equipment Savings Calculator – Convection Ovens assumes an operating time of 12 hours.

CF = Coincidence Factor = 0.84 ⁶⁶¹

⁶⁶¹ KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

3.7.3 Commercial Conveyor Ovens

Measure Description

This section applies to high efficiency gas conveyor ovens installed in commercial kitchens with conveyor widths greater than 25 inches. This equipment is available in four different heating processes; infrared, natural convection with a ceramic baking hearth, forced convection or air impingement, or a combination of infrared and forced convection. They are used to bake or roast a wide variety of products including pizza, meats, breads, and pastries.

Baseline & Efficiency Standard

There are currently no federal minimum standards for Commercial Conveyor Ovens, however, the American Society of Testing and Materials (ASTM) publishes Test Methods⁶⁶² that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

Baseline and efficient model information are shown next.⁶⁶³

Performance Parameters	Gas Conveyor Oven Size >25" wide		
Baseline Model	Baseline Model	Efficient Model Criteria	
Heavy-Load Cooking Energy Efficiency	30%	≥ 46%	
Idle Energy Rate	55,000 Btu/h	<= 40,000 Btu/h	

Estimated Useful Life (EUL)

Commercial conveyor ovens are assigned an estimated useful life (EUL) of 12 years.

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency conveyor oven as compared with a high efficient conveyor oven.

For gas savings,

$$\Delta Btu = Btu_{base} - Btu_{eff}$$
(375)

$$\Delta Therms = \Delta Btu/100,000$$

(376)

$$Btu_{(base \ or \ eff)} = Btu_{cooking} + Btu_{idle} + Btu_{preheat}$$

⁶⁶² The industry standard for energy use and cooking performance of conveyor ovens is ASTM Standard Test Method for the Performance of Conveyor Ovens (F1817).

⁶⁶³ Analysis conducted in October 2019, results presented in the PG&E Commercial Conveyor Ovens Work Paper submitted to CPUC titled "PGECOFST117 R6 Commercial Conveyor Oven Recommendation Revisions Expansion 10/21/19 update from 12/28/18"

(377)

$$Btu_{cooking} = nPizzas \times \frac{E_{food}}{CookEff} \times Days$$

(378)

Btu_{idle}

 $Idle \ Energy \times (hours_{daily} - nPizzas/Capacity - (nP \times Preheat \ Time)) \times \frac{1}{60} \times Days$ (379)

 $Btu_{preheat} = nP \times Preheat Energy \times Days$

(380)

Where:

 E_{food} = ASTM defined Energy to Food = 190 Btu/pizza

Cook Eff = Heavy Load Cooking Efficiency

Days = Operating Day per Year = 365 days/yr

nPizzas = Pizzas cooked/day = assume 250

Capacity = Number of pizzas/hour

60 = Minutes to Hours

Idle Energy = Idle Energy Rate (Btu/h)

 $hours_{daily}$ = Daily operating hours, deemed at 12 hours

Preheat Time = Time to preheat (min) = 15 min

Preheat Energy = Energy to preheat conveyor oven

nP = Number of Preheats = assume 1 based on FSTC research

	>25" wide		
Parameter	Baseline	Efficient	
Preheat Energy (Btu/day)	35,000	21,000	
Idle Energy Rate (Btu/h)	55,000	Use actual	
Cooking Energy Efficiency (%)	30%	Use actual	
Production Capacity (pizzas/hr)	150	208	
Number of Pizzas cooked/day	250	250	

Table 424: Baseline and Efficient Assumptions⁶⁶⁴ for Gas Conveyor Ovens at >25" Wide

⁶⁶⁴ Assumptions based on PG&E Commercial Rack Ovens Work Paper updated in October 2019.

3.7.4 Rack Ovens

Measure Description

This section applies to gas fired rack ovens in single rack or double rack configurations installed in commercial kitchens.

Baseline & Efficiency Standard

There are currently no federal minimum standards for Commercial Rack Ovens, however, the American Society of Testing and Materials (ASTM) publishes Test Methods⁶⁶⁵ that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

The efficient case is defined by ENERGY STAR of its equivalent and apply to gas single rack and double ovens. The baseline and high efficiency parameters for single rack and double rack ovens are defined below.

Table 425: Baseline and ENERGY STAR Criteria⁶⁶⁶ for Gas Single Rack Ovens

Performance Parameters	Baseline Model	Efficient Model Criteria
Heavy-Load Cooking Energy Efficiency	30%	\geq 48%
Idle Energy Rate	43,000 Btu/h	<= 25,000 Btu/h

Table 426: Baseline and ENERGY STAR Criteria⁶⁶⁷ for Gas Double Rack Ovens

Performance Parameters	Baseline Model	Efficient Model Criteria
Heavy-Load Cooking Energy Efficiency	30%	≥ 52%
Idle Energy Rate	65,000 Btu/h	<= 30,000 Btu/h

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency rack oven as compared with a high efficiency rack oven.

For gas savings,

$$\Delta Btu = Btu_{base} - Btu_{eff}$$

(381)

$$\Delta Therms = \frac{\Delta Btu}{100000}$$

(382)

⁶⁶⁵ The industry standard for energy use and cooking performance of rack ovens is ASTM Standard Test Method for the Performance of Commercial Rack Ovens (F2093).

⁶⁶⁶ Efficient criteria from ENERGY STAR® Commercial Ovens Specification Version 3.0, January 12, 2023. Baseline parameters from ENERGY STAR® Commercial Kitchen Equipment Calculator, 03-02-2021.

⁶⁶⁷ ibid.

$$Btu_{(base \ or \ eff)} = Btu_{cooking} + Btu_{idle} + Btu_{preheat}$$

(383)

$$Btu_{cooking} = LB \times \frac{E_{food}}{CookEff} \times Days$$

(384)

$$Btu_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(385)

$$Btu_{preheat} = nP \times PreheatEnergy \times Days$$
(386)

Where:

 $E_{food} = \text{ASTM}$ defined Energy to Food = 235 Btu/lb

Cook Eff = Heavy Load Cooking Efficiency

Days = Operating Day per Year = 365 days/yr.

LB = lbs. of food cooked a day = assume 1,200(double rack), 600 (single rack)

Capacity = lbs. per hour

IdleEnergy = Idle energy rate (Btu/h)

 $hours_{daily}$ = Daily operating hours, deemed at 12 hours

nP = Number of Preheats = assume 1 based on FSTC research

Preheat Time = Time to preheat (min) = 20 min

PreheatEnergy = Energy to preheat rack oven

Table 427: Baseline and Efficient Assumptions⁶⁶⁸ for Gas Single and Double Rack Ovens

	Singl	e Rack	Double Rack	
Parameter	Baseline	Efficient	Baseline	Efficient
Preheat Energy (Btu/day)	59,000	46,200	90,000	73,000
Idle Energy Rate (Btu/h)	43,000	Use actual	65,000	Use actual
Cooking Energy Efficiency (%)	30%	Use actual	30%	Use actual
Production Capacity (lbs./hr)	130	Use actual	250	Use actual
Lbs. of food cooked/day	600	600	1,200	1,200

⁶⁶⁸ Assumptions based on PG&E Commercial Rack Ovens Work Paper developed by FSTC, June 5, 2012 as well as FSTC Life Cycle Cost Calculator.

3.7.5 Combination Ovens

Baseline & Efficiency Standard

There are currently no federal minimum standards for Commercial Combination Ovens, however, the American Society of Testing and Materials (ASTM) publishes Test Methods⁶⁶⁹ that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

Efficient combination ovens are defined by ENERGY STAR® and apply to both electric and gas ovens.

Combination ovens combines the function of hot air convection (oven mode), saturated and superheated steam heating (steam mode), and combination convection/steam mode for moist heating, to perform steaming, baking, roasting, rethermalizing, and proofing of various food products.

Table 428: ENERGY STAR Version 3.0 Requirements for Electric and Gas Combination Ovens by Pan Capacity (P)

Mode	Idle Rate	Cooking Efficiency (%)					
	Gas, where $P \ge 6$						
Steam Mode $\leq 200P + 6,511$ Btu/h $\geq 41\%$							
Convection Mode $\leq 140P + 3,800 Btu/h$		≥ 57%					
	Electric, whe	$ere P is \ge 5 and \le 20$					
Steam Mode	$\leq 0.133P + 0.64 \text{ kW}$	≥ 55%					
Convection Mode	$\leq 0.083P + 0.35 \text{ kW}$	≥ 78%					
	Electric,	where P is < 5					
Steam Mode $\leq 0.60P$ $\geq 51\%$		≥ 51%					
Convection Mode	$\leq 0.05P + 0.55 \text{ kW}$	≥ 70%					

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency combination oven as compared with a high efficiency combination oven.

⁶⁶⁹ The industry standard for energy use and cooking performance of combination ovens is ASTM Standard Test Method for Enhanced Performance of Combination Ovens in Various Modes (F2861).

For electric savings,

$$\Delta kWh = kWh_{total,base} - kWh_{total,eff}$$
(387)

$$kWh_{(total,base or total,eff)} = kWh_{oven} + kWh_{steam} + kWh_{preheat}$$

(388)

$$kWh_{(oven or steam)} = kWh_{cooking} + kWh_{idle}$$

(389)

$$kWh_{cooking (oven or steam)} = LB_{oven or steam} \times \frac{E_{food}}{CookEff} \times Days$$
(390)

Where:

$$LB_{oven}$$
 = LB \times (1-% Steam) and LB_{steam} = LB \times % Steam

(391)

 $kWh_{idle(oven)} =$

$$(1 - \% Steam) \times IdleEnergy \times \left(hours_{daily} - \frac{LB_{oven}}{Capacity} - \frac{nP \times PreheatTime}{60}\right) \times Days$$
(392)

$$kWh_{idle(steam)} =$$

$$(\%Steam) \times IdleEnergy \times \left(hours_{daily} - \frac{LB_{steam}}{Capacity} - \frac{np \times PreheatTime}{60}\right) \times Days$$
(393)

 $kWh_{preheat} = nP \times PreheatEnergy \times Days$

(394)

For gas savings,

$$\Delta Btu = Btu_{total,base} - Btu_{total,eff}$$

(395)

$$\Delta Therms = \frac{\Delta Btu}{100000}$$

(396)

$$Btu_{(total,base or total,eff)} = Btu_{oven} + Btu_{steam} + Btu_{prehe}$$

(397)

$$Btu_{oven or steam} = Btu_{cooking} + Btu_{idle}$$

(398)

$$Btu_{cooking (oven or steam)} = LB_{oven or steam} \times \frac{E_{food}}{CookEff} \times Days$$
(399)

Where:

 $LB_{oven} = LB \times (1 - \% \text{ Steam}) \text{ and } LB_{steam} = LB \times \% \text{ Steam}$

(400)

 $Btu_{idle(oven)} =$

$$(1 - \% Steam) \times IdleEnergy \times \left(hours_{daily} - \frac{LB}{Capacity} - \frac{nP \times PreheatTime}{60}\right) \times Days$$

(401)

$$Btu_{preheat} = nP \times PreheatEnergy \times Days$$

(402)

Key parameters used to compute savings are listed in Table 429, Table 430, and Table 431.

Parameter	Description	Value	Source/Approach
hours _{daily}	Daily Operating Hours	12 hours	ENERGY STAR® Commercial Kitchen Equipment Calculator
PreheatTime	Time to Preheat (min)	15 min	FSTC Life Cycle & Energy Cost Calculator
nP	Number of Preheats per Day	1	FSTC Life Cycle & Energy Cost Calculator
$E_{food,oven}$	ASTM defined Energy to Food for Convection Ovens	0.0732 kWh/lb, 250 Btu/lb	ASTM
$E_{food,steam}$	ASTM defined Energy to Food for Steam Cookers	0.0308 kWh/lb, 105 Btu/lb	ASTM
Days	Number of days of operation	365 days	ENERGY STAR® Commercial Kitchen Equipment Calculator
%Steam	Percent of time in Steam Mode	50%	ENERGY STAR® Commercial Kitchen Equipment Calculator
CookEff	Cooking energy efficiency (%)		Baseline: Average from ENERGY STAR® and FSTC
IdleEnergy	Idle energy rate (kW), (Btu/h)		Calculators ⁶⁷⁰
Capacity	Production capacity (lbs./hr)	For Electric, see Table 430	From ENERGY STAR® Qualifying Products Listing
PreheatEnergy	kWh/day, Btu/day	For Gas, see Table 431	FSTC Life Cycle & Energy Cost Calculator ENERGY STAR® Products Listing
$LB_{\text{oven,steam}}$	Food cooked per day (lb/day) in steam mode or oven mode		ENERGY STAR® Commercial Kitchen Equipment Calculator

General assumptions used for deriving deemed electric and gas savings are defined in the following tables. These values were taken from the ENERGY STAR® Food Service Appliance Calculator as well as the Food Service Technology Center (FSTC) Life Cycle and Energy Cost Calculator.

⁶⁷⁰ Baseline cooking efficiencies and idle energy rates were averaged between the ENERGY STAR® Food Service Appliance Calculator and the FSTC food service life cycle cost calculator.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

	$5 \le P \le 14$		$14 < P \le 28$		P > 28	
Parameter	Baseline	Efficient	Baseline	Efficient	Baseline	Efficient
Preheat Energy (kWh/day)	3.0	1.5	3.8	2.0	5.6	3.0
Convection Idle Energy Rate (kW)	1.32	Use actual	2.28	Use actual	3.02	Use actual
Steam Idle Energy Rate (kW)	5.26	Use actual	8.71	Use actual	10.61	Use actual
Convection Cooking Energy Efficiency (%)	69%	Use actual	69%	Use actual	69%	Use actual
Steam Cooking Energy Efficiency (%)	45%	Use actual	45%	Use actual	45%	Use actual
Convection Production Capacity (lbs./hour)	79	Use actual	79	Use actual	166	Use actual
Steam Production Capacity (lbs./hour)	126	Use actual	126	Use actual	295	Use actual
Lbs. of food cooked/day	200	200	200	200	250	250
Water consumption (gal/hr/pan)	3.5	Use actual	3.5	Use actual	3.5	Use actual

Table 430: Baseline and Efficient Assumptions for Electric Combination Ovens

Table 431: Baseline and Efficient Assumptions for Gas Combination Ovens

	$5 \le P \le 14$		$14 < P \le 28$		P > 28	
Parameter	Baseline	Efficient	Baseline	Efficient	Baseline	Efficient
Preheat Energy (Btu/day)	18,000	8,525	22,000	7,043	32,000	14,856
Convection Idle Energy Rate (Btu/h)	8,747	Use actual	10,788	Use actual	13,000	Use actual
Steam Idle Energy Rate (Btu/h)	18,656	Use actual	24,562	Use actual	43,300	Use actual
Convection Cooking Energy Efficiency (%)	44%	Use actual	44%	Use actual	44%	Use actual
Steam Cooking Energy Efficiency (%)	30%	Use actual	30%	Use actual	30%	Use actual
Convection Production Capacity (lbs./hr)	125	Use actual	125	Use actual	176	Use actual
Steam Production Capacity (lbs./hr)	195	Use actual	195	Use actual	211	Use actual
Lbs. of food cooked/day	200	200	200	200	250	250
Water consumption (gal/hr/pan) ⁶⁷²	3.5	Use actual	3.5	Use actual	3.5	Use actual

⁶⁷² Ibid.

⁶⁷¹ Water savings for baseline taken from PG&E Combination Ovens workpaper, PGECOFST100, Revision #6 (2016). Water savings for efficient case from ENERGY STAR qualifying products listing.

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \frac{\Delta kWh}{HOU} \times CF \tag{403}$$

Where:

 $\Delta kWh =$ Annual energy savings (kWh)

HOU = Annual hours of use = 365 x 12 = 4,380 hours

 $CF = \text{Coincidence Factor} = 0.84 \text{ (default)}^{673}$

Annual water savings can be calculated by taking the difference from the water consumption from the base value and the more efficient unit and multiplying by Annual Hours

Annual Water Savings = (Water Consumption_{base} – Water Consumption_{ee}) × HOU × P

(404)

Where:

*Water Consumption*_{base} = 3.5 gal/hr/pan

*Water Consumption*_{ee} = Actual gal/hr/pan

HOU = Annual hours of use = 365 x 12 = 4,380 hours

P = Pan capacity of the oven

Example:

Using *Water Consumption*_{ee} = 1.5 gal/hr/pan; P = 12 pans

Annual Water Savings = (3.5 - 1.5) x 4380 = 8,760 gal/pan x 12 = 105,120 gal/year

⁶⁷³ KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

3.7.6 Commercial Fryers

Measure Description

This measure applies to ENERGY STAR® or its equivalent natural gas and electric commercial open-deep fat fryers in retrofit and new construction applications. Commercial fryers consist of a reservoir of cooking oil that allows food to be fully submerged without touching the bottom of the vessel. For a commercial gas fryer, the cooking oil is heated by atmospheric or infrared gas burners underneath the fry pot (or vat) or in tubes that pass through the fry pot. Electric fryers use a heating element immersed in the cooking oil.

High efficiency standard and large vat fryers offer shorter cook times and higher production rates through the use of advanced burner and heat exchanger design. Standby losses are reduced in more efficient models through the use of fry pot insulation.

Baseline & Efficiency Standard

Key parameters for defining fryer efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. ENERGY STAR® requirements apply to a standard fryer and a large vat fryer. A standard fryer measures 14 to 18 inches wide with a vat capacity from 25 to 60 pounds. A large vat fryer measures 18 inches to 24 inches wide with a vat capacity greater than 50 pounds. The ENERGY STAR® criteria should be reviewed on an annual basis to reflect the latest requirements.

There are currently no federal minimum standards for Commercial Fryers, however, ASTM publishes Test Methods⁶⁷⁴ that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

	•		
	ENERGY STAR® 1	Electric Fryer Criteria	
Performance Parameters	Standard Fryers	Large Vat Fryers	
Heavy-Load Cooking Energy Efficiency	>83%	> 80%	

 $\leq 800 \text{ kW}$

Table 432: ENERGY STAR® Criteria⁶⁷⁵ and FSTC Baseline for Open Deep-Fat Electric Fryers

Table 433: ENERGY STAR® Criteria and FSTC Baseline for Open Deep-Fat Gas Fryers

	ENERGY STAR® Gas Fryer Criteria			
Performance Parameters	Standard Fryers	Large Vat Fryers		
Heavy-Load Cooking Energy Efficiency	≥ 50%	≥ 50%		
Idle Energy Rate	\leq 9,000 Btu/hr	≤ 12,000 Btu/hr		

Idle Energy Rate

 $\leq 1.1 \text{ kW}$

⁶⁷⁴ The industry standards for energy use and cooking performance of fryers are ASTM Standard Test Method for the Performance of Open Deep Fat Fryers (F1361) and ASTM Standard Test Method for the Performance of Large Vat Fryers (FF2144).

⁶⁷⁵ ENERGY STAR® Version 2.0, effective April 22, 2011.

Estimated Useful Life (EUL)

According to DEER 2008, commercial fryers are assigned an estimated useful life (EUL) of 12 years.⁶⁷⁶

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency fryer as compared with an ENERGY STAR® rated fryer.

For electric savings,

$$\Delta kWh = kWh_{base} - kWh_{eff} \tag{405}$$

$$kWh_{(base \ or \ eff)} = kWh_{cooking} + kWh_{idle} + kWh_{prehe}$$

(406)

$$kWh_{cooking} = LB \times \frac{E_{food}}{CookEff} \times Days$$
(407)

$$kWh_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(408)

$$kWh_{preheat} = PreheatEnergy \times Days$$

(409)

For gas savings,

$$\Delta Btu = Btu_{base} - Btu_{eff}$$

(410)

$$\Delta Therms = \frac{\Delta Btu}{100000}$$

(411)

$$Btu_{(base \ or \ eff)} = Btu_{cooking} + Btu_{idle} + Btu_{preheat}$$

(412)

$$Btu_{cooking} = LB \times \frac{E_{food}}{CookEff} \times Days$$
(413)

⁶⁷⁶ Database for Energy Efficient Resources, 2008, <u>https://cedars.sound-data.com/deer-resources/deer-versions/archive/</u>

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

$$Btu_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(414)

$$Btu_{preheat} = PreheatEnergy \times Days$$

(415)

Key parameters used to compute savings are defined in Table 434.

Table 434: Energy (Consumption R	Related Parameters	for Commercial	Fryers ⁶⁷⁷
---------------------	----------------------	--------------------	----------------	-----------------------

Parameter	Description	Value	Source
hours _{daily}	Daily Operating Hours	16 hours, standard fryer 12 hours, large vat fryer	ENERGY STAR®
PreheatTime	Time for Fryer to Preheat (min)	15 min	FSTC
E _{food}	ASTM defined Energy to Food	0.167 kWh/lb, 570 Btu/lb	FSTC
Days	Number of days of operation	365 days	FSTC
CookEff	Cooking energy efficiency (%)		FSTC,
IdleEnergy	Idle energy rate (kW), (Btu/h)	For electric, see Table 435	ENERGY STAR®
Capacity	Production capacity (lbs./hr)	For gas, see Table 436	FSTC
PreheatEnergy	kWh/day, Btu/day		FSTC
LB	Food cooked per day (lb/day)		FSTC

General assumptions used for deriving deemed electric and gas savings are defined in the following tables. These values are taken from the ENERGY STAR® Commercial Kitchen Equipment Savings Calculator as well as the Food Service Technology Center (FSTC) work papers and research.

Table 435: Baseline and Efficient Assumptions for Electric Standard and	Large Vat Fryers
---	------------------

	Baseline El	ectric Fryers	Efficient Electric Fryers	
Parameter	Standard	Large Vat	Standard	Large Vat
Preheat Energy (kWh/day)	2.4	2.4	1.9	1.9
Idle Energy Rate (kW)	1.2	1.35	Use actual	Use actual
Cooking Energy Efficiency (%)	75%	70%	Use actual	Use actual
Production Capacity (lbs./hour)	65	100	Use actual	Use actual
Lbs. of food cooked/day	150	150	150	150

⁶⁷⁷ Assumptions based on PG&E Commercial Fryers Work Paper developed by FSTC, June 13, 2012 and ENERGY STAR CFS Calculator updated on 07/15/21

	Baseline Gas Fryers		Efficient Gas Fryers	
Parameter	Standard	Large Vat	Standard	Large Vat
Preheat Energy (Btu/day)	18,500	18,500	15,500	16,500
Idle Rate (Btu/hr)	14,000	16,000	Use actual	Use actual
Cooking Efficiency (%)	35%	35%	Use actual	Use actual
Production Capacity (lbs./hour)	60	100	Use actual	Use actual
Lbs. of food Cooked/Day	150	150	150	150

Table 436: Baseline and Efficient Assumptions for Gas Standard and Large Vat Fryers

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \frac{\Delta kWh}{HOU} \times CF$$

(416)

Where:

 $\Delta kWh =$ Annual energy savings (kWh)

HOU = Annual hours of use = days x hours_{daily}

CF = Coincidence factor = 0.84 ⁶⁷⁸

⁶⁷⁸ Coincidence factors utilized in other jurisdictions for Commercial Fryers vary from 0.84 to 1.0. The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

3.7.7 Commercial Steam Cookers

Measure Description

This measure applies to ENERGY STAR® or its equivalent gas and electric steam cookers in retrofit and new construction applications. Commercial steam cookers, also known as "compartment steamers," vary in configuration and size based on the number of pans. High efficiency steam cookers offer shorter cook times, higher production rates and reduced heat loss due to better insulation and more efficient steam delivery system.

Baseline & Efficiency Standard

Key parameters for defining steam cookers efficiency are Heavy Load Cooking Energy Efficiency and Idle Energy Rate. ENERGY STAR® requirements apply to steam cookers based on the pan capacity. These criteria should be reviewed on an annual basis to reflect the latest ENERGY STAR® requirements.

There are currently no federal minimum standards for Commercial Steam Cookers, however, ASTM publishes Test Methods⁶⁷⁹ that allow uniform procedures to be applied to each commercial cooking appliance for a fair comparison of performance results.

Pan Capacity	Cooking Efficiency	Idle Rate (watts)
3-pan	50%	400
4-pan	50%	530
5-pan	50%	670
6-pan and larger	50%	800

Table 437: ENERGY STAR® Criteria for Electric Steam Cookers⁶⁸⁰

Table 438: ENERGY STAR® Criteria for Gas Steam Cookers⁶⁸¹

Pan Capacity	Cooking Efficiency	Idle Rate (Btu/h)
5-pan	38%	10,400
6-pan and larger	38%	12,500

Estimated Useful Life (EUL)

According to DEER 2008, steam cookers are assigned an estimated useful life (EUL) of 12 years.

⁶⁷⁹ The industry standard for steam cookers energy use and cooking performance is ASTM Standard F1484-99, Test Method for the Performance of Steam Cookers/

⁶⁸⁰ ENERGY STAR® Commercial Steam Cookers Version 1.2, effective August 1, 2003.

⁶⁸¹ ENERGY STAR® provides criteria for 3-pan, 4-pan but availability of products in this range is limited or unavailable.

Calculation of Deemed Savings

Energy savings for steam cookers is derived by determining the total energy consumed by standard steam cooker as compared with an ENERGY STAR® rated steam cooker. Total energy for a steam cooker includes the energy used during cooking, the energy used when the equipment is idling, the energy spent when set in a constant steam mode and the energy required during preheat.

$$\Delta Energy = Energy_{base,total} - Energy_{eff,total}$$

(417)

 $Energy_{(base, total or eff, total)} = Energy_{cooking} + Energy_{idle} + Energy_{steam} + Energy_{preheat}$

(418)

Where:

$$Energy_{cooking} = LB_{food} \times \frac{E_{food}}{Cook_{Eff}} \times Days$$

(419)

 $Energy_{idle} =$

$$(1 - \% Steam) \times IdleEnergy \times \left(hours_{daily} - \frac{LB_{food}}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$

(420)

$$Energy_{steam} =$$

%Steam × Capacity ×
$$\frac{E_{food}}{Cook_{Eff}}$$
 × $\left(hours_{daily} - \frac{LB_{food}}{Capacity} - \frac{PreheatTime}{60}\right)$ × Days (421)

 $Energy_{preheat} = PreheatEnergy \times Days$

(422)

General assumptions used for deriving deemed electric and gas savings are defined in the following tables. These values are taken from the ENERGY STAR® Commercial Kitchen Equipment Savings Calculator as well as the Food Service Technology Center (FSTC) work papers and research.

Parameter	Description	Value	Source
hours _{daily}	Daily Operating Hours	9 hours	ENERGY STAR®
E _{food}	ASTM defined Energy to Food	0.0308 kWh/lb, 105 Btu/lb	ENERGY STAR®
Days	Number of days of operation	365 days	ENERGY STAR®
Cook _{Eff}	Cooking energy efficiency (%)		ENERGY STAR®
IdleEnergy	Idle energy rate (kW), (Btu/h)	For electric,	
%Steam	Constant Steam Energy Use	see Table 435	FSTC
Capacity	Production capacity (lbs./hr)	For gas,	ENERGY STAR®
PreheatEnergy	kWh/day, Btu/day	see Table 436	ENERGY STAR®
LB_{food}	Food cooked per day (lb/day)		ENERGY STAR®

 Table 439: Energy Consumption Related Parameters for Commercial Steam Cookers

Table 440: Deemed Savings Assumptions for Electric Steam Cookers

Parameter	Baseline Model	Efficient Electric Model
Cooking Efficiency (%)	30%	Use actual
Preheat Energy (kWh)	1.8	1.7
Preheat Time (min)	11.9	13.2
Constant Steam Mode Time (%)	0.4	0.4
Lbs. of food Cooked/Day	100	100
Production Capacity (lbs./hr/pan)	23.3	Use actual
Idle Energy Rate (kW/pan)	0.4	Use actual
Water Consumption Rate (gal/hr) ⁶⁸²	40	Use actual

⁶⁸² Baseline water consumption values taken from ENERGY STAR CFS Calculator, dated 7/15/2021.

Parameter	Baseline Model	Efficient Gas Model
Cooking Efficiency (%)	18%	Use actual
Preheat Energy (Btu)	18,850	10,300
Preheat Time (min)	10.9	13.4
Constant Steam Mode Time (%)	0.4	0.4
Lbs. of food Cooked/Day	100	100
Production Capacity (lbs./h/pan)	23.3	Use actual
Idle Energy Rate (Btu/h/pan)	18,000	Use actual
Water Consumption Rate (gal/hr) ⁶⁸³	40	Use actual

 Table 441: Deemed Savings Assumptions for Gas Steam Cookers

Peak Demand Savings can be derived by dividing the annual energy savings by the operating Equivalent hours and multiplying by the Coincidence Factor.

$$\Delta kW = \frac{\Delta kWh}{HOU} \times CF$$

(423)

Where:

 $\Delta kWh =$ Annual energy savings (kWh)

HOU = Annual hours of use = Days x hours_{daily}

 0.84^{684} = Coincidence Factor (*CF*)

Annual water savings can be calculated by taking the difference from the water consumption from the base value and the more efficient unit and multiplying by Hours

Annual Water Savings = (Water Consumption_{base} – Water Consumption_{ee}) × HOU

(424)

Where:

Water $Consumption_{base} = 40 \text{ gal/hr}$

*Water Consumption*_{ee} = Actual or 12 gal/hr

HOU = Annual hours of use = Days x hours_{daily}

683 ibid.

⁶⁸⁴ Coincidence factors utilized in other jurisdictions for Commercial Steam Cookers vary from 0.84 to 1.0. The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

3.7.8 Commercial Underfired Broilers

Measure Description

This measure applies to underfired broilers, also referred to as char broilers. Underfired broilers generate heat upwards at high temperatures to a series of grates or ribs. These products have the highest input rate and production capacity amongst broilers. Replacement broiler technologies apply pilotless ignition, infrared (IR) plate and infra-red (IR) burner broilers.

Estimated Useful Life (EUL)

Commercial broilers are assigned an estimated useful life (EUL) of 12 years.⁶⁸⁵

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency gas broiler as compared with a higher efficiency gas broiler. Most underfired broilers operate at a constant input rate that is close to the idle rate. The amount of food cooked per day has no effect on energy demand.

$$\Delta Therms = \frac{\Delta B t u_{cooking} + \Delta B t u_{prehe}}{100,000}$$

(425)

$$\Delta Btu_{cooking} = (CookingEnergyRate_{base} - CookingEnergyRate_{ee}) \\ \times Hours_{daily} \times Days \ per \ Year \ \times Length$$

(426)

$$\Delta Btu_{prehe} = (Preheat_{base} - Preheat_{ee}) \times nP \times Length \times Days per Year$$

(427)

Key parameters used to compute savings are defined next.

⁶⁸⁵ Robert Mowris & Associates, 2005. *Ninth Year Retention Study of the 1996 Southern California Gas Company Commercial New Construction Program.* Prepared for Southern California Gas Company.

Parameter	Baseline Model	Efficient Gas Model
Cooking Energy Rate (Btu/h) per foot	25,000	20,000
Preheat Energy (Btu) per foot	16,000	13,500
Number of Preheats per Day, nP	1	1
Hours per Day	12	12
Days per Year	363	363
Length (ft)	Use equipment size	Use equipment size

Table 442: Deemed Assumptions for Commercial Underfired Broilers⁶⁸⁶

Using the parameter assumptions in

⁶⁸⁶ Southern California Gas Company (SCG). 2018. "SWFS019-01 Energy and Cost Calculations.xlsx.

Table 442 deemed savings are calculated below based on the size of the broiler in feet.

Measure Description	Therms
Underfired Broiler, Gas, 2 foot	454
Underfired Broiler, Gas, 3 foot	681
Underfired Broiler, Gas, 4 foot	908
Underfired Broiler, Gas, 5 foot	1134
Underfired Broiler, Gas, 6 foot	1361

Table 443: Deemed Savings for Commercial Underfired Broilers

3.7.9 Commercial Conveyor Broilers

Measure Description

This measure applies to conveyor broilers, also known as "chain" broilers. This type of broiler contains one to four belts on which food is placed either on the belt or in pans that travel on the belt. Food is cooked simultaneously by burners located above and below the belts. Conveyor gas broilers are used in high-volume facilities.

Estimated Useful Life (EUL)

According to the Food Service Technology Center Gas Broiler Life-Cycle Cost Calculator and from the FSTC Broiler Technology Assessment, commercial broilers are assigned an estimated useful life (EUL) of 12 years.⁶⁸⁷

Calculation of Deemed Savings

Annual savings can be calculated by determining the energy consumed by a standard efficiency conveyor broiler as compared with a higher efficiency conveyor broiler.

$$\Delta Btu = Btu_{base} - Btu_{eff}$$

(428)

$$Btu_{(base \ or \ eff)} = Btu_{cooking} + Btu_{idle} + Btu_{preheat}$$

(429)

$$Btu_{cooking} = LB_{food} \times \frac{E_{food}}{Capacity} \times CookEff \times Days$$

(430)

$$Btu_{idle} = IdleEnergy \times \left(hours_{daily} - \frac{LB}{Capacity} - \frac{PreheatTime}{60}\right) \times Days$$
(431)

$$Btu_{preheat} = PreheatEnergy \times Days$$

(432)

$$\Delta Therms = \frac{\Delta Btu}{100,000}$$

(433)

⁶⁸⁷ See the Food Service Technology Center Gas Conveyor Broiler Life-Cycle Cost Calculator.

Parameter	Description	Baseline Model	Efficient Model
hours _{daily}	Daily Hrs (hours)	18	18
PreheatTime	Preheat Time (min)	15	15
Days	Number of days of operation	364	364
Efood, gas	Energy to Food (btu/lb)	392	392
Idle Energy (Btu/h)	IdleEnergy (Btu/h)	80000	48000
LB	Pounds of food a day	250	250
PreheatEnergy (Btu)	Preheat Energy	14130	14210
CookEff	Cooking energy efficiency (%)	25%	35%
Capacity (lbs/h)	Production Capacity (lbs/h)	41.7	41.7

Table 444: Savings Parameters for Commercial	Conveyor Broilers ⁶⁸⁸
--	----------------------------------

Table 445: Deemed Savings for Commercial Conveyor Broilers

Measure	Therm Savings
Conveyor Broiler	1781

⁶⁸⁸ Assumptions based on Food Service Technology Center Gas Conveyor Broiler Life Cycle Cost Calculator.

3.7.10 Commercial Kitchen Demand Ventilation Controls

Measure Description

This measure refers to the installation of a demand ventilation control (DVC) system on kitchen exhaust fans as part of a system retrofit. The added control optimizes performance and savings by decreasing air flow and reducing outdoor makeup air heating energy.

Baseline and Efficiency Standards

The baseline for this measure is a standard commercial kitchen ventilation system with single speed exhaust and makeup air unit (MAU) fans and a simple on/off control. The high efficiency case is a kitchen exhaust system that incorporates ventilation control by varying the rate of kitchen ventilation (exhaust and/or makeup air fans) based on the energy and effluent output from the cooking appliances. There are no state or federal codes or standards that govern the eligibility of equipment.

Estimated Useful Life (EUL)

The estimated useful life (EUL) is 15 years.⁶⁸⁹

Deemed Savings Values

Annual and peak energy savings reflect retrofitting kitchen ventilation systems with a demand control ventilation (DCV) system. The partially deemed energy savings for this measure are identified per exhaust fan rated horsepower (HP) for varying building types.

Table 446: Deemed Savings per Exhaust Fan HP by Building Type With or Without a Dedicated Makeup Air (MAU) Unit⁶⁹⁰

Building Type		Savings h/HP)	Demand (kW	Gas Savings (Therms/HP)	
	MAU	No MAU	MAU	No MAU	
Hotel, 24-Hr Restaurant	5,712	3,370	0.587	0.346	414
Casual Dining, Fast Food, Prison, University Dining	4,284	2,527	0.587	0.346	279
School, incl. summer sessions	2,144	1,265	0.587	0.346	173
School, no summer sessions	1,565	923	0	0	173

Calculation of Deemed Savings

The savings methodology applied follows that employed in the PG&E work paper² while also discounting the savings from a non-dedicated configured makeup air unit (MAU) system. Due to the variable exhaust,

⁶⁸⁹ EUL is based on DEER 2014 for Variable Speed Drive controlled by CO2 sensor for HVAC-VSD-DCV.

⁶⁹⁰ Deemed gas and electric values were calculated for Arkansas by applying field study results from "PGECOFST116 Demand Ventilation Controls. Revision #3. Commercial Kitchen Demand Ventilation Controls. Pacific Gas & Electric Company. June 18, 2012." and WPSDGENRCC0019, Revision 0, Commercial Kitchen Ventilation Controls, San Diego Gas & Electric. June 15, 2012.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

kitchen demand ventilation control systems must be paired with a variable flow makeup air system to maintain air balance. There are two methods of supplying variable flow makeup air. The first is to use variable speed fans in dedicated makeup air units. Alternately, some operations (without dedicated MAUs) link the kitchen demand ventilation control to the RTU outside air damper to draw in a proportional amount of outdoor air to the air being exhausted.

An MAU_{factor}^{691} has been added to the electric energy and demand savings algorithm to account for this where 1.0 is a dedicated system and 0.57 is a non-dedicated system. The values applied in the algorithms were derived by averaging across the results from monitoring energy performance at 11 sites in California as shown in Table 447.

Annual
$$\Delta kWh/HP_{exhau} = \frac{kW}{HP_{exhaust}} \times AOH \times MAU_{factor}$$

(434)

Annual
$$\Delta kW/HP_{exhaust} = \frac{kW}{HP_{exhaust}} \times CF \times MAU_{factor}$$

(435)

⁶⁹¹ Electric savings methodology defined in a memorandum dated 8/26/13 by CLEAResult for Kitchen Demand Ventilation Control.

Arkansas TRM Version 10.0 Vol. 2

Food Service Facility	Inst.	FS	Hotel	Groc.	Univ.	Univ.	Hotel	Hotel	QS	QS	QS	Avg.
Rated Exhaust Fan Horsepower (HP)	6	3	15	NA	8	20	21	14	3	4	2.5	9.65
Base Case Total Fan Power (kW)	7.3	3.9	14.0	6.3	12.7	12.0	27.9	12.1	4.7	5.2	2.9	9.91
Base Case MAU Fan Power (kW)	3.1	1.5	6.4	2.2	6.52	N/A	9	N/A	1.9	N/A	N/A	4.37
MAU/Total Fan Power	42%	38%	46%	35%	51%	N/A	32%	N/A	40%	N/A	N/A	40.7%
Measure Case Total Fan Power (kW)	1.9	2.1	5.3	1.23	5.8	6.6	10.7	5.2	2.9	2.0	1.4	4.10
Average Power Reduction (kW saved)	5.4	1.8	8.7	5.07	6.9	5.4	17.2	6.9	1.8	3.2	1.5	5.81
Average Power Saved per exhaust fan HP (kW/HP)	0.9	0.6	0.58	N/A	0.863	0.27	0.819	0.493	0.6	0.8	0.6	0.652

Table 447: Derivation of kW Saved per HP and MAU_{factor} based on field data results in California^{692,693}

⁶⁹² Inst – Institutional Cafeteria, FS – Full Service Dining, Groc. – Grocery, Univ. – University, QS – Quick Service Dining

⁶⁹³ Electric savings methodology defined in a memorandum dated 8/26/13 by CLEAResult for Kitchen Demand Ventilation Control.

To determine the annual hours, four groups of applicable facilities were defined with conservative estimates on operation characteristics.

Building Type	Hours Open	Hours/ Day	Days/ Year	Hours/ Year
Hotel, 24-Hr Restaurant	0:00 - 24:00	24	365	8,760
Casual Dining, Fast Food, Prison, University Dining	6:00 - 24:00	18	365	6,570
School, incl. summer sessions	6:00 - 18:00	12	274	3,288
School, no summer sessions	6:00 - 18:00	12	200	2,400

Table 448: Annual Operating Hours by Building Type⁶⁹⁴

Gas savings for this measure is derived by applying the following algorithm.

$$Annual \ Gas \ Savings = \frac{Therms}{HP} = \frac{Reduced \ Fan \ Speed}{HP} \times \frac{Annual \ Heating \ Load \ (kBtu)}{Eff_{heat}} \times \frac{1}{100000}$$
(436)

The Outdoor Air Load Calculator⁶⁹⁵ by the Food Service Technology Center was used for Little Rock, Arkansas to determine the annual heating load based on the hours of operation as defined in Table 448. An outdoor makeup airflow rate at 11,200 cfm which is 80% of the average value of 14,000 cfm that was found from the PG&E field data was applied to the calculator.

Table 449: Heat Loads in Little Rock, Arkansas

Building Type	Annual Heat Load (kBtu)
Hotel, 24-Hr Restaurant	1,229,375
Casual Dining, Fast Food, Prison, University Dining	828,140
School, incl. summer sessions	514,147
School, no summer sessions	514,147

⁶⁹⁴ Electric savings methodology defined in a memorandum dated 8/26/13 by CLEAResult for Kitchen Demand Ventilation Control.

⁶⁹⁵Outdoor Air Calculator, https://fishnick.com/handouts/04252017/FSTC-Clearing_the_Air-DCKV_4-24-17.pdf

Parameter	Description	Value	Source
АОН	Annual operating hours	Table 448	AR TRM
kW/HP	Energy per rated exhaust fan motor horsepower	Table 447	AR TRM
MAU factor	1 – Dedicated System 0.57 – No dedicated system	Value	PG&E Work Paper and SCE field studies.
Reduced Fan Speed	Average airflow reduction	26%	PG&E Work Paper and SCE field studies.
HP	Average rated exhaust fan horsepower	9.65	PG&E Work Paper and SCE field studies.
EFF _{heat}	Heating Efficiency	80%	AR TRM
CF	Coincidence Factor	0.9	

Table 450: Definition of Parameters for Savings Calculation

3.7.11 Commercial Dishwashers

Measure Description

This measure defines electric and gas savings from ENERGY STAR® commercial dishwashers in retrofit and new construction applications. Commercial dishwashers, also known as "warewashers," fall into two categories of machine type: stationary rack and conveyor. Energy savings from commercial dishwashers is primarily attributed to reducing the amount of water used which reduces the energy consumed to heat that water.

Baseline & Efficiency Standard

High efficiency commercial dishwashers, as defined by ENERGY STAR®⁶⁹⁶, include high and low temperature under counter, stationary single tank door type, single tank conveyor, and multiple tank conveyor as well as high temp pot, pan, and utensil installed in a commercial kitchen. Key parameters used to characterize the efficient performance of commercial dishwashers are Idle Energy Rate and Water Consumption Rate. Each of these machines are further classified by their rinse water washing strategies; high temperature, sanitized by heat with boost heating (~180°) and low temperature, sanitized by chemicals (~120°-140°).

Machine Type	High Temp Efficiency Requirements							
	Tank Heater Idle Energy Rate (kW)Washing Energy (kWh/rack)		Water Consumption					
Under Counter	\leq 0.30	≤ 0.35	$\leq 0.86 \text{ GPR}$					
Stationary Single Tank Door	≤ 0.55	≤ 0.35	$\leq 0.89 \text{ GPR}$					
Pot, Pan, and Utensil	<u><</u> 0.90	$\leq 0.55 + 0.05 \text{*}SF_{rack}$	<u>≤</u> 0.58 GPSF					
Single Tank Conveyor	≤ 1.20	≤ 0.36	$\leq 0.70 \text{ GPR}$					
Multiple Tank Conveyor	≤ 1.85	≤ 0.36	$\leq 0.54 \text{ GPR}$					

Table 451: ENERGY STAR® Rec	wiromonts for Commorcial	Dichwachars High Tomporatura
Table 451: ENERGI STAR® Rec	jurrements for Commercial	Disnwashers, nigh remperature

⁶⁹⁶ ENERGY STAR® Commercial Dishwashers Version 3.0, effective July 27, 2021.

	Low	Temp Efficiency Requi	rements	
Machine Type	Tank Heater IdleWashing EnergyEnergy Rate (kW)(kWh/rack)		Water Consumption	
Under Counter	≤ 0.25	≤ 0.15	\leq 1.19 GPR	
Stationary Single Tank Door	≤ 0.30	≤ 0.15	\leq 1.18 GPR	
Pot, Pan, and Utensil		N/A		
Single Tank Conveyor	≤ 0.85	≤ 0.16	\leq 0.79 GPR	
Multiple Tank Conveyor	≤ 1.00	≤ 0.22	$\leq 0.54 \text{ GPR}$	

Table 452: ENERGY STAR® Requirements for Commercial Dishwashers, Low Temperature

GPR = Gallons per Rack

GPSF = Gallons per Square Foot of Rack

GPH = Gallons per Hour

 SF_{rack} = Square Foot of Rack

Estimated Useful Life⁶⁹⁷ (EUL)

The estimated useful life (EUL) of commercial dishwashers vary based on the machine type. Under Counters and Pot, Pan and Utensil machines have an EUL of 10 years, Door-Types have an EUL of 15 years and Conveyor Types have an EUL of 20 years.

Calculation of Deemed Savings⁶⁹⁸

Annual savings were calculated by determining the energy consumed for baseline commercial dishwashers compared against ENERGY STAR® performance requirements. The annual energy consumption for commercial dishwashers was determined by the summation of the annual energy used for water heating, the booster heater and when the machine is in idle mode.

$$E_{total} = E_{DHW} + E_{boost} + E_{idle}$$
(437)

These are defined as follows for both gas and electric calculations:

$$E_{DHW} = \frac{RPD \times GPR \times Days \times d \times c_p \times \Delta T_{DHW}}{EF_{DHW} \times Conversion \ Factor}$$
(438)

$$E_{BOOST} = \frac{RPD \ x \ GPR \ x \ Days \ x \ d \ x \ c_p \ x \ \Delta T_{BOOST}}{EF_{BOOST} \ x \ Conversion \ Factor}$$
(439)

⁶⁹⁷ Lifetime from ENERGY STAR® Commercial Kitchen Equipment Savings Calculator which cites reference as "EPA/FSTC research on available models, 2013"

⁶⁹⁸ Assumptions from the ENERGY STAR® Commercial Dishwashers Savings Calculator (May 2013 update).

$$E_{idle} = kW_{idle} \times \left(hours_{daily} - \frac{RPD \times MPR}{60}\right) \times Days$$
(440)

Where:

RPD = Average number of racks washed per day, varies by machine

GPR = Average gallons per rack used by dishwasher, varies by machine

Days = Operating Day per Year = 365 days/yr.

d = Density of water, constant value 8.34 lb/gal

 c_p = Specific heat of water, 1 Btu/lb-°F

 ΔT_{DHW} = Temperature rise at primary water heater, 70°F (default)

 ΔT_{BOOST} = Temperature rise at booster heater, 40°F (default)

 EF_{DHW} = Efficiency of building water heater, 80% for gas, 98% for electric (default)

 EF_{BOOST} = Efficiency of booster water heater, 80% for gas, 98% for electric (default)

Conversion Factor = 100,000 Btu/therm or 3,413 Btu/kWh.

 kW_{idle} = Energy consumed while idle, varies by machine

hours_{daily} = Hours per day dishwasher operates, 18 hours (default)

MPR = Time to wash one rack of dishes, minutes per rack, varies by machines

60 = Minutes per hour

To determine electric and gas savings for the different types of commercial dishwashers, the tables below list the assumptions made for the machine dependent parameters; Idle Power, Racks per Day, Minutes per Rack and Gallons per Rack. Table 453 lists the parameters for machines that employ Low Temperature cleaning and lists parameters for machines that employ High Temperature cleaning.

Table 453: Default Assumptions for Low Temperature, Electric and Gas Water Heaters

Performance	Under Counter		Single Tank Door		Single Tank Conveyor			i Tank veyor
1 011011111100	Base	Post	Base	Post	Base	Post	Base	Post
Idle Power	0.5	0.25	0.6	0.30	1.6	0.85	2.0	1.0
Racks/Day	75	75	280	280	400	400	600	600
Min/Rack	2.0	2.0	1.5	1.5	0.3	0.3	0.3	0.3
Gal/Rack	1.73	1.19	2.10	1.18	1.31	0.79	1.04	0.54

Performance		nder unter		e Tank oor	· · ·	Pan, and tensil		le Tank iveyor		i Tank veyor
	Base	Post	Base	Post	Base	Post	Base	Post	Base	Post
Idle Power	0.76	0.30	0.87	0.55	1.2	0.90	1.93	1.20	2.59	1.85
Racks/Day	75	75	280	280	280	280	400	400	600	600
Min/Rack	2.0	2.0	1.0	1.0	3.0	3.0	0.3	0.3	0.2	0.2
Gal/Rack	1.09	0.86	1.29	0.89	0.70	0.58	0.87	0.70	0.97	0.54

Table 454: Default Assumptions for High Temperature, Electric and Gas Water Heaters⁴

Peak Demand Savings can be derived by dividing the annual energy savings by the operating hours and multiplying by the Coincidence Factor.

$$\Delta kW = \frac{\Delta kWh}{HOU} \times CF$$

(441)

Where:

 $\Delta kWh =$ Annual energy savings (kWh)

HOU = Annual hours of use = 365 x 18 = 6,570 hours (default)

CF = Coincidence Factor = 0.84 (default)⁶⁹⁹

Deemed Savings Values

If specific equipment data is not available for use with the measure savings calculations described above, deemed electric and gas savings from ENERGY STAR® commercial dishwashers can be seen in the tables following.

Equipment savings are defined based on the following information:

- Dishwasher Type (Under Counter, Stationary Single Tank Door, Pots, Pans, and Utensils, Single Tank Conveyor, or Multiple Tank Conveyor)
- Water Temperature (Low Temperature or High Temperature)
- Building Water Heater Fuel (Electric or Gas)
- Booster Water Heater Fuel (Electric or Gas)
- Default Assumptions from ENERGY STAR® Commercial Dishwasher Savings Calculator (May 2013 update)

⁶⁹⁹ The KEMA report titled "Business Programs: Deemed Savings Parameter Development," November 2009 conducted for Wisconsin Focus on Energy lists Coincidence Factors by building type and identifies food service at 0.84.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Water Temperature	Water Heater Fuel/Booster Heater Fuel	Measure Description	kW	kWh	Therms
		Under Counter	0.6	4,305	
		Stationary Single Tank Door	1.6	12,602	
	Electric/Electric	Pots, Pans, and Utensils	0.4	3,364	
		Single Tank Conveyor	1.4	10,971	
		Multiple Tank Conveyor	3.8	29,764	
		Under Counter	0.3	2,099	256
		Stationary Single Tank Door	0.6	4,905	469
	Gas/Electric	Pots, Pans, and Utensils	0.2	1,223	88
		Single Tank Conveyor	0.6	4,987	524
High		Multiple Tank Conveyor	1.5	11,378	1,023
Temperature	Temperature	Under Counter	0.5	3,687	26
		Stationary Single Tank Door	1.1	8,586	168
	Electric/Gas	Pots, Pans, and Utensils	0.3	2,547	50
		Single Tank Conveyor	1.1	8,533	102
		Multiple Tank Conveyor	2.6	20,513	387
		Under Counter	0.2	2,604	72
		Stationary Single Tank Door	0.1	1,558	469
	Gas/Gas	Pots, Pans, and Utensils	0.1	438	141
		Single Tank Conveyor	0.5	4,266	285
		Multiple Tank Conveyor	0.6	4,325	1,080

Table 455: Deemed Savings for Commercial Dishwashers, High Temperature

Water Heater Fuel/Booster Heater Fuel	Measure Description	kW	kWh	Therms
	Under Counter	0.5	3,957	
	Stationary Single Tank Door	2.2	17,369	
Electric/Electric	Single Tank Conveyor	2.2	17,434	
	Multiple Tank Conveyor	3.1	24,303	
	Under Counter	0.2	1,415	108
	Stationary Single Tank Door	0.2	1,205	686
Gas/Electric	Single Tank Conveyor	0.6	4,383	554
	Multiple Tank Conveyor	0.7	5,479	799
	Under Counter	0.2	1,415	108
	Stationary Single Tank Door	0.2	1,205	686
Gas/Gas	Single Tank Conveyor	0.6	4,383	554
	Multiple Tank Conveyor	0.7	5,479	799

Table 456: Deemed Savings for Commercial Dishwashers, Low Temperature

Calculation of Water Savings

Annual water savings can be calculated by determining the water consumed for baseline commercial dishwashers compared against ENERGY STAR® performance requirements.

$$\Delta Water Consumption = (GPR_{Base} \times RPD \times Days) - (GPR_{EE} \times RPD \times Days)$$

(442)

Where:

GPR = Average gallons per rack used by dishwasher, varies by machine

RPD = Average number of racks washed per day, varies by machine

Days = Operating Day per Year = 365 days/yr.

3.7.12 Low-Flow Pre-Rinse Spray Valves

Measure Description

This measure consists of installing low-flow pre-rinse spray valves which reduce hot water usage and save energy associated with heating the water. The low-flow pre-rinse spray valves have the same cleaning effect as the existing standard spray valves even though they use less water.

Baseline & Efficiency Standard

The savings values for low-flow pre-rinse spray valves are applicable for the retrofit of existing operational pre-rinse spray valves with a flow rate of 2.25 gallons per minute or higher. Facilities that use gas or electric water heaters are both eligible for this measure.

The baseline pre-rinse spray valves are assumed to have a flow rate of 2.25 gallons per minute.⁷⁰⁰ The maximum flow rate of qualifying low-flow pre-rinse spray valves is 1.28 gallons per minute.⁷⁰¹

Estimated Useful Life (EUL)

The effective useful life (EUL) for this measure is 5 years.⁷⁰²

Calculation of Deemed Savings

Annual gas savings and peak day gas savings can be calculated by using the following equations:

$$\Delta Therms = \rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times \frac{Days}{Year} \times \frac{1}{100000}$$
(443)

$$\Delta Peak Therms = \Delta Therms \times \frac{Days}{Year}$$

(444)

Annual kWh electric and peak kW savings can be calculated using the following equations:

$$\Delta kWh = \rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times \frac{Days}{Year} \times \frac{1}{3412}$$
(445)

$$\Delta kW = \rho \times C_P \times U \times (F_B - F_P) \times (T_H - T_{Supply}) \times \frac{1}{E_t} \times P \times \frac{1}{3412}$$
(446)

⁷⁰⁰ Impact and Process Evaluation Final Report for California Urban Water Conservation Council, 2004-5. Pre-Rinse Spray Valve Installation Program (Phase 2), SWB Consulting, 2007.

⁷⁰¹ FEMP Performance Requirements for Federal Purchases of Pre-Rinse Spray Valves, Based on ASTM F2324-03: Standard Test Method for Pre-Rinse Spray Valves.

⁷⁰² FEMP Purchasing Specification for Energy-Efficiency Products, Pre-Rinse Spray Valves: <u>https://www.epa.gov/watersense/pre-rinse-spray-valves</u>

Parameter	Description	Value
F_B	Average baseline flow rate of sprayer (GPM)	2.251
F_P	Average post measure flow rate of sprayer (GPM)	1.28 ^{1,2}
Days /Year	 Annual operating days for the applications: see Table 458 for building type definitions: 1. Fast food restaurant 2. Casual dining restaurant 3. Institutional 4. Dormitory 5. K-12 school 	$365^{703} \\ 365^3 \\ 365^3 \\ 274^{704} \\ 200^3$
T _{supply}	Average supply (cold) water temperature (°F) from Table 351	Zone 9: 65.6 Zone 8: 66.1 Zone 7: 67.8 Zone 6: 70.1
T_H	Average mixed hot water (after spray valve) temperature (°F)	120 ⁷⁰⁵
U _B	 Baseline water usage duration for the following applications: Fast food restaurant (see Table 459– small service) Casual dining restaurant (see Table 459 – medium service) Institutional (see Table 459 – large service) Dormitory (see Table 459 – large service) K-12 school (see Table 459 – medium service) 	45 min/day/unit ⁷⁰⁶ 105 min/day/unit ⁶ 210 min/day/unit ⁶ 210 min/day/unit ⁶ 105 min/day/unit ⁷⁰⁷
ρ	Density of water 8.33 BTU/Gallon	8.33
C _P	Heat capacity of water, 1 BTU/I°F	1
E _t	Thermal efficiency of water heater	Default electric value 0.98; 0.80 for gas
р	 Hourly peak demand as a fraction of daily water consumption for the following applications: 1. Fast food restaurant (Fast Food) 2. Casual dining restaurant (Sit down rest.) 3. Institutional (Nursing Home) 4. Dormitory (Sit down rest.) 5. K-12 School (High school) 	$\begin{array}{c} 0.05^{708} \\ 0.04^8 \\ 0.03^8 \\ 0.04^8 \\ 0.05^8 \end{array}$

Table 457: Variables for the Deemed Savings Algorithm

Building Type	Operating Days per Year	Representative PRSV Usage Examples
1. Fast food restaurant	365	Establishments engaged in providing food services where patrons order and pay before eating. These facilities typically use disposable serving ware. PRSV are used for rinsing cooking ware, utensils, trays, etc. Examples: Fast food restaurant, supermarket food preparation and food service area, drive-ins, grills, luncheonettes, sandwich, and snack shops.
2. Casual dining restaurant	nt 365 Establishments primarily engaged in providing food services to customers who order and are served while seated (i.e. waiter/waitre service). These facilities typically use chinaware and use the PRSV rinse dishes, cooking ware, utensils, trays, etc. Example: Full meal restaurant.	
3. Institutional	365	Establishments located in institutional facilities (e.g. nursing homes, hospitals, prisons, military) where food is prepared in large volumes and patrons order food before eating, such as in dining halls and cafeterias. These facilities typically use disposable serving ware and serving trays. PRSVs are used for rinsing cooking ware, utensils, tray, etc. Examples: Nursing home, hospital, prison cafeteria, and military barrack mess hall.
4. Dormitory	4. Dormitory274Establishments located in higher education facilities where food is prepared in large volumes and patrons order food before eating, suc dining halls and cafeterias. These facilities typically use disposable serving ware and serving trays. PRSVs are used for rinsing cooking utensils, trays, etc. Example: University dining halls.	
5. K-12 School	Establishments located in K-12 schools where food is prepared in la	

⁷⁰³ Osman S &. Koomey, J. G., Lawrence Berkeley National Laboratory 1995. *Technology Data Characterizing Water Heating in Commercial Buildings: Application to End-Use Forecasting*. December.

⁷⁰⁴ For dormitories with few occupants in the summer: $365 \ge (9/12) = 274$.

⁷⁰⁵ According to ASTM F2324 03 Cleanability Test the optimal operating conditions are at 120°F.

⁷⁰⁶ CEE Commercial Kitchens Initiative Program Guidance on Pre-Rinse Valves.

⁷⁰⁷ School mealtime duration is assumed to be half of that of institutions, assuming that institutions (e.g. prisons, university dining halls, hospitals, nursing homes) serve three meals per day at 70 minutes each, and schools serve breakfast to half of the students and lunch to all, yielding 105 minutes per day.

⁷⁰⁸ ASHRAE Handbook 2011. HVAC Applications. Chapter 50 –Service Water Heating. American Society of Heating Refrigeration and Air Conditioning Engineers, Inc. (ASHRAE) 2011. ASHRAE, Inc., Atlanta, GA. The hourly flow profiles given in Figure 24 on page 50.19 were reviewed and analyzed. The hourly peak demand as a percent of the daily flow was estimated using the total daily flow, the hourly flow, and the peak demand period window in Arkansas.

Building Type	Operating Days per Year	Representative PRSV Usage Examples
		serving trays. PRSVs are used for rinsing cooking ware, utensils, trays,
		etc.
		Example: K-12 school cafeterias

Table 459: Daily Operating Minutes

Food Service Operation	Min (Min/Day)	Max (Min/Day)	Average Min/Day)
Small Service (e.g., quick-service restaurants)	30	60	45
Medium Service (e.g., casual dining restaurants)	90	120	105
Large Service (e.g., institutional cafeterias)	180	240	210

3.8 Compressed Air Measures3.8.1 Compressor Replacement

Measure Description

This measure applies to the replacement of a fixed-speed air compressor with an air compressor with an integrated variable speed drive (VSD). Baseline fixed-speed compressors operate inefficiently at part-load conditions. Efficient compressors use a VSD to match the actual load that varies throughout the day. Savings are calculated using baseline and efficient demand values for varying compressor capacities based on the facility's load profile and the associated hours the compressor(s) runs at that capacity. This measure applies only to an individual compressor ≤ 200 hp and only in compressed air distribution systems with one or two non-backup air compressors. This measure is limited to one compressor per compressed air distribution system.

Baseline and Efficient Standards

The high-efficiency equipment is a compressor ≤ 200 hp with variable speed controls. This compressor motor can match the desired load output.

The baseline equipment is a fixed-speed, oil-flooded compressor ≤ 200 hp with either load/no load or inlet air modulation controls.

Estimated Useful Life (EUL)

The expected measure life is 13 years.

Calculation of Deemed Savings

$$\Delta kWh = HP_{rated} \times 0.82 \times AOH \times (CompFactor_{Base} - CompFactor_{Eff})$$
(447)

$$\Delta kW = \frac{\Delta kWh}{AOH} \times CF$$

Where:

- HP_{Rated} = Horsepower rating of affected compressor. If the compressor size is being changed, use the size of the new compressor.
- 0.82 = conversion factor for converting rated horsepower to loaded kW⁷⁰⁹.

AOH = annual operating hours; see Table 460.

CompFactor_{Base} = baseline compressor factor; see Table 461.

(448)

⁷⁰⁹ 0.746 hp to kW conversion factor multiplied by 1.1 load factor of compressor at full load, average of the typical range from the 2020 Uniform Methods Project, Chapter 22, page 6.

 $CompFactor_{Eff}$ = efficient compressor factor; see Table 462.

CF = Summer peak coincidence factor for this measure; see Table 460.

Number of Shifts ⁷¹⁰	Annual Operating Hours (AOH) ⁷¹¹	Coincidence Factor (CF)
Single shift	2,268	0.59
2-shift	4,536	0.95
3-shift	6,672	0.95
Continuous Operation	8,544	0.95
Unknown/Weighted Average ⁷¹²	6,130	0.89

Table 460: Compressor Annual Operating Hours (AOH) and Coincidence Factor

Table 461: Baseline Compressor Factors⁷¹³

Baseline Compressor	CompFactor Base (≤ 50 hp)	CompFactor Base (50 – 200 hp)
Modulating w/ Blowdown	0.890	0.863
Load/No Load w/ 1 Gallon/CFM	0.909	0.887
Load/No Load w/ 3 Gallon CFM	0.831	0.811
Load/No Load w/ 5 Gallon CFM	0.806	0.786

Table 462: Efficient Compressor Factors⁷¹⁴

Efficient Compressor	CompFactor Efficient
(≤ 50 hp)	0.705
(50 – 200 hp)	0.658

⁷¹⁰ Single Shift 9 hours/day, 5 days/week; 2-Shift 18 hours/day, 5 days/week; 3-Shift 24 hours/day, 5.5 days/week; Continuous Operation 24 hours/day, 7 days/week

⁷¹¹ Calculation based on an assumption of 5 annual maintenance downtime days and 3 annual holidays.

⁷¹² Weighting of 16.1% single shift, 23.2% two-shift, 25.3% three-shift, and 35.4% four-shift as sourced from, "Evaluation of the Compressed Air Challenge Training Program", U.S. Department of Energy, March 2004

⁷¹³ Compressor factors were developed using DOE part load data for different compressor control types as well as load profiles from 50 facilities employing air compressors less than or equal to 40 hp, as sourced from the Efficiency Vermont TRM.

⁷¹⁴ From 2022 Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 10.0, Volume 2: Commercial and Industrial Measures, Section 4.7.1 VSD Air Compressor

Example Calculation

A fixed-speed 10 horsepower screw compressor with modulating with blowdown controls is replaced with a compressor with a variable speed drive in a 3-shift facility.

$$kWh_{Savings} = 10 \times 0.82 \times 6672 \times (0.890 - 0.705) = 10,121 \, kWh$$

$$kW_{Savings} = \frac{10,121}{6672} \times 0.95 = 1.44 \ kW$$

3.8.2 No Loss Condensate Drains

Measure Description

Compressed air condensate drains discharge water (condensate) that is collected during the air compression process. Discharging condensate is necessary to mitigate corrosion of compressed air lines and reduce wear on end-use equipment. Standard condensate drains use a timer to discharge condensate and compressed air together on a regular schedule, or drains can be manually opened by operators. Such drains waste compressed air each time they are opened longer than is necessary to discharge all condensate.

No-loss condensate drains discharge condensate from the compressed air line without expelling useful compressed air, opening to purge condensate and closing quickly before compressed air escapes. No-loss drains can be mechanical (float drains), electronic, or a hybrid of the two.

Estimated Useful Life (EUL)

The estimated useful life is 13 years.715

Efficient Standards

The efficient condition is the operation of a no-loss condensate drain to vent condensate from compressed air lines.

Baseline Standards

The baseline condition is a timer-operated condensate drain.

Calculation of Deemed Savings

Deemed energy savings should be calculated by the following formula:

$$\Delta kWh = \text{Units} \times \text{CFM}_{\text{savings}} \times \text{kW/CFM} \times \text{AOH} \times CCAF$$

(449)

(450)

Deemed demand savings should be calculated by the following formula:

$$\Delta kW = \frac{\Delta kWh}{\text{AOH}} \times \text{POF} \times \text{CF}$$

Where:

Units = quantity of no-loss drains installed

CFM_{savings} = compressed airflow savings per no-loss drain, see Table 463.

kW/CFM = compressor full load efficiency. Use CAGI full load rated kW and CFM values if available.

⁷¹⁵ Measure Life Study. Energy & Resource Solutions. Prepared for the Massachusetts Joint Utilities; Table 1-1, for Compressed Air Large C&I Retrofit. 2005. <u>https://www.ers-inc.com/wp-content/uploads/2018/04/Measure-Life-Study_MA-Joint-Utilities_ERS.pdf</u>

Where unknown use the values from Table 464.

- *AOH* = Annual operating hours for specified measure type, see Table 465. Use actual hours of operation if system is not in continuous use.
- POF = Peak Operation Factor. Binary variable indicating if the compressor peak operation is concurrent with the site summer demand peak. This value is 1 if the system is running during peak periods: non-holiday summer weekdays from 3:00 PM to 7:00 PM. This value is 0 if the system is not used at any time during peak periods.
- CCAF = Compressor control type adjustment factor for the trim compressor, see Table 466.

CF = Coincidence Factor, see Table 465.

Table 463: Compressed Airflow Savings Based on System Pressure

System Pressure (psig)	CFM _{savings} ⁷¹⁶
70	2.56
80	2.86
90	3.16
100	3.47
125	4.20

Table 464: Compressor	· Efficiencies	(kW/CFM)	for Typical	Compressor Types
-----------------------	----------------	----------	-------------	------------------

Air Compressor Type	kW/CFM ⁷¹⁷ , ⁷¹⁸
Single-Acting, Air-Cooled Reciprocating	0.22
Double-Acting Water-Cooled Reciprocating	0.15
Lubricant - Injected Rotary Screw Compressor	0.15
Lubricate-Free Rotary Screw Compressor	0.17
Centrifugal Air Compressor	0.16
VSD Compressor	0.14

⁷¹⁶ Compressed airflow savings based on a timer-operated condensate drain with an equivalent ¹/₄" orifice opening and a 10-second opening time once every 5 minutes. Compressed airflow rates through various orifice sizes from the *Fundamentals of Compressed Air Systems Training* by the Compressed Air Challenge, republished by ENERGY STAR. <u>https://www.energystar.gov/sites/default/files/buildings/tools/compressed_air3.pdf</u>

⁷¹⁷ Improving Compressed Air System Performance: A Sourcebook for Industry, pp 46, 47.

⁷¹⁸ Compressed Air Best Practices, VSD Compressor Control. Calculated based on operating point conditions and assuming a main-drive motor with a typical efficiency of 92%.

Number of Shifts ⁷¹⁹	Annual Operating Hours (AOH) ⁷²⁰	Coincidence Factor (CF)
Single shift	2,268	0.59
2-shift	4,536	0.95
3-shift	6,672	0.95
Continuous Operation	8,544	0.95
Unknown/Weighted Average ⁷²¹	6,130	0.89

Table 465: Compressor Annual Operating Hours and Coincidence Factor

Table 466: Capacity Control type Adjustment Factors⁷²²

Control Method	CCAF
Reciprocating – on/off control	1.00
Reciprocating – load/unload	0.74
Screw – load/unload oil free	0.73
Screw – load/unload 1 gal/cfm	0.43
Screw – load/unload 3 gal/cfm	0.53
Screw – load/unload 5 gal/cfm	0.63
Screw – load/unload 10 gal/cfm	0.73
Screw - inlet modulation	0.30
Screw inlet modulation w/ unloading	0.30
Screw – variable displacement	0.60
Screw – variable speed drive	0.97

⁷¹⁹ Single Shift 9 hours/day, 5 days/week; 2-Shift 18 hours/day, 5 days/week; 3-Shift 24 hours/day, 5.5 days/week; Continuous Operation 24 hours/day, 7 days/week

⁷²⁰ Calculation based on an assumption of 5 annual maintenance downtime days and 3 annual holidays.

⁷²¹ Weighting of 16.1% single shift, 23.2% two-shift, 25.3% three-shift, and 35.4% four-shift as sourced from, "Evaluation of the Compressed Air Challenge Training Program", U.S. Department of Energy, March 2004

⁷²² 2020 Uniform Methods Project, Ch. 22, p. 19

Example Calculation

A manufacturing facility is replacing a total of (10) timer drains with no-loss condensate drains. The compressed air system uses a VSD compressor and operates at 80 psig over two shifts (including during peak periods).

 $kWh_{savings} = (2.86 \text{ CFM/drain}) \times (10 \text{ drains}) \times 0.14 \times 4,536 \times 0.97$

$$kWh_{savings} = 17,617 kWh$$

$$kW_{savings} = (17,617 \, kWh) \times \frac{1}{4,536} \times 1 \times 0.95$$

$$kW_{savings} = 3.8 kW$$

Where:

Units = 10 drains, from project documentation

CFM_{savings} = 2.86 CFM/drain, from Table 463

AOH = 4,536 from Table 465

kW/CFM = 0.14 from Table 464

CCAF = 0.97 from Table 466

POF = 1 from site documentation that plant operation covers the peak period

CF = 0.95 from Table 465

3.8.3 Engineered Nozzles

Measure Description

This measure describes the savings related to the replacement of standard air nozzle(s) with engineered nozzle(s). Engineered nozzles are used for cleaning, cooling, drying, etc. They improve efficiency over standard nozzles by entraining ambient air in the nozzle reducing the total amount of compressed air needed to produce the same air volume as a standard nozzle.

Baseline and Efficiency Standards

Engineered air nozzles must meet or exceed the SCFM rating as listed in Table 468. Accompanying documentation including the make, model, and performance must be provided for this measure.

Estimated Useful Life (EUL)

The estimated useful life is 15⁷²³ years.

Calculation of Deemed Savings

Annual Electric Energy Savings

$$\Delta kWh = \text{Units} \times (CFM_{base} - CFM_{enoz}) \times \text{kW/CFM} \times \text{HOU} \times CCAF$$

(451)

(452)

Summer Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{AOH} \times POF \times CF$$

Where:

Units = Quantity of similar size nozzles being replaced.

 CFM_{base} = Baseline CFM for a standard nozzle. Use SCFM ratings in Table 467 if actual CFM ratings are unknown or are higher than listed.

 Table 467: Maximum Standard Nozzle Flowrates

Nozzle Diameter	1/8"	1/4"	5/16"	1/2"
Standard Flow* (SCFM)	21	58	113	280
*Use actual rated CFM rating at 80psig if known. This is for unknown flows				

 $CFM_{enoz} = CFM$ for an engineered nozzle, from actual documentation. Use SCFM ratings in Table 468

⁷²³ Based PA Consulting Group (2009) Business Programs: Measure Life Study. Prepared for State of Wisconsin Public Service Commission.

Nozzle Diameter	1/8"	1/4"	5/16"	1/2"
Maximum flow* (SCFM)	11	29	56	140
*Rating at 80psig				

Table 468: Maximum Engineered Nozzle Flowrates

kW/CFM = compressor full load efficiency. Use CAGI full load rated KW and CFM values if available. Where unknown use the values from Table 469.

Table 469: Air Compressor Efficiency

Air Compressor Type	kW/CFM
Single-Acting, Air-Cooled Reciprocating	0.22
Double-Acting Water-Cooled Reciprocating	0.15
Lubricant - Injected Rotary Screw Compressor	0.15
Lubricate-Free Rotary Screw Compressor	0.17
Centrifugal Air Compressor	0.16
VSD Compressor	0.14724

HOU = Hours of Use of the compressed air nozzles. Use actual hours of operation if nozzles are not in continuous use. If exact hours are not known use no more than 5% of the Annual Operating Hours (AOH) listed in Table 471 for the number of facility shifts per day. Use the full hours of operation if nozzles are in continuous use.

CCAF = Compressor control type adjustment factor for the trim compressor, see Table 470

Control Method	CCAF
Reciprocating – on/off control	1.00
Reciprocating – load/unload	0.74
Screw – load/unload oil free	0.73
Screw – load/unload 1 gal/cfm	0.43
Screw – load/unload 3 gal/cfm	0.53
Screw – load/unload 5 gal/cfm	0.63
Screw – load/unload 10 gal/cfm	0.73

Table 470: Capacity Control Type Adjustment Factors⁷²⁵

⁷²⁵ 2020 Uniform Methods Project, Ch. 22, pg. 19

⁷²⁴ Compressed Air Best Practices, VSD Compressor Control. Calculated based on operating point conditions and assuming a main-drive motor with a typical efficiency of 92%.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:24 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 2

Screw - inlet modulation	0.30
Screw inlet modulation w/ unloading	0.30
Screw – variable displacement	0.60
Screw – variable speed drive	0.97

POF = Peak Operation Factor. Binary variable indicating if the compressor peak operation is concurrent with the site kW peak. This value is 1 if the nozzle(s) is running during the peak operation. This value is 0 if the nozzle(s) are not in used at any time during peak summer operation: non-holiday summer weekdays from 3:00 p.m. to 7:00 p.m.

CF = Coincidence Factor. See Table 471 for values based on a number of operational shifts.

Table 471: Compressor Annual Operating Hours and Coincidence Factor

Number of Shifts ⁷²⁶	Annual Operating Hours (AOH) 727	Coincidence Factor (CF)
Single shift	2,268	0.59
2-shift	4,536	0.95
3-shift	6,672	0.95
Continuous Operation	8,544	0.95
Unknown/Weighted Average ⁷²⁸	6,130	0.89

⁷²⁶ Single Shift 9 hours/day, 5 days/week; 2-Shift 18 hours/day, 5 days/week; 3-Shift 24 hours/day, 5.5 days/week; Continuous Operation 24 hours/day, 7 days/week

⁷²⁷ Calculation based on an assumption of 5 annual maintenance downtime days and 3 annual holidays.

⁷²⁸ Weighting of 16.1% single shift, 23.2% two-shift, 25.3% three-shift, and 35.4% four-shift as sourced from, "Evaluation of the Compressed Air Challenge Training Program", U.S. Department of Energy, March 2004

Example calculation

A facility is installing eight engineered air nozzles with rated air consumption of 52 SCFM to replace the same number of standard air nozzles with a 5/16" diameter orifice on a double-acting water-cooled reciprocating compressor system with load/unload controls. The equipment is used intermittently for two shifts during the facility's peak operation, but the exact hours are not known.

 $\Delta kWh = 8 \times (113 - 52) \times (0.15) \times 226.8 \times 0.74 = 12,285 \, kWh$

Where:

 $CFM_{base} = 113$ SCFM; value from Table 467

 $CFM_{enoz} = 52$ SCFM; value from provided documentation

kW/CFM = 0.15; value from Table 469

HOU = 226.8; 5% of 4536 AOH from Table 471

CCAF = 0.74 from Table 470

$$\Delta kW = \frac{12,285}{4,536} \times 1 \times .95 = 2.57 \text{ kW}$$

Where:

AOH = 4,536 from Table 471

CF = 0.95; from Table 471

POF = 1; the compressed air system operates during peak periods

3.8.4 System Pressure Reduction

Measure Description

This measure characterizes the savings resulting from the reduction of the pressure control setpoint for the air compressor(s) serving a compressed air system. Air compressors can operate more efficiently at lower pressures, resulting in energy savings. This measure applies only to compressed air distribution systems with one or two non-backup air compressors. This measure does not apply to pressure setpoint adjustments made to pressure reducing valves.

Baseline and Efficiency Standards

The baseline for this measure is one or more compressors with a pressure setpoint that exceeds the highest compressed air end use pressure requirement.

Estimated Useful Life (EUL)

The estimated useful life is 5 years.⁷²⁹

Calculation of Deemed Savings

Annual Electric Energy Savings

$$\Delta kWh = HP_{system} \times kW/HP \times 0.005 \times \Delta P \times AOH$$

(453)

Summer Peak Coincident Demand Savings

$$\Delta kW = \frac{\Delta kWh}{AOH} \times CF \tag{454}$$

Where:

- HP_{system} = horsepower of compressors serving the system with pressure setpoint reduction. Do not include air compressors primarily used as backup.
- kW/HP = compressor full load efficiency. Use CAGI full load rated KW and CFM values if available. Where unknown use the values from Table 472.
- 0.005 = Compressed air savings factor, equal to 0.5% per PSI of pressure reduction
- ΔP = Compressor Pressure Setpoint Reduction, in PSI
- CF = Coincidence Factor, see Table 473
- AOH = Annual Operating Hours of the compressed air system. Use actual annual hours if known; otherwise, use hours from Table 473 depending on facility operation.

⁷²⁹ Based on the ComEd CY2018 Operational Efficiency Impact Evaluation

Compressor Type & Control	(kW/HP) typical
Reciprocating - On/off	0.702
Reciprocating - Load/Unload	0.748
Screw - Inlet Modulation	0.825
Screw - Inlet Modulation w/Unloading	0.825
Screw - Load/Unload	0.823
Screw - Variable Displacement	0.732
Screw - VFD	0.708
Unknown/Weighted Average	0.766

Table 472: Air Compressor Typical Demand per HP by Type & Control⁷³⁰

Table 473: Compressor Annual Operating Hours and Coincidence Factor

Number of Shifts ⁷³¹	Annual Operating Hours (AOH) ⁷³²	Coincidence Factor (CF)
Single shift	2,268	0.59
2-shift	4,536	0.95
3-shift	6,672	0.95
Continuous Operation	8,544	0.95
Unknown/Weighted Average ⁷³³	6,130	0.89

Example calculation

A production facility is reducing the operating pressure setpoint of a 200HP screw compressor with inlet modulation from 105 psi to 100 psi. The facility runs 3 shifts (24 hours/day, 5 days/week), but the exact operating hours of the compressor are not tracked by the facility staff. Annual Electric Energy Savings and Summer Peak Coincident Demand Savings are calculated below.

HP = 200

 $\Delta P = 5$ PSI; from project documentation

 $\Delta kWh = 200 \times 0.825 \times 0.005 \times 5 \times 6,672 = 24,453 \, kWh$

$$\Delta kW = \frac{24,453}{5,928} \times 0.95 = 3.92 \ kW$$

⁷³⁰ From 2022 Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 10.0, Volume 2: Commercial and Industrial Measures, Section 4.7.11 Reduce Compressed Air Setpoint

⁷³¹ Single Shift 9 hours/day, 5 days/week; 2-Shift 18 hours/day, 5 days/week; 3-Shift 24 hours/day, 5.5 days/week; Continuous Operation 24 hours/day, 7 days/week

⁷³² Calculation based on an assumption of 5 annual maintenance downtime days and 3 annual holidays.

⁷³³ Weighting of 16.1% single shift, 23.2% two-shift, 25.3% three-shift, and 35.4% four-shift as sourced from, "Evaluation of the Compressed Air Challenge Training Program", U.S. Department of Energy, March 2004

3.9 Other 3.9.1 Plug Load Occupancy Sensors

Measure Description

Plug load occupancy sensors are devices that control low wattage devices (<150 watts) using an occupancy sensor. Common applications are computer monitors, desk lamps, printers, and other desktop equipment. Three wattage tiers were analyzed based on available products in the market: 25, 50, and 150 watt.

Baseline and Efficiency Standards

Table 474 contains the baseline annual energy consumption and demand for plug loads.

Table 474: Plug Load Without Occupancy Sensors – Baseline Data

Size (watts)	Annual Energy Consumption ⁷³⁴ (kWh/ unit)	Annual Operating Hours	Demand (kW/unit)
25	110	4,400	0.025
50	220	4,400	0.05
150	555	3,700	0.15

Note: Italic numbers are endnotes not footnotes.

Table 475 contains the annual energy consumption and demand for plug load occupancy sensors.

Size (watts)	Annual Energy Consumption ⁷³⁵ (kWh/ unit)	Annual Operating Hours	Demand ¹ (kW/ unit)
25	45	1452	0.025
50	91	1452	0.050
150	234	1250	0.150

Table 475: Plug Load Occupancy Sensors – Minimum Requirements

Note: Italic numbers are endnotes not footnotes.

Estimated Useful Life (EUL)

According to DEER 2008, the estimated useful life (EUL) is eight years.

Deemed Savings Values

Deemed measure costs and savings for various sized plug load occupancy sensors are provided in Table 476.

⁷³⁴ Nexant's proprietary analysis results from multiple resources.

735 Ibid.

Measure	Demand Savings ¹ (kW/ unit)	Annual Energy Savings ¹ (kWh/ unit)		
25 watt sensor	0.000	65		
50 watt sensor	0.000	129		
150 watt sensor	0.000	321		

Table 476: Plug Load Occupancy Sensors – Unit Measure Savings

Note: Italic numbers are endnotes not footnotes.

Calculation of Deemed Savings

Four resources contained information on plug load occupancy sensors. The energy savings and amount of equipment controlled per sensor varied widely. The values for energy and demand savings are given in Table 477.

Available Resource	Туре	Size	Annual Energy Saving (kWh/unit)	Demand Savings (kW/unit)
PG&E 2003 ⁴⁰	Plug load occupancy sensor	150	300	0.124
Quantec 2005 ⁴⁷	Power strip occupancy sensor	N/A	27	0.012
DEER 2005 ⁶⁵	Plug load occupancy sensor	50	143	0.051
KEMA 2010 ²⁴	Plug load occupancy sensor	50	221	0.025
NPCC 2005 ³⁷	Cubicle occupancy sensor	25	55	0.025
PacifiCorp 2009 ⁴⁴	Unitary savings included in comprehensive potential study		196	0.00

Table 477: Review of Plug Load Occupancy Sensor Measure Information

Note: Italic numbers are endnotes not footnotes. (See Section 4.4 Commercial Measures References)

3.9.2 Advanced Power Strips

Measure Description

This measure involves the installation of a multi-plug Advanced Power Strip (APS) that has the ability to automatically disconnect specific loads depending on the power draw of a specified or "master" load. A load sensor in the strip disconnects power from the control outlets when the master power draw is below a certain threshold. The energy savings calculated for this measure are derived by estimating the number of hours that devices in typical office workstations are in "off" or "standby" mode and the number of watts consumed by each device in each mode. When the master device (i.e. computer) is turned off, power supply is cut to other related equipment (i.e. monitors, printers, speakers, etc.), eliminating these loads.

Commercial deemed savings were developed based on reported plug load electricity consumption. The assumed mix of peripheral electronics, and related data, are presented in the following table.

Table 478 shows the assumed number of hours each device is typically in "off" mode. Given the assumption that the master device, a desktop computer, will only be in off mode during non-work hours, watts consumed by devices in standby-mode are not counted toward energy savings for a commercial APS. Workday and weekend day watts consumed in off mode are a function of hours multiplied by estimated watt consumption.

There are two deemed savings paths available: Savings can be estimated as follows: 1) per APS for an average complete system or 2) by individual peripheral device.

Peripheral Device	Workday Daily Off Hours ⁷³⁶	Weekend Daily Off Hours	Off Power (W) ^{737,738}	Workday (W-hr) [A]	Weekend (W-hr) [B]
Coffee Maker	16	24	1.14	18.24	27.36
Computer: Desktop	16	24	3.3	52.80	79.20
Computer: Laptop	16	24	4.4	70.40	105.60
Computer Monitor: CRT	16	24	1.5	24.00	36.00
Computer Monitor: LCD	16	24	1.1	17.60	26.40
Computer Speakers	16	24	2.3	36.80	55.20
Copier	16	24	1.5	24.00	36.00
External Hard Drive	16	24	3.0	48.00	72.00
Fax Machine: Inkjet	16	24	5.3	84.80	127.20
Fax Machine: Laser	16	24	2.2	35.20	52.80
Media Player: Blu-Ray	16	24	0.1	1.60	2.40
Media Player: DVD	16	24	2.0	32.00	48.00
Media Player: DVD-R	16	24	3.0	48.00	72.00
Media Player: DVD/VCR	16	24	4.0	64.00	96.00
Media Player: VCR	16	24	3.0	48.00	72.00
Microwave	16	24	3.08	49.28	73.92

Table 478: Peripheral Watt Consumption Breakdown

⁷³⁶ Commercial hours of operation based on typical 8-hour workday schedule.

⁷³⁷ New York State Energy Research and Development Authority (NYSERDA), "Advanced Power Strip Research Report". August 2011.

⁷³⁸ Standby Power Summary Table, Lawrence Berkeley National Laboratory. <u>http://standby.lbl.gov/summary-table.html</u>.

Arkansas TRM Version 10.0 Vol. 2

Peripheral Device	Workday Daily Off Hours ⁷³⁶	Weekend Daily Off Hours	Off Power (W) ^{737,738}	Workday (W-hr) [A]	Weekend (W-hr) [B]
Modem: Cable	0	24	3.8	0.00	91.20
Modem: DSL	0	24	1.4	0.00	33.60
Multi-Function Printer: Inkjet	16	24	5.26	84.16	126.24
Multi-Function Printer: Laser	16	24	3.12	49.92	74.88
Phone with Voicemail	16	24	2.92	46.72	70.08
Printer: Inkjet	16	24	1.3	20.80	31.20
Printer: Laser	16	24	3.3	52.80	79.20
Router	16	24	1.7	27.20	40.80
Scanner	16	24	2.1	33.60	50.40
Television: CRT	16	24	1.6	25.60	38.40
Television: LCD	16	24	0.5	8.00	12.00
Television: Plasma	16	24	0.6	9.60	14.40
Television: Projection	16	24	7.0	112.00	168.00

Baseline & Efficiency Standard

The baseline case is the absence of an APS, where peripherals are plugged into a traditional surge protector or wall outlet. The baseline assumes a typical mix of office equipment, shown in Table 478.

Estimated Useful Life (EUL)

The estimated useful life (EUL) is 10 years according to the New York State Energy Research and Development Authority (NYSERDA) Advanced Power Strip Research Report from August 2011.⁷³⁹

Calculation of Deemed Savings

Energy Savings

Energy savings for a 7-plug APS in use in a commercial setting are calculated using the following algorithm, where kWh saved are calculated and summed for all peripheral devices:

$$\Delta kWh = \frac{\sum (Workdays * A_i) + \sum ((365 - Workdays) * B_i)}{1000}$$

Where:

Workdays = Average number of workdays per year⁷⁴⁰ = 240 days

A = Watt-hours/day consumed in the "off" mode per workday

B = Watt-hours/day consumed in the "off" mode per weekend day

1,000 = Conversion constant to kilowatts by dividing watts by 1,000

Demand Savings

No demand savings are awarded for this measure due to the assumption that typical office equipment will be operating throughout the workday.

Deemed Savings Values

Energy savings from an APS in an office setting are estimated to be 71.4 kWh using the above equation and assuming six unique peripheral devices. Energy savings per peripheral device are also available in the following table.

(455)

⁷³⁹ New York State Energy Research and Development Authority (NYSERDA): Advanced Power Strip Research Report, p. 30. August 2011.

⁷⁴⁰ Assuming 50 working weeks, deducting 2 weeks for federal holidays and another 2 weeks for vacation; 48 weeks x 5 days/week = 240 days

Peripheral Device	kWh Savings
Coffee Maker	7.8
Computer: Desktop	22.6
Computer: Laptop	30.1
Computer Monitor: CRT	10.3
Computer Monitor: LCD	7.5
Computer Speakers	15.7
Copier	10.3
External Hard Drive	20.5
Fax Machine: Inkjet	36.3
Fax Machine: Laser	15.0
Media Player: Blu-Ray	0.7
Media Player: DVD	13.7
Media Player: DVD-R	20.5
Media Player: DVD/VCR	27.4
Media Player: VCR	20.5
Microwave	21.1
Modem: Cable	11.4
Modem: DSL	4.2
Multi-Function Printer: Inkjet	36.0
Multi-Function Printer: Laser	21.3
Phone with Voicemail	20.0
Printer: Inkjet	8.9
Printer: Laser	22.6
Router	11.6
Scanner	14.4
Television: CRT	10.9
Television: LCD	3.4
Television: Plasma	4.1
Television: Projection	47.9

Table 479: Deemed Savings for Commercial APS (per Peripheral Device)

Peripheral Device	kWh Savings
Average APS: Small Business Whole System ⁷⁴¹	61.2

⁷⁴¹ Assuming Computer Monitor: LCD, Computer Speakers, Modem: Average, Printer: Average, and Scanner. Computer not included because it is assumed to be the controlling load. This average value is meant to apply to a typical small business application and should not be applied in other applications. For other applications, calculate the savings for each individual equipment type. kWh savings = $7.5 + 15.7 + [(11.4 + 4.2) \div 2] + [(8.9 + 22.6) \div 2] + 14.4 = 61.2$ kWh.

3.9.3 Computer Power Management

Measure Description

Computer Power Management (CPM) is the automated control of the power, or "sleep" settings of network desktop and notebook computer equipment. CPM involves using built-in features or add-on software programs to switch off displays and enable computers to enter a low power setting called sleep mode during periods of non-use. This measure applies to both ENERGY STAR® and conventional computer equipment, and assumes that the same computer equipment is being used before and after CPM settings are activated. The power draw of a computer is assumed to be roughly equivalent during active and idle periods, so for the purposes of calculating savings, we will combine the terms active and idle as "active/idle" throughout the document.

Baseline and Efficiency Standards

The baseline conditions are the estimated number of hours that the computer spends in idle and sleep mode before the power settings are actively managed. The efficient conditions are the estimated number of hours that the computer spends in active/idle and sleep mode after the power settings are actively managed. Operating hours may be estimated from metering, or the default hours provided in the calculation of deemed savings may be used.

Estimated Useful Life (EUL)

The EUL of this measure is based on the useful life of the computer equipment which is being controlled. Computer technology may continue to function long after technological advances have diminished the usefulness of the equipment. The EUL for Computer Power Management is 4 years.⁷⁴²

Calculation of Deemed Savings

Deemed demand and annual savings are based on the ENERGY STAR® Low Carbon IT Savings calculator. The coincidence factor, default equipment wattages in Table 480, and the active/idle and sleep hours are taken from assumptions in the ENERGY STAR® calculator with all equipment set to enter sleep mode after 15 minutes of inactivity.

$$kWh_{savings} = \left(\frac{W_{\underline{active}}}{1000} \times \left(hours_{\underline{active}}_{\underline{idle}\ pre} - hours_{\underline{active}}_{\underline{idle}\ post}\right)\right) + \left(\frac{W_{sleep}}{1000} \times \left(hours_{sleep}_{pre} - hours_{sleep}_{post}\right)\right)$$
(456)

$$kW_{savings} = \frac{\left(W_{active/idle} - W_{sleep}\right)}{1000} \times = \left(\left(W_{active/idle} - W_{sleep}\right) \times CF\right)/1,000$$
(457)

⁷⁴² The Regional Technical Forum, Measure workbook for Commercial: Non-Res Network Computer Power Management. <u>http://rtf.nwcouncil.org/measures/measure.asp?id=95</u>. Accessed August 2013.

Where:

- $W_{active/idle}$ = total wattage of the equipment, including computer and monitor, in active/idle mode; see Table 480
- $hours_{active/idle_{pre}}$ = annual number of hours the computer is in active/idle mode before computer management software is installed = 6,293
- $hours_{active/idle_{post}}$ = annual number of hours the computer is in active/idle mode after computer management software is installed = 1,173
- W_{sleep} = total wattage of the equipment, including computer and monitor, in sleep mode; see Table 480
- $hours_{sleep}{}_{pre}$ = annual number of hours the computer is in sleep mode before computer management software is installed = 0
- $hours_{sleep_{post}}$ = annual number of hours the computer is in sleep mode after computer management software is installed = 5,120

CF = Coincidence Factor743 = 0.25

1,000 = Conversion constant for watts to kilowatts

Table 480: Computer Power Management - Equipment Wattages

Equipment	W _{sleep}	$W_{active/idle}$
Conventional LCD Monitor	1	32
Conventional Computer	3	69
Conventional Notebook (including display)	2	21

Table 481: Computer Power Management - Deemed Savings Values

Equipment	kWh savings	kW savings
Conventional LCD Monitor	158.72	0.008
Conventional Computer	337.92	0.017
Conventional Notebook (including display)	97.28	0.005

⁷⁴³ The coincidence factor is the percentage of time the computer is assumed to be not in use during the hours 3pm to 6pm from the ENERGY STAR® calculator modeling study.

3.9.4 Pool Pumps

Measure Description

This measure involves the replacement of a single-speed pool pump in retrofit applications with an ENERGY STAR® certified variable speed pool pump. This measure applies to all commercial applications with a pump size up to 4 hp; larger sizes should be implemented through a custom program.

Multi-speed pool pumps are an alternative to variable speed pumps. The multi-speed pump uses an induction motor that is basically two motors in one, with full-speed and half-speed options. Multi-speed pumps may enable significant energy savings. However, if the half-speed motor is unable to complete the required water circulation task, the larger motor will operate exclusively. Having only two speed-choices limits the ability of the pump motor to fine-tune the flow rates required for maximum energy savings.⁷⁴⁴ The default pump curves provided in the ENERGY STAR® Pool Pump Savings Calculator indicate that the motor operating at half-speed will be unable to meet the minimum turnover requirements for commercial pool operation as mandated by the Arkansas Board of Health. Therefore, this measure does not apply to multi-speed pumps.

Baseline and Efficiency Standards

The baseline condition is a standard efficiency single-speed pool pump.

The high efficiency condition is an ENERGY STAR® certified variable speed self-priming pool pump. ENERGY STAR® efficiency levels are defined by size class in hydraulic horsepower (hhp) in weighted energy factor (WEF). WEF is determined by the pump performance on the energy factor (EF) at two operating points, one at high flow and the other at low flow.

Size Class	ENERGY STAR® Version 2.0 (Effective 1/1/2019)	ENERGY STAR® Version 3.0 (Effective 7/19/2021)
Extra Small (hhp ≤ 0.13)	WEF ≥ 7.60	WEF ≥ 13.40
Small (hhp > 0.13 to < 0.711)	WEF \ge -1.30 x In (hhp) + 4.95	WEF \ge -2.45 x In (hhp) + 8.40
Standard (hhp ≥ 0.711)	WEF \ge -2.30 x In (hhp) + 6.59	WEF \ge -2.45 x In (hhp) + 8.40

Table 482: ENERGY STAR® Self-Priming (Inground) Pool Pumps – Energy Efficiency Level

Estimated Useful Life (EUL)

According to DEER 2014, the estimated useful life for this measure is 10 years.⁷⁴⁵

Deemed Savings Values

Deemed savings are per installed unit based on the pump horsepower.

⁷⁴⁴ Hunt, A. & Easley, S., 2012, "*Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings.*" Building America Retrofit Alliance (BARA), U.S. U.S. DOE. May/. http://www.nrel.gov/docs/fy12osti/54242.pdf

⁷⁴⁵ Database for Energy Efficient Resources (2014). <u>http://www.deeresources.com/</u>.

	Year-round Operation				Seasonal Operation (7 months)	
	24/7 O	peration	Limited	d Hours ⁷⁴⁶	Limited Hours ⁷⁴⁶	
Pump HP	kW Savings	kWh Savings	kW Savings	kWh Savings	kW Savings	kWh Savings
< 1.0	0.90	3,537	0.90	2,358	0.71	993
>= 1.0 to < 1.5	1.61	6,557	1.61	4,371	1.48	2,470
>= 1.5 to < 2.0	1.82	6,368	1.82	4,246	1.69	2,360
>= 2.0 to < 2.5	2.12	7,776	2.12	5,184	1.96	2,835
>=2.5 to < 3.0	2.28	7,782	2.28	5,188	2.14	2,976
>= 3.0	2.80	9,935	2.80	6,623	2.67	3,879

Calculation of Deemed Savings

Energy savings for this measure were derived using the ENERGY STAR® Pool Pump Savings Calculator.747

$$kWh_{Savings} = kWh_{conv} - kWh_{vs}$$

(458)

Where:

 kWh_{conv} = Conventional single-speed pool pump energy (kWh)

 kWh_{vs} = ENERGY STAR® variable speed pool pump energy (kWh)

Algorithms to calculate the above parameters are defined as:

$$kWh_{conv} = \frac{PFR_{conv} \times 60 \times hours_{conv} \times PT \times Days}{WEF_{conv} \times 1000}$$

(459)

 $kWh_{vs} = kWh_{hs} + kWh_{ls}$

(460)

$$kWh_{hs} = \frac{PFR_{hs} \times 60 \times hours_{hs} \times PT \times Days}{WEF_{vs} \times 1000}$$
(461)

$$kWh_{ls} = \frac{PFR_{ls} \times 60 \times hours_{ls} \times PT \times Days}{WEF_{vs} \times 1000}$$

⁷⁴⁶ Assumes typical hours for commercial pool operation are between the hours of 6am and 10pm.

⁷⁴⁷ The ENERGY STAR® Pool Pump Savings Calculator, updated May 2020, can be found on the ENERGY STAR® website at: <u>https://www.energystar.gov/productfinder/product/certified-pool-pumps/results</u>.

(462)

$$FR_{ls} = \frac{V_{pool}}{t_{turnover} \times 60}$$

(463)

Where:

 kWh_{hs} = ENERGY STAR® variable speed pool pump energy at high speed (kWh)

Р

 kWh_{ls} = ENERGY STAR® variable speed pool pump energy at low speed (kWh)

- *hours_{conv}* = Conventional single-speed pump daily operating hours per turnover
- $hours_{hs}$ = ENERGY STAR® variable speed pump high speed daily operating hours per turnover = 2 hours
- $hours_{ls}$ = ENERGY STAR® variable speed pump low speed daily operating hours per turnover = 6 hours
- *Days* = Operating days per year = 365 days (year-round operation); 7 months x 30.4 days/month = 212.8 days (seasonal operation)
- PFR_{conv} = Conventional single-speed pump flow rate (gal/min)

 $PFR_{hs} = \text{ENERGY STAR}$ variable speed pump high speed flow rate = 50 gal/min

 PFR_{ls} = ENERGY STAR® variable speed pump low speed flow rate (gal/min) = 45.8

 WEF_{conv} = Conventional single-speed pump energy factor (gal/W·hr)

 WEF_{vs} = ENERGY STAR® variable speed pump energy factor

 $V_{pool} =$ Pool volume = 22,000 gal (default)

PT = Pool turnovers per day = 3 (24/7 operation); 2 (limited hours operation)⁷⁴⁸

 $t_{turnover,VS}$ = Variable speed pump time to complete 1 turnover = 8 hours⁷⁴⁸

60 =Constant to convert between minutes and hours

1000 = Constant to convert W to kW

⁷⁴⁸ Arkansas Board of Health, Rules and Regulations Pertaining to Swimming Pools and Other Related Facilities. <u>http://www.healthy.arkansas.gov/aboutadh/rulesregs/swimmingpools.pdf</u>

Pump HP	hours _{conv}	PFR _{conv} (gal/min)	WEF _{conv} (gal/W·h)	WEF _{vs} (gal/W·h)
< 1.0	4.9	59	3.3	11.1
>= 1.0 to < 1.5	4.7	76	2.5	8.7
>= 1.5 to < 2.0	4.1	78	2.3	8.9
>= 2.0 to < 2.5	4.1	89	2.3	9.3
>=2.5 to < 3.0	4.0	93	2.2	7.4
>= 3.0	4.0	102	2.0	7.1

Table 484: Conventional and Variable Speed Pool Pumps Assumptions

Demand savings can be derived using the following:

$$kW_{Savings} = \left[\left(\frac{kWh_{conv}}{hours_{conv}} \times PT \right) - \left(\frac{kWh_{hs} + kWh_{ls}}{hours_{hs} + hours_{ls}} \times PT \right) \right] \times \frac{CF}{Days}$$

Where:

CF = Coincidence factor⁷⁴⁹ = 1

(464)

⁷⁴⁹ Assumes that 100% of commercial pool pumps will be operating during summer peak period.

3.9.5 High Speed Doors for Cold Storage Facilities

Measure Description

This measure involves the installation of energy efficient industrial high-speed doors. High-speed doors are flexible doors composed of a soft material that can either roll up or bi-part for instant access to a facility.

Baseline and Efficiency Standards

The baseline case is an industrial door used to separate areas with differing conditioned spaces.

Estimated Useful Life

The estimated useful life (EUL) of this measure is 16 years.⁷⁵⁰

Calculation of Deemed Savings

Energy Savings

High speed door energy savings are calculated using the following formulas:

$$Q_W = N \times 88 \times L_O \times W_O \times CD_W \times WS \times WD$$

(465)

$$Q_T = N \times 60 \times CD_T \times L_0 \times W_0 \times \sqrt{(2 \times g \times \Delta H_{NPL} \times ((T_E - T_I)/(T_E + 460)))}$$
(466)

$$Q_P = N \times 136.8 \times CD_P \times L_0 \times W_0 \times \sqrt{(2 \times gc \times \Delta P/\rho_I)}$$
(467)

$$Q_{infiltration} = Q_W + Q_T + Q_P$$

(468)

$$q_{c} = [1.08 \times Q_{infiltration} \times (T_{E} - T_{I})] + [4,840 \times Q_{infiltration} \times (W_{E} - W_{I})]$$

(469)

$$q_{insulation} = (1/R_{old} - 1/R_{new}) \times L_0 \times W_0 \times (T_E - T_I)$$

(470)

$$t_{door} = (1/speed_{old} - 1/speed_{new}) \times (L_0 \times 12 \times 0pens)/(24 \times 60)$$
(471)

$$t_{open} = (t_{door} \times AOH \times AOD)/(60 \times 365)$$

$$t_{closed} = ((60 - t_{door}) \times AOH \times AOD)/(60 \times 365)$$

(473)

⁷⁵⁰ As recommended in Navigant 'ComEd Effective Useful Life Research Report', May 2018

 $kWh_{savings} = (q_c \times t_{open} + q_{insulation} \times t_{closed}) / (\varepsilon_c \times 3,412)$

(474)

Where:

- Q_W = Wind effect air flowrate (cfm)
- N = Number of openings
- 88 = Conversion factor to convert miles per hour to feet per minute

 L_0 = Length of opening (ft)

 W_0 = Width of opening (ft.)

 CD_W = Surface-averaged wind pressure coefficient = 0.35^{751}

WS = Average local wind speed (mph) (Table 485)

WD = Directional frequency of wind (%) (

Table 486)

 Q_T = Thermal effect air flowrate in cooling mode (cfm)

- 60 = Conversion factor to convert feet per second to feet per minute
- 460 = Conversion factor to convert to absolute temperature in degrees Rankine

 CD_T = Discharge coefficient due to thermal forces = 0.65^{752}

g = Local acceleration of gravity = 32.174 ft./s² at sea level

- ΔH_{NPL} = Difference between the height of the opening and the height of the neutral pressure level (NPL) (ft) = one-half the height of the aperture⁷⁵³
- T_I = Interior temperature (°F), if unknown, assume 40°F for medium-temperature coolers and 0°F for low-temperature freezers

 T_E = Exterior temperature (°F) (

Table 487)

 Q_P = Building pressurization effect (mechanical ventilation system) air flowrate (cfm)

136.8 = Pressure unit conversion factor

⁷⁵¹ Determined as a wind-induced average indoor-outdoor pressure difference using average values for local wind pressure coefficients and internal wind-induced pressure coefficients. ASHRAE Handbook 2013 Fundamentals, Chapter 24, p. 24.4-5

⁷⁵² Default discharge coefficient for unidirectional flow. ASHRAE Handbook 2013 Fundamentals, Chapter 16, p. 16.13

⁷⁵³ Estimation of ΔH_{NPL} as one-half the height of the aperture. ASHRAE Handbook 2013 Fundamentals, Chapter 16, p. 16.13

 CD_P = Discharge coefficient due to mechanical forces = 0.65^{754}

gc = Gravitational proportionality constant = 32.174 lbm-ft/s²·lbf

 ΔP = Building pressurization by mechanical systems (iwc) = 0 for spaces with neutral pressurization (default), 0.01 for spaces with positive or negative pressurization

 ρ_I = Interior density of air (lbm/ft³) = 0.075⁷⁵⁵

 $Q_{infiltration} =$ Total infiltration air flowrate (cfm)

 q_c = Annual cooling heat transfer rate (Btu/hr)

1.08 = Conversion factor to convert cubic feet to pounds of water and minutes to hours

4,840 = Latent heat conversion factor

 W_E = Exterior humidity ratio (lbm_{water}/lbm_{dry air}) (Table 488)

Demand Savings

Peak demand savings are assumed to be equal to the average hourly demand.

$$kW_{savings} = \frac{kWh_{savings}}{8760}$$

Where:

 W_I = Interior humidity ratio (lbm_{water}/lbm_{dry air}) = for medium-temperature coolers use 0.0048, and for low-temperature freezers use 0.0008⁷⁵⁶

 $q_{insulation} =$ insulation heat transfer rate (Btu/hr)

 R_{old} = R-value of the old door (ft².°F·h/Btu)

 $R_{new} =$ R-value of the new door (ft^{2.}°F·h/Btu)

 t_{door} = reduced time that the door stays open (min/hr)

 $speed_{old}$ = opening and closing speed of the old door (in/s)

 $speed_{new}$ = opening and closing speed of the new door (in/s)

12 =Conversion factor to convert feet to inches

Opens= number of time the door opens per day

24 = Conversion factor to convert days to hours

 t_{open} = time that the door remains open (hr)

(475)

⁷⁵⁴ Default discharge coefficient for unidirectional flow. ASHRAE Handbook 2013 Fundamentals, Chapter 1, p. 16.13

⁷⁵⁵ Property of air, ASHRAE Handbook 2013 Fundamentals, Chapter 1, p. 1.2

 $^{^{756}}$ Assuming 90% relative humidity at 40 and 0 $^{\circ}\mathrm{F}$

- AOH = annual operating hours of the facility (hr) = for medium-temperature coolers use 5,000, and for low-temperature freezers use 7,000
- AOD = annual operating days of the facility (days), if unknown, assume 52 weeks/year × 5 days/week = 260 days/year
- 365 =Conversion factor to convert years to days
- t_{closed} = time that the door remains closed (hr)
- ε_C = Cooling HVAC system efficiency = for medium-temperature coolers use 2.5 COP, and for low-temperature freezers use 1.5 COP⁷⁵⁷
- 3,412 =Conversion factor to convert BTU to kWh

Table 485: Average Wind Speed by Weather Zone

Weather Zone and Location	Average Wind Speed (mph)
Zone 9 - Rogers	7.703
Zone 9 - Fayetteville	6.511
Zone 8 - Fort Smith	7.475
Zone 7 - Little Rock	7.095
Zone 6 - El Dorado	5.376

 Table 486: Directional Frequency of Wind by Weather Zone

Weather Zone and Location	North (%)	South (%)	East (%)	West (%)
Zone 9 - Rogers	16.4	40.0	22.8	20.9
Zone 9 - Fayetteville	18.3	48.7	18.4	14.7
Zone 8 - Fort Smith	17.3	12.6	50.1	20.0
Zone 7 - Little Rock	23.2	29.2	25.5	22.1
Zone 6 - El Dorado	24.5	33.8	23.3	18.4

Table 487: Average Annual Exterior Temperature by Weather Zone

Weather Zone and Location	Average Annual Temperature (°F)
Zone 9 - Rogers	57.8
Zone 9 - Fayetteville	59.6

⁷⁵⁷ Default assumptions from 3.7.7 Strip Curtains for Walk-in Coolers and Freezers

Zone 8 - Fort Smith	60.1
Zone 7 - Little Rock	61.8
Zone 6 - El Dorado	64.1

Table 488: Average Humidity Ratio by Weather Zone

Weather Zone and Location	Average Humidity Ratio (lbm _{water} /lbm _{dry air)}
Zone 9 - Rogers	0.00790
Zone 9 - Fayetteville	0.00902
Zone 8 - Fort Smith	0.00927
Zone 7 - Little Rock	0.00978
Zone 6 - El Dorado	0.01077

Demand Savings

Peak demand savings are assumed to be equal to the average hourly demand.

$$kW_{savings} = \frac{kWh_{savings}}{8760}$$

(476)

Where:

8,760 = Operating hours of cold storage facility

Annual kW and kWh Savings Calculation Example for High Speed Doors

One door with a width of 8.5 feet and a length of 13.5 feet faces east. The Fayetteville values are used for the average wind speed (6.511 mph), the directional frequency of wind (east 0.184), the average exterior temperature (59.6°F), and the average exterior humidity ratio ($lbm_{water}/lbm_{dry\,air}$). The default wind pressure coefficient and discharge coefficients defined above are used. The local acceleration due to gravity, the gravitational proportionality constant, and the interior density of air values defined above are used. The difference between the height of the opening and the height of the NPL is assumed to be half the height of the building, or 10.5 feet. The facility is assumed to be a medium-temperature cooler, yielding a default interior temperature of 40°F, an interior humidity ratio of 0.0048 $lbm_{water}/lbm_{dry\,air}$, an HVAC efficiency of 2.5 COP, and operating time of 5000 hours.

An assumed value of 0 iwc is used for a building with neutral pressurization. The R-value of the new door is 5 ft^{2.°}F·h/Btu, and the R-value of the old door is 0.8 ft^{2.°}F·h/Btu. The speed of the old door is 10 in/s, and the speed of the new door is 50 in/s. The door opens 100 times per day. The facility operates 260 days out of the year.

$$Q_W = N \times 88 \times L_0 \times W_0 \times CD_W \times WS \times WD = 1 \times 88 \times 13.5 \times 8.5 \times 0.35 \times 6.511 \times 0.184$$

= 4,234.2 cfm

$$Q_T = N \times 60 \times CD_T \times L_0 \times W_0 \times \sqrt{(2 \times g \times \Delta H_{NPL} \times ((T_E - T_I)/(T_E + 460)))}$$

= 1 × 60 × 0.65 × 13.5 × 8.5 × $\sqrt{(2 \times 32.174 \times 13.5/2 \times ((59.6 - 40)/(59.6 + 460)))}$
+ 460)) = 18,114.7 cfm

(478)

(477)

$$Q_P = N \times 136.8 \times CD_P \times L_0 \times W_0 \times \sqrt{(2 \times gc \times \Delta P/\rho_I)}$$

= 1 × 136.8 × 0.65 × 13.5 × 8.5 × \sqrt{(2 × 32.174 × 0/0.075)} = 0 cfm

(479)

$$Q_{infiltration} = Q_W + Q_T + Q_P = 4,234.2 + 18,114.7 + 0 = 22,348.8 \ cfm$$

(480)

$$\begin{aligned} q_C &= [1.08 \times Q_{infiltration} \times (T_E - T_I)] + [4,840 \times Q_{infiltration} \times (W_E - W_I)] \\ &= [1.08 \times 22,348.8 \times (59.6 - 40)] + [4,840 \times 22,348.8 \times (0.00902 - 0.0048)] \\ &= 929,550.7 \; Btu/hr \end{aligned}$$

(481)

$$q_{insulation} = (1/R_{old} - 1/R_{new}) \times L_0 \times W_0 \times (T_E - T_I) = (1/5 - 1/0.8) \times 13.5 \times 8.5 \times (59.6 - 40) = -2,361.6 Btu/hr$$

(482)

$$t_{door} = (1/speed_{old} - 1/speed_{new}) \times (L_0 \times 12 \times 0pens)/(24 \times 60)$$

= (1/10 - 1/50) × (13.5 × 12 × 100)/(24 × 60) = 0.90 min/hr

(483)

$$t_{open} = (t_{door} \times AOH \times AOD)/(60 \times 365) = (0.90 \times 5,000 \times 260)/(60 \times 365) = 53.4 \text{ hours}$$

(484)

 $t_{closed} = ((60 - t_{door}) \times AOH \times AOD)/(60 \times 365) = ((60 - 0.90) \times 5,000 \times 260)/(60 \times 365)$ = 3,508.2 hours

(485)

$$kWh_{savings} = (q \times t_{open} + q_{insulation} \times t_{closed}) / (\varepsilon_C \times 3,412) = (929,550.7 \times 53.4 \pm 2,361.6 \times 3,508.2) / (\varepsilon_C \times 3,412) = 4,850.7 \, kWh$$

(486)

$$kW_{savings} = kWh_{savings}/8,760 = 4,850.7/8,760 = 0.554 \, kW$$

(487)

3.9.6 High Efficiency Battery Chargers

Measure Description

Industrial electric vehicle fleets used for material handling, or forklifts, use battery charging systems to convert AC source power into DC power required to charge the vehicle batteries. Traditional charging systems include Ferro resonant (FR) and silicon-controlled rectifier (SCR) charging equipment. This measure is for a single high-frequency battery charger that converts AC to DC power more efficiently than traditional systems due to switch mode operation that reduces heat and power loss throughout the system.

Baseline and Efficiency Standards

The baseline conditions are a typical FR or SCR charging system operating in an industrial or warehouse setting to power forklifts. The efficient condition is a high efficiency battery charging system meeting the following performance requirements:

Table 489: Battery Charging System - Efficiency Requirements

Performance Factor	Requirement
Power Conversion Efficiency	$\geq 89\%$
Maintenance Power	$\leq 10W$

Estimated Useful Life (EUL)

The EUL for High Efficiency Battery Chargers for Forklift applications is 15 years.⁷⁵⁸

Calculation of Deemed Savings

Deemed demand and annual savings are based on a study conducted for the Codes and Standards Enhancement (CASE) Initiative.⁷⁵⁸

 $kWh_{savings} =$

$$\left[\left(hours_{charg} \times \frac{W_{charge_{pre}} - W_{charge_{post}}}{1000} \right) + \left(hours_{idle} \times \frac{W_{idle_{pre}} - W_{idle_{post}}}{1000} \right) \right]$$
(488)

$$kW_{savings} = \frac{kWh_{savings}}{hours_{charge} + hours_{idle}} \times CF$$

(489)

 ⁷⁵⁸ Battery Charger Title 20 CASE, Analysis of Standard Options for Battery Charger Systems. <u>https://www.kannahconsulting.com/wp-content/uploads/2016/08/2010-10-</u>
 <u>11 Battery Charger Title 20 CASE Report v2-2-2.pdf</u>. Accessed July 2016

Where:

 $hours_{charge}$ = annual number of hours the charging system is actively charging. See Table 490.

 $W_{charge,pre/post}$ = wattage draw of the charging system in active charging mode. See Table 490.

- $hours_{idle}$ = annual number of hours the charging system is operating with no load or in maintenance mode on a fully charged battery See Table 490.
- $W_{idle,pre/post}$ = wattage draw of the charging system is operating with no load or in maintenance mode on a fully charged battery. See Table 490.

CF = Coincidence Factor. See Table 490.

1,000 = Conversion constant for watts to kilowatts

Table 490: Battery Charging System - Hours and Wattages⁷⁵⁹

Equipment	hours _{charge}	hours _{idle}	$W_{charge_{pre}}$	$W_{idle_{pre}}$	$W_{charge_{post}}$	$W_{idle_{post}}$	CF
Single Phase	3,942	4,818	2,000	50	1,767	10	0.19
Three Phase	8,234	526	5,785	34	5,111	10	1.0

Example calculation for a single-phase charger

 $kWh_{savings} = (3,942 x (2,000W - 1,767W) + 4,818 x (50W - 10W))/1,000 = 1,111 kWh$ $kW_{savings} = (1,111 kWh/((3,942 + 4,818)) \times 0.19 = 0.02 kW$

 Table 491: Battery Charging System - Deemed Savings Values per Charger

Equipment	kWh savings	kW savings
Single Phase	1,111	0.02
Three Phase	5,562	0.63

 ⁷⁵⁹ Battery Charger Title 20 CASE, Analysis of Standard Options for Battery Charger Systems.
 <u>https://www.kannahconsulting.com/wp-content/uploads/2016/08/2010-10-</u>
 <u>11 Battery Charger Title 20 CASE Report v2-2-2.pdf</u>. Accessed July 2016

3.9.7 Electric Vehicle Charging Systems (EV Chargers)

Measure Description

Electric passenger vehicles and plug-in hybrid vehicles use battery charging systems to convert AC source power into DC power required to charge the vehicle batteries. These charging systems vary in charging rate, and are categorized as:

- Level 1 (up to 16 Amps AC), which typically plugs into a standard 3-prong 120V outlet
- Level 2 (16 80 Amps AC), which operates on 240V split-phase power
- Level 3 (greater than 80 Amps AC), which operates on 480V 3-phase power

Electric Vehicles have on-board transformers that can convert incoming AC power to DC power. If an EV Charger outputs DC power, the vehicle's on-board transformer is bypassed. EV Chargers with DC output are typically Level 3 chargers, and are not eligible for this measure. Most Level 1 and Level 2 chargers output AC power. All chargers will have standby power losses and operational power losses, but the loss rates can vary between chargers, the most efficient chargers having the lowest standby and operational losses. This measure is for the purchase and installation of Level 2 AC output chargers that exceed the efficiency standards outlined below.

Networked electric vehicle chargers are connected to the internet so they can be remotely monitored and controlled as part of a charging network. Networked chargers can be equipped to accept payments for charging and can store & transmit usage data, time of use, and other metrics and details. Some networked chargers also can be remotely controlled for time-of-day charging or for demand-limiting purposes.

Baseline and Efficiency Standards

The baseline conditions are a Level 2 AC output EV Charger (networked or non-networked) that meets the efficiency standards outlined in Table 492. The efficient condition is a Level 2 AC output EV Charger (networked or non-networked) with lower standby losses and a higher charging efficiency than what is outlined in, Table 492 and/or is ENERGY STAR® certified. In Table 492, "Standby Power Losses" refers to the energy consumption of the charger when it is not connected to a vehicle.

Performance Factor	Non-Networked	Networked
Standby Power Losses ⁷⁶⁰	< 3.70W	< 9.90W
Charging Efficiency ⁷⁶¹	>99%	> 99%

Table 492: EV Chargers – Baseline	e Efficiency Requirements
-----------------------------------	---------------------------

Estimated Useful Life (EUL)

The EUL for High Efficiency Electric Vehicle Chargers is 15⁷⁶² years.

⁷⁶⁰ Deemed baseline Standby Power values from 2021 Illinois Statewide Technical Reference Manual for Energy Efficiency, Version 9.0, Volume 3: Residential Measures, September 25, 2020.

⁷⁶¹ 99% is the "Standard Model" Level 2 EVSE average efficiency from ENERGY STAR® Market and Industry Scoping Report: Electric Vehicle Supply Equipment, p. 11, September 2013.

⁷⁶² Based on Northern Power and Conservation Council, Regional Technical Forum workbook for Level 2 Electric Vehicle Charger version 1.1. approved May 2019. <u>https://rtf.nwcouncil.org/measure/level-2-electric-vehicle-charger</u>

Deemed Savings Value

Non-Networked		Netwo	orked
kWh savings	kW savings	kWh savings	kW savings
34	0.002	68	0.007

Calculation of Deemed Savings

Deemed demand and annual energy savings are based on travel statistics for drivers in the state of Arkansas, information from past electric vehicle studies, and Technical Reference Manuals published for other jurisdictions throughout the United States.

$$kWh_{savin \ standby} = (8,760 - hours_{char}) \times \frac{(Watts_{Standby_{Baseline}} - Watts_{Standby_{ES}})}{1,000}$$
(490)

$$kWh_{savings_{charging}} = kWh_{per\ mile} \times Miles_{per\ year} \times \left(\frac{1}{Eff_{Baseline}} - \frac{1}{Eff_{ES}}\right)$$
(491)

$$kWh_{savings} = \left(kWh_{savings_{standby}} + kWh_{savings_{charging}}\right)$$
(492)

$$kW_{savings} = kW_{Charge Rate} \times CF \times \left(\frac{1}{Eff_{Baseline}} - \frac{1}{Eff_{ES}}\right) + (1 - CF) \times \frac{Watts_{Standby_{Baseline}}}{1,000}$$

Where:

- *Watts*_{StandbyBaseline} = wattage draw of a baseline efficiency charging system when not actively charging; 9.9 for networked chargers, 3.7 for non-networked chargers.
- $Watts_{Standby_{ES}}$ = wattage draw of an energy efficient charging system when not actively charging; 5.15 for networked chargers, 3.44 for non-networked chargers.
- $kWh_{per mile}$ = vehicle energy use per mile. (see Table 494)
- *hours_{charge}* = annual active charging hours. (see Table 494)
- $Miles_{per year} =$ annual miles driven by on electric power by charged EVs or PHEVs. (see Table 494)

 $kW_{Charge Rate}$ = average vehicle charging rate from Level 2 Charger. (see Table 494)

 $Eff_{Baseline}$ = charging efficiency of a baseline charging system. (see Table 494)

 $Ef f_{ES}$ = charging efficiency of an energy efficient charging system. (see Table 494)

(493)

CF = Coincidence Factor. (see Table 494)

8,760 = number of hours in a year

1,000 =Conversion factor

Table 494: Vari	iables for Deemed	I Savings Calculations	s, per Charger Port
	abies for Deemed	i Savings Calculation.	s per charger rore

Variable	Deemed Value
kWh _{Per Mile}	0.30 ⁷⁶³
$kW_{Charge\ Rate}$	5.50 ⁷⁶⁴
Miles _{Per Year}	21,193 ⁷⁶⁵
hours _{Charge}	1,156 ⁷⁶⁶
Eff_{ES} (ENERGY STAR charger efficiency)	99.5% ⁷⁶⁷
$Eff_{Baseline}$ (Baseline charger efficiency)	99.0%
CF	0.081768

⁷⁶³ 8 U.S. Department of Energy, Fueleconomy.gov: The Official U.S. Government Source for Fuel Economy Information. <u>http://www.fueleconomy.gov/feg/evsbs.shtml</u>.

⁷⁶⁴ From Xcel Energy "Electric Vehicle Charging Station Pilot Evaluation Report", May 2015: "*Level 2 charging...could have an electric demand requirement between 3.3 and 7.7 kW during a 3 to 8-hour charging period.*" Midpoint of 5.5 kW assumed to be a reasonable average for this measure.

⁷⁶⁵ Determined based on average amount of charging that occurs outside the home (14%, an assumption consistent with RTF characterization based on 2014 Idaho National Laboratory study), current estimate of number of non-res chargers (90,000, according to Platts Analytics Energy Outlook), and number of EVs and PHEVs currently in use (1.74 Million in cumulative sales since 2010, assumes 5% no longer in operation).

⁷⁶⁶ Based on 0.3 kWh/mile vehicle efficiency, 21,193 miles per year of driving on electric power per charger, and average charge rate of 5.5 kW.

⁷⁶⁷ Average steady-state efficiency value from tested energy efficient Level 2 chargers in ENERGY STAR® Market and Industry Scoping Report for Electric Vehicle Supply Equipment, September 2013.

⁷⁶⁸ Calculated using data from Xcel Energy "Electric Vehicle Charging Station Pilot Evaluation Report", May 2015, using average charging kW between 3pm and 6pm on summer weekdays and adjusting for higher use of commercial chargers.

4. GENERAL REFERENCE INFORMATION

4.1 Acronyms & Abbreviations

AC	Air-Conditioning
ACH	Air Changes per Hour
ACCA	Air-Conditioning Contractors of America
ACEEE	American Council for an Energy Efficient Economy
AFUE	Annual Fuel Utilization Efficiency
AHAM	Association of Home Appliance Manufacturers
AHRI	Air-Conditioning, Heating, and Refrigeration Institute
ANSI	American National Standards Institute
АОН	Annual Operating Hours
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
ASTM	American Society for Testing and Materials
BTU	British Thermal Unit
BTUh	British Thermal Units per Hour
C&I	Commercial and Industrial
CALMAC	California Measurement Advisory Committee
CEUS	Commercial End Use Survey of 2006
CBECS	Commercial Building Energy Consumption Survey
ССТ	Correlated Color Temperature
CCAF	Compressor Control Adjustment Factor
CEE	Consortium for Energy Efficiency
CF	Coincidence Factor
CFL	Compact Fluorescent Lamp
CFM	Cubic Feet per Minute
CFR	Code of Federal Regulations
CNRC	Canada National Research Council
CO	Carbon Monoxide
СОР	Coefficient of Performance
CR	Converted Residence

DEER	Database for Energy Efficient Resources
DHW	Domestic Hot Water
DLC	DesignLights™ Consortium
DOE	Department of Energy
DOE2	Department of Energy (building simulation model version 2)
DSE	Distribution System Efficiency
DSM	Demand-Side Management
DX	Direct Expansion
ECM	Electrically Commutated Motor
EER/EER2	Energy Efficiency Ratio
ESF	Energy Savings Factor
EF	Efficiency Factor
EFLH	Equivalent Full Load Hours
EPAct	Energy Policy Act
EISA	Energy Independence and Security Act of 2007
EUL	Estimated Useful Life
F	Fahrenheit
FESC	Florida Energy Solar Center
GAMA	Gas Appliance Manufacturer Association
GPM	Gallons per Minute
GSFL	General Service Fluorescent Lamp
GSIL	General Service Incandescent Lamp
HDD	Heating Degree Day
HE	High-Efficiency
HERS	Home Energy Rating System
HIM	High Impact Measure
HOU	Hours of Use
hp	Horsepower
НР	Heat Pump
HSPF/HSPF2	Heating Seasonal Performance Factor
HVAC	Heating, Ventilating, and Air-Conditioning

IECC	International Energy Conservation Code
IES	(see IESNA)
IESNA	Illuminating Engineering Society of North America
IMEF	Integrated Modified Energy Factor
IMH	Ice-making Heads
IPLV	Integrated Part-Load Value
ISTMT	In-Situ Temperature Measurement Test
ISR	In-Service Rate
IWF	Integrated Water Factor
КВТИН	Thousand British Thermal Units per Hour
kW	Kilowatt
kWh	Kilowatt hour
LED	Light Emitting Diode
LPD	Lighting Power Density
LPW	Lumens Per Watt
Low-E	Low Emissivity
LRC	Lighting Research Center
MBH	Thousand British Thermal Units per Hour (KBTUH)
MBTU	Thousand British Thermal Units
MF	Multifamily
MHEA	Manufactured Housing Energy Audit
MMBTU	Million British Thermal Units
MW	Megawatt
MWh	Megawatt hour
NATE	North American Technician Excellence
NBI	New Buildings Institute
NEAT	National Energy Audit Tool
NEEP	Northeast Energy Efficiency Partnerships
NPCC	Northwest Power and Conservation Council
NVLAP	National Voluntary Laboratory Accreditation Program
NYSERDA	New York State Energy Research Development Authority

4.1 Acronyms & Abbreviations

OSHA	Occupational Safety and Health Administration
PAF	Power Adjustment Factor
PIR	Passive Infrared
POF	Peak Operation Factor
PSI	Pounds per Square Inch
РТАС	Packaged Terminal Air-Conditioners
РТНР	Packaged Terminal Heat Pump
R-Value	Resistance Value-measures insulating value
RECS	Residential Energy Consumption Survey
RIMA	Reflective Insulation Manufacturers Association International
ROB	Replace on Burnout
SC	Small Commercial
SEER/SEER2	Seasonal Energy Efficiency Ratio
sf	Square feet
SF	Single-Family
SHGC	Solar Heat Gain Coefficient
SL	Standby Loss
SMACNA	Sheet Metal and Air Conditioning Contractors National Association
SRI	Solar Reflective Index
SP	Shaded Pole
SPD	Showers Per Day
SSE	Steady State Efficiency
SSL	Solid-State Lighting (e.g., LED lighting)
T-12	Fluorescent lamp tube, 1.5" in diameter
T-5	Fluorescent lamp tube, 5/8" in diameter
T-8	Fluorescent lamp tube, 1" in diameter
TMY/TMY2/TMY3	Typical Meteorological Year
Ton	Refrigeration ton, or 12,000 BTU of cooling
TRM	Technical Reference Manual
TXV	Thermal Expansion Valves
U-Factor	U-Value (measures heat loss—inverse of R-Value)

- UES Unit Energy Savings
- W Watt
- w.g. Water gauge (as in, inches water gauge)
- WHJ Water Heater Jacket

4.2 Coincidence Factors for HVAC

Coincidence Factor (CF) is defined as the ratio of a building's HVAC system's *average* demand (measured in kW) during the 3-hour peak period to the rating of the building's HVAC system (also measured in kW).

Coincidence factors were calculated for each type of commercial building and for residences. The calculation of peak electrical demand savings throughout the TRM uses CF values in the following formula:

Peak demand savings (kW) = Reduction in the building's maximum demand (kW) x CF.

The CF of a building depends on what time of day it demands the most energy. If the building's maximum demand happens to occur during the 3-hour peak period, the CF is equal to 1.0. Otherwise, the CF will be less than 1.0.

Peak period is defined as the time interval starting at 3 pm and ending at 6 pm of the hottest weekday of the year (designated the peak day). The independent evaluation monitor (IEM) analyzed TMY3 data to select the peak period for Arkansas.

The IEM then simulated the electrical energy use pattern for each type of commercial building to determine the building's HVAC system's maximum kW demand on the peak day, and the HVAC system's kW demand during the 3-hour peak period. CF was then computed for each building type as the ratio of these two kW demand values.

In order to conduct these electric use pattern simulations, the IEM needed to make certain assumptions about the common practice for sizing HVAC systems for different types of commercial buildings. The following source was used for this purpose: New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs, Oct. 15, 2010.

Coincidence Factors for different types of commercial buildings in Arkansas are shown in

Table 495.

For residential coincidence factors, the IEM used the Air Conditioning Contractors of America (ACCA) Manual S, which recommends that residential HVAC systems be sized at 115% of the maximum cooling requirement of the house. Assuming that the house's maximum cooling occurs during the hours of 3 PM to 6 PM, this sizing guideline leads to a coincidence factor for residential HVAC of 1.0/1.15 = 0.87.

Building Type	Coincidence Factor
Assembly	0.82
College	0.84
Fast Food	0.78
Full Menu	0.85
Grocery	0.90
Health Clinic	0.85
Large Office	0.84
Lodging	0.77
Religious Worship	0.82
Retail	0.88
School	0.71
Small Office	0.84

Table 495: Commercial Coincidence Factors by Building Type⁷⁶⁹

⁷⁶⁹ Values for Assembly and Religious Worship building types developed using an adjustment factor derived through a comparison of average CFs for College/University and Assembly/Religious Worship building types from the Texas state Technical Reference Manual. College/University was selected as a reference building type due to average alignment with Assembly/Religious worship building types in other TRMs, inclusion of a summer session, and increased evening usage.

4.3 Equivalent Full Load Hours

To estimate equivalent full-load hours for heating and cooling, the Independent Energy Monitor (IEM) relied on calibrated DOE-2.2 simulation models, a method akin to that in the New York State Technical Reference Manual.⁷⁷⁰ Models were created using eQUEST software for representative buildings with a variety of functions: small and large offices, retail, grocery stores, schools, colleges, healthcare facilities, full menu and fast food restaurants, and lodging. These models had their internal gains (such as lighting, cooking, and office equipment) calibrated to the real world using the results of the California Commercial End Use Survey of 2006 (CEUS). The daily profiles of end use consumption, as well as the intensity (usage per square foot) were matched to survey results for each building type. Building occupancy, another large component of internal gains, was not tracked directly by the CEUS. Instead, the IEM employed the hourly usage of various end uses to proxy building occupancy, for example by using office equipment to indicate occupancy of an office building.

Full-load hours were determined with these models by dividing the total heating and cooling loads on the building over the course of the year, as taken from DOE2.2 report SS-D, by the rated capacity of equipment. Rated capacity was determined using the sum of space peak loads from the DOE2.2 SS-A reports assuming a 15% safety factor.

⁷⁷⁰ <u>https://www3.dps.ny.gov/W/PSCWeb.nsf/All/72C23DECFF52920A85257F1100671BDD</u>

Table 496 shows the capacity used for each building, as well as their conditioned square footage. Using this method, full-load hours are based on the total load delivered divided by the capacity of the system, yielding the equivalent run time of equipment at full load.

Buildings were assumed to let their fans operate continuously, and to have space heating and cooling systems available to meet loads as needed at all times. Thermostat set points were 70° for heating and 76° for cooling.

Table 496: Equipment Sizing

Building Type	Conditioned Floor Area (square feet)	Cooling Equipment Capacity (kBTU/h)	Heating Equipment Capacity (kBTU/h)
Assembly 771	12,695	354	262
College/University	12,695	354	262
Fast Food Restaurant	2,500	118	89
Full Menu Restaurant	5,000	293	72
Grocery Store	9,000	372	299
Health Clinic	1,139	55	38
Lodging	32,375	1,170	572
Large Office (>30k SqFt)	125,000	3,192	1,942
Small Office (<=30k SqFt)	15,000	481	241
Religious Worship 772	12,695	354	262
Retail	7,500	209	201
School	12,695	318	293

⁷⁷¹ Equivalent to value specified for College/University

⁷⁷² Equivalent to value specified for School/University

Duilding Trues	Zone 6	Zone 7	Zone 8	Zone 9
Building Type Assembly	2,017	1,723	1,632	1,287
College/University	1,698	1,725	1,052	1,287
Fast Food Restaurant	1,393	1,199	1,170	968
Full Menu Restaurant	1,819	1,661	1,640	1,512
Grocery Store	1,594	1,361	1,300	1,030
Health Clinic	1,627	1,379	1,368	1,144
Lodging	1,434	1,258	1,274	1,144
Large Office (>30k SqFt)	2,387	2,112	1,957	1,588
Small Office (<=30k SqFt)	1,696	1,486	1,448	1,207
Religious Worship	1,799	1,537	1,456	1,148
Retail	1,560	1,291	1,214	965
School	1,494	1,233	1,183	932

Table 497: Equivalent Full-Load Hours for Cooling (EFLH_C) by Weather Zone⁷⁷³

Building Type	Zone 6	Zone 7	Zone 8	Zone 9
Assembly	615	854	915	1,032
College/University	674	936	1,002	1,130
Fast Food Restaurant	287	439	472	549
Full Menu Restaurant	178	321	362	438
Grocery Store	692	941	1,001	1,129
Health Clinic	641	878	915	1,045
Lodging	391	589	637	722
Large Office (>30k SqFt)	816	1,020	1,060	1,157
Small Office (<=30k SqFt)	351	534	564	644
Religious Worship	575	798	854	963
Retail	781	1,043	1,133	1,287
School	777	1,030	1,094	1,236

774 Ibid.

⁷⁷³ Values for Assembly and Religious Worship building types developed using an adjustment factor derived through a comparison of average EFLHs for College/University and Assembly/Religious Worship building types from the Connecticut, New York, Pennsylvania, and Texas state Technical Reference Manuals. College/University was selected as a reference building type due to average alignment with Assembly/Religious worship building types in other TRMs, inclusion of a summer session, and increased evening usage.

4.4 Commercial Measure References

- 1. ASHRAE Standard Project Committee 90.1 Cognizant TC: TC 9.6, Systems Energy Utilization. 2001. ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings Except Low-Rise Residential Buildings. ASHRAE 90.1_2001.
- 2. ASHRAE Standing Standard Project Committee 90.1 Cognizant TC: TC 7.6 Systems Energy Utilization. 2004. *ANSI/ASHRAE/IESNA Standard 90.1-2004 Energy Standard for Buildings Except Low-Rise Residential Buildings* ASHRAE 90.1_2004.
- 3. ASHRAE Standing Standard Project Committee 90.1 Cognizant TC: TC 7.6 Systems Energy Utilization. 2007. *ANSI/ASHRAE/IESNA Standard 90.1-2007Energy Standard for Buildings Except Low-Rise Residential Buildings* ASHRAE 90.1_2007.
- 4. American Council for an Energy-Efficient Economy. 2003. *Commercial Lighting Retrofits: A Briefing Report for Program Implementers*. April 2003.
- 5. American Council for an Energy-Efficient Economy. 2002. *Commercial Packaged refrigeration: An Untapped Lode for Energy Efficiency*. Report A015. May 2002.
- 6. American Council for an Energy-Efficient Economy. 2006. *ACEEE Emerging Technologies Report: Advanced Boiler Controls*. September 2006.
- 7. Architectural Engineering Group, *Short-Term Reduction of Lighting Levels as a Commercial Building Load Control Strategy*, January 2005.
- 8. California Public Utilities Commission. 2008. Long Term Energy Efficiency Strategic Plan. September 2008.
- 9. Canada National Research Center, *Energy savings from photosensors and occupant sensors/wall switches*, September 2009.
- 10. Department of Energy 10 CFR Part 430. 2009. Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps; Final Rule. July 2009.
- 11. Department of Energy. 2006. Energy Tips Steam Inspect and Repair Steam Traps. January 2006.
- 12. ENERGY STAR®. 2003. Wise Rules for Industrial Energy Efficiencies. September 2003.
- 13. Federal Energy Management Program (FEMP). 1999. Steam Trap Assessment.
- 14. Federal regulation, Energy Policy Act (EPAct) 2005, August 8, 2005.
- 15. Federal regulation, Energy Independence & Security Act (EISA) 2007, December 2007.
- 16. Food Service Technology Center (FSTC). 2006. *GE ECM Evaporator Fan Motor Energy Monitoring, FSTC Report # 5011.04.13*. Fisher-Nickel, Inc. July 2006.
- 17. Gas Appliance Manufacturers Association (GAMA). 2007. Boilers Baseboard Radiation Finned Tube (Commercial) Radiation Indirect-fired Water Heaters. 2007.

- 18. IECC 2003. 2003 International Energy Conservation Code. Fourth Printing, April 2004. International Code Council.
- 19. IECC 2006. 2006 International Energy Conservation Code First Printing, January 2006. International Code Council.
- 20. IECC 2009. 2009 International Energy Conservation Code First Printing, January 2009. International Code Council.
- 21. Illuminating Engineering Society, An analysis of the energy and cost savings potential of occupancy sensors for commercial lighting systems, August 2000.
- 22. IES HB-9-2000. 2000. Illuminating Engineering Society Lighting Handbook 9th Edition.
- 23. KEMA. 2010. Colorado DSM Market Potential Assessment. Prepared for Xcel Energy.
- 24. KEMA. 2010. Measurement Manual. Prepared for Tennessee Valley Authority.
- 25. Kubo et al. 2001. Opportunities for New Appliance and Equipment Efficiency Standards: Energy and Economic Savings Beyond Current Standards Programs. Report Number A016. Prepared for American Council for an Energy-Efficient Economy.
- 26. kW Engineering. 2005. Walk-in Evaporator Fan ECM Market Evaluation. Prepared for PacifiCorp.
- 27. Lighting Resource Center, *The effects of changing occupancy sensor timeout setting on energy savings, lamp cycling, and maintenance costs,* August 2000.
- 28. Michelle J. Ware, Lawrence Berkeley National Laboratory. *Establishing an Energy Efficiency Recommendation for Commercial Boilers*.
- 29. National Electrical Manufacturers Association (NEMA). 2009. *Motors and Generators. NEMA* MG 1-2009.
- 30. New England State Program Working Group, *Coincidence Factor Study: Residential and Commercial Industrial Lighting Measures*, Spring 2007.
- 31. Nexant. 2005. NYSERDA Deemed Savings Measure Database. Prepared for NYSERDA.
- 32. Nexant, Inc. 2003. Market Characterization and DSM Program Modification Recommendations for Motors, Light Commercial HVAC, and Lighting Equipment. 2003.
- 33. Nexant, Inc. 2006. FinAnswer[®] Express Market Characterization and Program Enhancements. 2006.
- 34. Nexant, Inc. 2008. FinAnswer[®] Express Market Characterization and Program Enhancements. 2008.
- 35. Nexant, Inc., Lighting Savings Estimates, 2009.
- 36. Nexant, Inc. 2010. PacifiCorp FinAnswer Express Market Characterization Report, August 2010.
- 37. Northwest Power and Conservation Council (NPCC). 2005. *The Fifth Northwest Electric Power and Conservation Plan.*

- 38. Northwest Power and Conservation Council (NPCC). 2010. *The Sixth Northwest Electric Power and Conservation Plan.*
- 39. Osman Sezgen and Jonathan G. Koomey. Lawrence Berkeley National Laboratory 1995. *Technology Data Characterizing Water Heating in Commercial Buildings: Application to End-Use Forecasting.* December 1995.
- 40. Pacific Gas & Electric (PG&E). 2003. 2004-2005 Express Efficiency Work Papers.
- 41. Pacific Gas & Electric (PG&E). 2005. Food Service Equipment Work Papers.
- 42. Pacific Gas & Electric (PG&E). 2006. 2006 Motors Unit Savings Workpapers. V14.
- 43. Pacific Gas & Electric (PG&E). 2008. Energy Efficiency Rebates for Your Business Catalog.
- 44. PacifCorp. 2009. FinAnswer Express Market Characterization and Program Enhancements Utah Service Territory.
- 45. Public Utilities Commission of Ohio, *State of Ohio Energy Efficiency Technical Reference Manual*, August 2010.
- 46. Quantum Consulting, Inc. 2004. Non-Residential Lighting Best Practices Report. December 2004.
- 47. Quantec. 2005. Assessment of Technical and Achievable Demand Side Resource Potentials. Prepared for Puget Sound Energy.
- 48. Questar Gas DSM Market Characterization Report, August 9, 2006.
- 49. Southern California Edison, Energy Design Resources: Design Brief Lighting Controls, February 2000.
- 50. TEXAS LoanSTAR PROGRAM GUIDEBOOK VOLUME II. 2002.
- 51. United Illuminating Company and Connecticut Light and Power, *Coincidence Factor Report*, January 2007.
- 52. Wirtshafter Associates, Inc., Energy market Innovations, Inc., and Data Development Worldwide, LLC. *Evaluation of XCel Energy's Business Lighting Efficiency Program*. July 2009.
- 53. Xcel Energy. 2006. 2007/2008/2009 Triennial Plan Minnesota Natural Gas and Electric Conversation Improvement Program.
- 54. Xcel Energy. 2002 Commercial/Industrial Building and Equipment Retrofit Boiler Efficiency.
- 55. APS. 2021. http://www.aps.com
- 56. Adobe Air. 2021Now Essick Air) http://www.essickair.com
- 57. Arkansas Energy Office. https://www.adeq.state.ar.us/energy/
- 58. Avista Utilities. 2021. https://www.myavista.com/

- 59. Canada National Research Council. https://nrc.canada.ca/en
- 60. CenterPoint Energy. 2021. http://www.centerpointenergy.com/
- 61. Consortium for Energy Efficiency. 2010. Industrial Motors & Motor Systems. http://library.cee1.org/content/cee-2012-summary-member-programs-motor-systems
- 62. Consortium for Energy Efficiency. 2010. High-Efficiency Unitary Equipment Specifications. http://library.cee1.org/content/cee-commercial-unitary-ac-and-hp-specification-0
- 63. Consortium of Energy Efficiency. Commercial Lighting Program. http://library.cee1.org/content/commercial-lighting-qualifying-products-lists
- 64. Consortium of Energy Efficiency. Commercial Kitchens Initiative. http://library.cee1.org/content/commercial-kitchens-initiative-description
- 65. California Energy Commission Database for Energy Efficient Resources (DEER). 2021. https://www.energy.ca.gov/data-reports/energy-almanac
- 66. Design Lights Consortium. Solid State Lighting Program. https://www.designlights.org
- 67. Energy Trust of Oregon. 2021. https://energytrust.org
- 68. Energy Independence and Security Act. 2007. <u>https://www.energy.gov/lpo/downloads/energy-independence-and-security-act-2007</u>
- 69. ENERGY STAR®. 2021. https://www.energystar.gov
- 70. Illuminating Engineering Society http://www.iesna.org
- 71. Industrial <u>Technologies Program https://www.energy.gov/diversity/downloads/eere-industrial-technologies-program</u>
- 72. Lighting Research Center (LRC). Solid State Lighting Program. https://www.lrc.rpi.edu/programs/solidstate/sslwhat.asp
- 73. MotorMaster+. 2010. https://www.energy.gov/eere/amo/downloads/motormaster-tool
- 74. New Buildings Institute. 2010. https://newbuildings.org/
- 75. Nevada Power. 2010. https://www.nvenergy.com/
- 76. NYSERDA. 2010. http://www.nyserda.ny.gov/Statewide-Initiatives/NY-Sun-Initiative.aspx
- 77. PG&E,2010. <u>https://www.pge.com/en_US/business/save-energy-money/business-solutions-and-rebates/product-rebates/product-rebates.page?WT.mc_id=Vanity_businessrebates</u>
- 78. Progress Energy, 2021 (merged with Duke Energy) . https://www.duke-energy.com/business
- 79. Regional Technical Forum (RTF). http://rtf.nwcouncil.org/measures/
- 80. Southwest Energy Efficiency Project (SWEEP). 2021. http://www.swenergy.org

- 81. Texas, State Energy Conservation Office (SECO): <u>https://comptroller.texas.gov/programs/seco/</u>
- 82. Xcel Energy. 2010. http://www.xcelenergy.com/
- 83. User's Manual for TMY2s: https://www.nrel.gov/docs/legosti/old/7668.pdf
- 84. US Department of Energy and Environmental Protection Agency. *ENERGY STAR*® *Program*. <u>http://www.energystar.gov</u>
- 85. US Department of Energy. *Solid State Lighting Program*. <u>https://www.energy.gov/search/site?keywords=Solid+state+lighting+program</u>

SUPPORTING APPENDICES

TRM Version 10.0

Volume 3: Supporting Appendices

Applicable Beginning January 1, 2025

Submitted to:

Arkansas Public Service Commission

Approved in Docket 10-100-R

Prepared by: The Independent Evaluation Monitor

on behalf of the

Parties Working Collaboratively

Final August 30, 2024

Table of Contents

APPENDIX A: PROTOTYPE BUILDING CHARACTERISTICS	1
TABLE A1: HYDRONIC HEATING – PROTOTYPE HOME CHARACTERISTICS	1
TABLE A2: MULTIPLE MEASURES – PROTOTYPE HOME CHARACTERISTICS	2
TABLE A3: RESIDENTIAL ENVELOPE MEASURES – PROTOTYPE HOME CHARACTERISTICS	3
TABLE A3.A: ATTIC KNEE WALL INSULATION – PROTOTYPE HOME CHARACTERISTICS	5
TABLE A3.B: CEILING INSULATION – PROTOTYPE HOME CHARACTERISTICS	5
TABLE A3.C: WALL INSULATION – PROTOTYPE HOME CHARACTERISTICS	6
TABLE A3.D: FLOOR INSULATION – PROTOTYPE HOME CHARACTERISTICS	6
TABLE A3.E: ROOF DECK INSULATION – PROTOTYPE HOME CHARACTERISTICS	7
TABLE A3.F: AIR INFILTRATION – PROTOTYPE HOME CHARACTERISTICS	8
TABLE A3.G: RADIANT BARRIERS – PROTOTYPE HOME CHARACTERISTICS	8
TABLE A3.H: ENERGY STAR® WINDOWS – PROTOTYPE HOME CHARACTERISTICS	9
TABLE A3.I: WINDOW FILM – PROTOTYPE HOME CHARACTERISTICS	9
TABLE A4: DUCT EFFICIENCY IMPROVEMENTS, DUCT INSULATION (SC), COOL ROOFS, & WINDOW AWNI	-
PROTOTYPE BUILDING CHARACTERISTICS	10
TABLE A5: DUCT INSULATION (CR) – PROTOTYPE BUILDING CHARACTERISTICS	10
TABLE AS: DOCT INSULATION (CR) = 1 ROTOT THE DOLLDING CHARACTERISTICS TABLE A6: MULTIPLE CONVERTED RESIDENCE MEASURES – PROTOTYPE BUILDING CHARACTERISTICS	12
TABLE A0. MOLTIFIE CONVERTED RESIDENCE MEASURES – I ROTOTIFIE BUILDING CHARACTERISTICS TABLE A6.a: CEILING INSULATION (CR) – PROTOTYPE BUILDING CHARACTERISTICS	13
TABLE A6.8: AIR INFILTRATION (CR) – PROTOTYPE BUILDING CHARACTERISTICS TABLE A6.8: AIR INFILTRATION (CR) – PROTOTYPE BUILDING CHARACTERISTICS	14
TABLE A6.C: ROOF DECK INSULATION (CR) – PROTOTYPE BUILDING CHARACTERISTICS	14
TABLE A6.0: Wall Insulation (CR) – Prototype Building Characteristics	14
TABLE A6.E: WINDOW FILM (CR) – PROTOTYPE BUILDING CHARACTERISTICS	14
TABLE AGE. WINDOW FILM (CK) = 1 ROTOTIVE BUILDING CHARACTERISTICS TABLE A7: ROOF DECK INSULATION (SC) – PROTOTYPE BUILDING CHARACTERISTICS	15
TABLE A7. ROOF DECK INSULATION (SC) – PROTOTYPE BUILDING CHARACTERISTICS TABLE A8: OCCUPANCY-BASED PTAC/PTHP CONTROLS – PROTOTYPE BUILDING CHARACTERISTICS	13
APPENDIX B: LIGHTING FIXTURE LEGEND	19
FIGURE B1: LIGHTING FIXTURE CODE FORMAT AND EXPLANATIONS	19
FIGURE B2: LIGHTING FIXTURE CODE EXAMPLES	20
TABLE B1: FIXTURE CODE LEGEND	21
TABLE B2: LAMP TYPE LEGEND FOR FLUORESCENT AND LED FIXTURES	22
TABLE B3: BALLAST TYPE LEGEND FOR FLUORESCENT AND METAL HALIDE FIXTURES	23
TABLE B4: BALLAST LIGHT OUTPUT LEGEND	23
Appendix C: Heating and Cooling Degree Days (65°F Base)	24
TABLE C1: HEATING AND COOLING DEGREE DAYS (65°F BASE)	24
APPENDIX D: ABBREVIATED STEAM TABLES	27
TABLE D1: ABBREVIATED STEAM TABLES	27
APPENDIX E: STANDARD WATTAGE TABLE	28
TABLE E1: STANDARD WATTAGE TABLE	28
APPENDIX F: LIGHTING POWER DENSITIES	152
TABLE F1: ASHRAE 90.1-2007 LIGHTING POWER DENSITIES (LPD) – BUILDING AREA METHOD	152

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0	Vol. 3
TABLE F2: ASHRAE 90.1-2007 LIGHTING POWER DENSITIES (LPD) – SPACE-BY-SPACE METHOD BY SPACE	Types
	153
TABLE F3: ASHRAE 90.1-2007 LIGHTING POWER DENSITIES (LPD) – SPACE-BY-SPACE METHOD BY BUILDIN	NG-
SPECIFIC SPACE TYPES	155
TABLE F4: ASHRAE 90.1-2007 LIGHTING POWER DENSITIES (LPD) – BUILDING EXTERIORS	157
APPENDIX G: ESTIMATION OF GAS PEAK DAY SAVINGS	158
TABLE G1: DESIGN DAY WEATHER CONDITIONS FOR ARKANSAS GAS UTILITIES	159
FIGURE G1: GAS SAVINGS VS. HDD WITH PROJECTIONS	160
TABLE G2: COEFFICIENTS OF DETERMINATION (R^2)	161
TABLE G3: REGRESSION COEFFICIENTS BY MEASURE	162
TABLE G4: PEAK DAYS FROM TMY3 DATA BY CLIMATE ZONE:	168
APPENDIX H: LIGHTING INTERACTIVE EFFECTS DERIVATION	169
TABLE I1: COMMERCIAL CONDITIONED AND REFRIGERATED SPACE INTERACTIVE EFFECTS FACTORS	169
TABLE I2: COMMERCIAL CONDITIONED SPACE GAS HEATING PENALTY	169
TABLE I3: RESIDENTIAL CONDITIONED SPACE INTERACTIVE EFFECTS FACTORS	170
TABLE I4: DEER 2011 CONDITIONED SPACE INTERACTIVE EFFECTS FACTORS FOR COMMERCIAL BUILDINGS	171
TABLE I5: DEER 2011 CONDITIONED SPACE HEATING PENALTIES FOR COMMERCIAL BUILDINGS	172
TABLE I6: HEATING AND COOLING SATURATIONS	173
TABLE I7: SIMULATION CHARACTERISTICS	174
TABLE I8: INTERACTIVE EFFECTS BY EQUIPMENT TYPE	175
TABLE I9: WEIGHTED IEF RESULTS	176
TABLE I10: REFRIGERATED INTERACTIVE EFFECTS FACTORS FROM SOURCES	177

Appendix A: Prototype Building Characteristics

Various building energy usage computer models have been used in development of deemed savings included in the TRM according to several factors:

- Building Type and Use. Prototype buildings support deemed savings development for measures to be implemented in the following building types: residential, converted residence (CR), commercial, and small commercial (SC).
- Model Vintage. Original prototypes date back to deemed savings developed in 2007/08 for use in the QuickStart programs. Prototype inputs have been updated for more recent models.
- Measure being modeled. Specific changes to a prototype are introduced to represent the specific measure being implemented in a given building.

In this Appendix, "top level" tables – those tables with the letter A followed only by a number in their table name (e.g. Table A1) provide the general characteristics of a given model prototype. "Supplemental tables" – (e.g. Table A1.a) – provide the specific changes introduced to a given prototype for the modeling of specific measures.

The following inputs describe the prototype home used to develop deemed savings for the Hydronic Heating measure. Using the values, EnergyGauge USA was used with TMY3 weather data to estimate energy savings for a series of models using the DOE-2 simulation engine.

Shell Characteristic	Value	Source
Conditioned Area	2,000	American Housing Survey 2007 and 2008 was used to inform the value for likely participants
Foundation	Slab-on-grade, with R-4 to R-5 insulation	IECC 2003 prescriptive code
Ceiling Insulation	R-30	IECC 2003 prescriptive code
Wall Insulation	R-13	IECC 2003 prescriptive code
Window Area	15% of floor area	Average window area per wall used during calibration of model; window area equal for each wall orientation
Air Infiltration	0.24 to 0.32 ACH dependent on climate zone	Average air changes per hour of air infiltration for new construction homes used during calibration of model
Window U-value	0.50	IECC 2003 prescriptive code
Thermostat Settings	68° winter; 78° summer	Average thermostat settings used during calibration of model
Orientation	Square house	To average effect of orientation of building due to a wide variety of building configurations and orientations; walls are equal area and face north/south/east/west
Duct Losses	15% overall loss	Default value set by EnergyGauge during calibration of model
Air Conditioning	13.0 SEER	Federal Standard baseline
Gas Heating Baseline	78% AFUE	Federal Standard baseline

 Table A1: Hydronic Heating – Prototype Home Characteristics

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 446 Arkansas TKM Version 10.0 Vol. 3

Shell Characteristic	Value Source	
Hydronic Heating Change	90% AFUE	Efficiency Measure
Water Heating Baseline	0.59 EF	Federal Standard baseline for 40-gallon gas storage water heater
Water Heating Change	0.82 or 0.89 EF	Efficiency measure

The following inputs describe the prototype home used to develop deemed savings for the Duct Insulation and Roof Deck Insulation measures. Unique modifications for the Duct Insulation measure are provided in supplemental Table A2. EnergyGauge USA was used to estimate energy savings for these measures.

 Table A2: Multiple Measures – Prototype Home Characteristics

Shell Characteristic	Value	Source
Conditioned Area	1,850	American Housing Survey 2007 and 2008 was used to inform the value for likely participants
Foundation	Slab-on-grade, no edge insulation	American Housing Survey 2007 and 2008 was used to inform the value for likely participants
Ceiling Insulation	R-19	American Housing Survey 2007 and 2008 was used to inform the value for likely participants
Wall Insulation	R-11	American Housing Survey 2007 and 2008 was used to inform the value for likely participants
Window Area	10% of floor area	Average window area per wall used during calibration of model; window area equal for each wall orientation
Air Infiltration	0.40 to 0.53 ACH dependent on climate zone	Average air changes per hour of air infiltration for existing homes used during calibration of model
Window U-value	0.87	Default U-value used assuming metal framed, double-pane clear glass windows
Thermostat Settings	68° winter; 78° summer	Average thermostat settings used during calibration of model
Orientation	Square house	To average effect of orientation of building due to a wide variety of building configurations and orientations; walls are equal area and face north/south/east/west
Duct Losses	15% overall loss	Default value set by EnergyGauge during calibration of model
Air Conditioning	10.0 SEER	Federal Standard in effect from 1990-2006
Gas Heating	78% AFUE	Annual Fuel Utilization Efficiency – base gas furnace efficiency
Electric Resistance Heat	COP 1.0	Coefficient of Performance for central electric resistance heating systems

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 19-100 r-Doc 347 Arkunsus TKM Version 10.0 Vol. 3

Shell Characteristic	Value	Source
Electric Heat Pump	HSPF = 7.2	Average HSPF based on shipment-weighted average efficiency
Duct Insulation Baseline	No existing insulation	Existing condition applicable for this measure
Duct Insulation Change Case	R-8 insulation	Efficiency measure

The following table applies to the Attic Knee Wall Insulation, Ceiling Insulation, Wall Insulation, Floor Insulation, Roof Deck Insulation, Air Infiltration, Radiant Barriers, ENERGY STAR® Windows, and Window Film measures. Unique modifications for each specific measure are listed in supplemental Tables A3.a through A3.h. BEoptTM – a residential building modeling platform developed by NREL – was used to estimate energy savings for these measures using the U.S. DOE EnergyPlus simulation engine.

Shell Characteristic	Value	Source(s)
Site/Layout		
Conditioned Floor Area	1,764 ft ²	Average square footage of conditioned (heated) space between one story home and all SFD homes in 2009 RECS microdata for AR/LA/OK. ¹
Orientation	Square building with faces on each cardinal direction	LBNL: Nationally Representative Housing Sample ²
Number of Stories	Single story with unfinished attic	Preponderance of SFD homes in 2009 RECS microdata are single story
Building Envelope		
Foundation	Slab-on- ground, no edge insulation	Preponderance of SFD homes in 2009 RECS microdata (62%) have slab foundation Also a conservative assumption for base energy usage.
Slab Insulation	None – no perimeter, under-slab, or above-slab insulation	Not part of standard practice, also no requirement for slab insulation in residential code for relevant weather regions except the NW corner of state in IECC Climate Zone 4.

Table A3: Residential Envelo	ne Megsures _ Prototyne	Home Characteristics
Table A5: Residential Elivero	pe measures – r rototype	e nome Characteristics

¹ 2009 RECS, Available at: http://www.eia.gov/consumption/residential/data/2009/

² Simulating a Nationally Representative Housing Sample Using EnergyPlus, Available at: <u>http://www.osti.gov/scitech/servlets/purl/1012239</u>

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 19-100 - Doc 343 Arkansus TKM Version 10.0 Vol. 3

Shell Characteristic	Value	Source(s)
Ceiling Insulation	R-12	Table 25 of BA Home Simulation Protocols suggests R-9 is appropriate for homes closed rafter roofs built with 2 x 6 beams, R-15 for 2 x 10. Suspect 2 x 6 is more likely, but some share of homes will have had ceiling insulation replaced/added. Select R-12 based on the above information and engineering judgment. ³
Wall Insulation	R-8.5	ResStock average value for single family homes in Arkansas
Air Leakage	0.9 ACH	Median ACH for older, low income housing ⁴
Fenestration		
Window Area	15% of wall area	American Housing Survey 2007 and 2008 was used to inform the value for likely participants.
Window U-value	0.67	ResStock average value for single family homes in Arkansas
Window SHGC	0.64	2009 ASHRAE Fundamentals, Ch. 15 Table 10. Value for double-pane, metal frame, fixed, clear glass window.
HVAC	·	·
Efficiency Rating, Air Conditioner	9.5 SEER2 (10 SEER)	Federal Standard in effect from 1990-2006. Representative of low-efficiency program participant homes.
Efficiency Rating, Space Heating (Gas Furnace)	78% AFUE	Annual Fuel Utilization Efficiency – base gas furnace efficiency
Efficiency Rating, Space Heating (Electric Resistance Heat)	COP 1.0	Coefficient of Performance for central electric resistance heating systems
Efficiency Rating, Space Heating (Heat Pump)	HSPF = 7.25	Average of Federal Standards: 1992 – 1/2006: 6.8 HSPF 1/2006 – 1/2015: 7.7 HSPF
Thermostat Settings	Heating: 70°F Cooling: 74°F	NREL Residential Indoor Temperature Study, RECS 2020 data
Duct Losses	20%	Lower tier of air leakage for typical homes as cited by ENERGY STAR® ⁵
Duct Insulation	R-4 insulation	
Domestic Hot Water		

³ Building America Home Simulation Protocols (BAHSP); Available at: <u>http://www.nrel.gov/docs/fy11osti/49246.pdf</u>

⁴ Referenced information is from 2009 ASHRAE Fundamentals, Section 16.17 Residential Ventilation.

⁵ ENERGY STAR[®], Duct Sealing: <u>http://www.energystar.gov/?c=home_improvement.hm_improvement_ducts</u>

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 19-100-r-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 19-100-r-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 446

Shell Characteristic	Value	Source(s)
Energy Factor, Electric Storage	0.90	BAHSP (p. 42) EWH with 50-gal tank, 3-inch insulation.
Energy Factor, Gas Storage	0.59	BAHSP (p. 42), midpoint between options 2 and 3
Lighting		
Share of Lighting by Type	Lamps are 40% LED, 60% mix of other types	BEopt standard option selected based on estimated LED penetration in residential single family homes

The following inputs apply to the Attic Knee Wall Insulation measure, in addition to (or substituting for) values shown in Table A3.a.

Shell Characteristic	Value	Source
Ceiling Construction	2-foot-wide vaulted ceiling around the perimeter of the conditioned floor area	This modeling approach reduces simulation distortions introduced by a large vaulted ceiling area, while still exposing the attic knee walls to the conditioned living space.
Base Knee Wall Insulation	No existing insulation	Encountered insulation level drives eligibility for this measure
Improved Knee Wall Insulation	(1) Insulate to R-19, or(2) Insulate to R-30	Efficiency Measure

Table A3.a: Attic Knee Wall Insulation – Prototype Home Characteristics

The following inputs apply to the Ceiling Insulation measure, in addition to (or substituting for) values shown in Table A3.b.

Table A3.b: Ceiling Insulation – Prototype Home Characteristics

Shell Characteristic	Value	Source
Base Ceiling Insulation	Five ranges of encountered ceiling insulation: R-0 to R-4 R-4 to R-10 R-10 to R-16 R-16 to R-22 R-22 to R-30	Insulation level as recommended by Pacific Northwest National Lab
Improved Ceiling Insulation	Insulate to R-38 & R-49	Efficiency measure – retrofit insulation level

The following inputs apply to the Wall Insulation measure, in addition to (or substituting for) values shown in Table A3.c.

Shell Characteristic	Value	Source
Base Wall Insulation	R-0	Insulation level as encountered by the EESP drives eligibility for this measure
Improved Wall Insulation	R-13 & R-23	 3.5" of fiberglass batt at R-3.7/in provides R-13 Full thickness of 4" cavity with open cell foam provides R-13 Full thickness of 4" cavity with closed cell foam provides R-23

 Table A3.c: Wall Insulation – Prototype Home Characteristics

The following inputs apply to the Floor Insulation measure, in addition to (or substituting for) values shown in Table A3.d.

Table A3.d: Floor Insulation – Prototype Home Characteristics

Shell Characteristic	Value	Source
Foundation	Pier and beam with vented crawlspace	Floor Insulation not a relevant measure for homes with slab foundation
Base Floor Insulation	R-0	Insulation level as encountered by the EESP drives eligibility for this measure
Change Floor Insulation	R-19	This brings existing homes in compliance with IECC 2009.
Crawl Space Insulation	R-13	This brings existing homes in compliance with IECC 2009.

The following inputs apply to the Roof Deck Insulation measure, in addition to (or substituting for) values shown in Table A3.e.

Table A3.e: Roof Deck Insulation – Prototype Home Characteristics

Shell Characteristic	Value	Source
Base Roof Deck Insulation	R-0 to R-10 R-10 to R-22 R-22 to R-30	Insulation level ranges as recommended by Pacific Northwest National Lab
Change Roof Deck Insulation	R-19 & R-38	Efficiency measure

The following inputs apply to the Air Infiltration measure, in addition to (or substituting for) values shown in Table A3.f.

Shell Characteristic	Value	Source
Base Air Leakage	0.9 ACH	Median infiltration value of older low-income housing sample:2009 ASHRAE Fundamentals, 16.17
Change Air Leakage	0.35 ACH	Minimum allowable air exchanges assuming a 1,764 ft ² and 3-bedroom prototype home: ASHRAE 62.2 P - 2010

The following inputs apply to the Radiant Barriers measure, in addition to (or substituting for) values shown in Table A3.g.

Table A3.g: Radiant Barriers - Prototype Home Characteristics

Shell Characteristic	Value	Source
Ceiling Insulation Case 1	≤ R-19	Assumed existing insulation level
Ceiling Insulation Case 2	> R-19	Assumed existing insulation level
Base roof deck	No radiant barrier	Existing condition applicable for this measure
Change roof deck	Double-Sided, Foil: Installed radiant barrier meeting ENERGY STAR® standards	Efficiency measure

The following inputs apply to the ENERGY STAR® Windows measure, in addition to (or substituting for) values shown in Table A3.h.

Shell Characteristic	Value	Source
Baseline Window U-factors and SHGCs	Single-pane: 1.12 U-factor/0.79 SHGC Double-pane: 0.81 U-factor/0.64 SHGC	U-values and SHGCs assuming metal framed, single and double- pane clear glass windows 2009 ASHRAE Fundamentals, Ch.15 Tables 4 and 10
Change Case Window U-factors and SHGCs	Zone 9: 0.32 U-factor/ 0.40 SHGC Zones 8, 7, and 6: 0.35 U-factor/0.30 SHGC	ENERGY STAR® Criteria

Table A3.h: ENERGY STAR® Windows – Prototype Home Characteristics

The following inputs apply to the Window Film measure, in addition to (or substituting for) values shown in Table A3.i.

 Table A3.i: Window Film – Prototype Home Characteristics

Shell Characteristic	Value	Source
Baseline Window Characteristics – double-pane model	0.81 U- value/ 0.64 SHGC	U-value assuming metal framed, double-pane clear glass windows 2009 ASHRAE Fundamentals, Ch.15 Tables 4 and 10
Baseline Window Characteristics – single-pane model	1.12 U- value/ 0.79 SHGC	U-value assuming metal framed, single-pane clear glass windows 2009 ASHRAE Fundamentals, Ch.15 Tables 4 and 10
Change Case Window Characteristics – double-pane model	0.81 U- value/ 0.49 SHGC	Efficiency Measure – values based on 3M product performance and technical data
Change Case Window Characteristics – single-pane model	1.12 U- value/ 0.40 SHGC	Efficiency Measure – values based on 3M product performance and technical data

The following inputs apply to the Small Commercial Duct Efficiency, Duct Insulation, Cool Roofs, and Window Awnings measures. EQuest was used to estimate energy savings for these measures.

Building	Building Type			
Characteristic	Small Office	Stand-Alone Retail	Strip Mall	
General				
Ground Area (Sq. Ft.)	7,500	15,000	7,500	
# of Stories	2	1	1	
Floor Area (Sq. Ft.)	15,000	15,000	7,500	
Roof				
Construction	Metal Frame, > 24 in. o.c.	Metal Frame, > 24 in. o.c.	Metal Frame, > 24 in. o.c.	
Ext. Finish	Roof, Built up	Roof, Built up	Roof, Built up	
Ext. Color	Med (abs = 0.6)	Med (abs = 0.6)	Med (abs = 0.6)	
Ext. Insulation	Varied	Varied	Varied	
Add'l Insulation	No batt or radiant barrier	No batt or radiant barrier	No batt or radiant barrier	
Walls	•			
Construction	Metal Frame, 2x6, 24 in. o.c.	Metal Frame, 2x6, 16 in. o.c.	Metal Frame, 2x4, 16 in. o.c.	
Ext. Finish	Wood/Plywood	CMU	Stucco/Gunite	
Ext. Color	Med (abs = 0.6)	Med (abs = 0.6)	Med (abs = 0.6)	
Ext. Insulation	3/4 in. fiber bd sheathing (R-2)	3/4 in. fiber bd sheathing (R-2)	1/2 in. fiber bd sheathing (R-1.3)	
Add'l Insulation	R-19 batt	R-11 batt	R-11 batt	
Ceiling				
Construction	Acoustic Tile	Acoustic Tile	Acoustic Tile	
Insulation	varied	varied	varied	
Windows				
Glass Category	Double Clr/Tint 1/4", 1/2" air	Double Clr/Tint 1/4", 1/2" air	Double Clr/Tint 1/4", 1/2" air	
Window Area	70% of all walls	70% of North wall; all others 0%	70% of East wall; all others 0%	
Lighting	•			
Lighting Density (W/Sq. Ft.)	1.330	2.030	2.030	
HVAC	•			
Cooling Source	DX Coils	DX Coils	DX Coils	

Packaged Single Zone

Table A4: Duct Efficiency Improvements, Duct Insulation (SC), Cool Roofs, & Window Awnings (SC) – Prototype Building Characteristics

Packaged Single Zone

System Type

Packaged Single Zone

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 Arkansas DKM Version 10:07 Journet 10:

Building	Building Type			
Characteristic	Small Office	Stand-Alone Retail	Strip Mall	
Typ. Unit Size	11.25 – 20 tons	5.4 – 7.5 tons	< 5.4 tons	
EER (Base)	8.50 EER	8.90 EER	9.70 SEER	
Heating Source	Furnace	Furnace	Furnace	
Typ. Unit Size	> 225 kBTUh	< 225 kBTUh	< 225 kBTUh	
Efficiency (AFUE)	0.806	0.780	0.780	
Fans				
Min. Design Flow (cfm/ft ²)	0.50	0.50	0.50	
Cycle Fans at Night?	Cycle Fans (no OA at night)	Cycle Fans (no OA at night)	Cycle Fans (no OA at night)	
DHW				
Fuel	Natural Gas	Natural Gas	Natural Gas	
Туре	Storage	Storage	Storage	
Tank Insulation R-Value	12.00	12.00	12.00	
Tank Capacity (gal)	39	21	11	

The following inputs apply to the Converted Residence Duct Insulation measure. EnergyGauge USA was used to estimate energy savings for these measures.

Shell Characteristic	Value	Source	
Conditioned Area	1,850 ft ²	American Housing Survey 2007	
Foundation	Slab-on-grade, no edge insulation	American Housing Survey 2007	
Ceiling Insulation	R-19	Assumed existing insulation level	
Wall Insulation	R-11	Assumed existing insulation level	
Window Area	10% of floor area	Average window area per wall used during calibration of model; window area equal for each wall orientation	
Air Infiltration	0.40 to 0.53 ACH dependent on climate zone	Average air changes per hour of air infiltration for existing homes used during calibration of model	
Window U-value	0.87	Default U-value used assuming metal framed, double-pane clear glass windows	
Thermostat Settings	68° winter; 78° summer	Average thermostat settings used during calibration of model	
Orientation	Square house	To average effect of orientation of building due to a wide variety of building configurations and orientations; walls are equal area and face north/south/east/west	
Duct Losses	15% overall loss	Default value set by EnergyGauge during calibration of model	
Duct Insulation Baseline	No existing insulation	Existing condition applicable for this measure	
Duct Insulation Change Case	R-8 insulation	Efficiency measure	
Air Conditioning	10.0 SEER	Federal Standard in effect from 1990-2006	
Gas Heating	0.78 AFUE	Annual Fuel Utilization Efficiency – base gas furnace efficiency	
Electric Resistance Heat	COP 1.0	Coefficient of Performance for central electric resistance heating systems	
Electric Heat Pump	HSPF = 7.2	Average HSPF based on shipment-weighted average efficiency	

Table A5: Duct Insulation (CR) – Prototype Building Characteristics

The following table applies to all Converted Residence Ceiling Insulation, Air Infiltration, Roof Deck Insulation, Wall Insulation, and Window Film measures. Unique modifications for each specific measure are listed in supplemental tables A6.a through A6.e. EnergyGauge USA was used to estimate energy savings for these measures.

Shell Characteristic	Value	Source
Conditioned Area	1,850 ft ²	American Housing Survey 2007
Foundation	Slab-on-grade, no edge insulation	American Housing Survey 2007
Ceiling Insulation	R-19	Assumed existing insulation level
Wall Insulation	R-11	Assumed existing insulation level
Window Area	13.7% of floor area (~15% of wall area)	Average window area per wall used during calibration of model; window area equal for each wall orientation
Air Infiltration	0.7 ACH	Average air changes per hour of air infiltration for existing homes used during calibration of model
Window U-value	1.27	Default U-value used assuming metal framed, single-pane clear glass windows
Thermostat Settings	71.25° winter; 77.5° summer	Average thermostat settings used during calibration of model
Orientation	Square house	To average effect of orientation of building due to a wide variety of building configurations and orientations; walls are equal area and face north/south/east/west
Duct Losses	15% overall loss	Default value set by EnergyGauge during calibration of model
Air Conditioning	10.0 SEER	Federal Standard in effect from 1990-2006
Gas Heating	0.78 AFUE	Annual Fuel Utilization Efficiency – base gas furnace efficiency
Electric Resistance Heat	СОР 1.0	Coefficient of Performance for central electric resistance heating systems
Electric Heat Pump	HSPF = 7.7	Current Federal Standard

Table A6: Multiple Converted Residence Measures – Prototype Building Characteristics

The following inputs apply for the CR Ceiling Insulation measure, in addition to (or substituting for) values shown in Table A6.a.

Shell Characteristic	Value	Source
Base Ceiling Insulation	R-0 to R-22	Existing insulation level
Change Ceiling Insulation	R-38	Efficiency measure – retrofit insulation level as required by DOE

Table A6.a: Ceiling Insulation (CR) – Prototype Building Characteristics

The following inputs apply for the CR Air Infiltration measure, in addition to (or substituting for) values shown in Table A6.b.

Table A6.b: Air Infiltration (CR) – Prototype Building Characteristics

Shell Characteristic	Value	Source
Pre-Air Infiltration	0.7 ACH	Average air changes per hour of air infiltration for existing homes used during calibration of model
Post-Air Infiltration	12.46 ACH ₅₀	Efficiency Measure

The following inputs apply for the CR Roof Deck Insulation measure, in addition to (or substituting for) values shown in Table A6.c.

Table A6.c: Roof Deck Insulation (CR) – Prototype Building Characteristics

Shell Characteristic	Value	Source
Base Roof Deck Insulation	No existing insulation	Existing condition applicable for this measure
Change Roof Deck Insulation	R-19	Efficiency measure

The following inputs apply for the CR Wall Insulation measure, in addition to (or substituting for) values shown in Table A6.d.

Table A6.d: Wall Insulation (CR) – Prototype Building Characteristics

Shell Characteristic	Value	Source	
Base Wall Insulation	R-0	Existing insulation level	
Change Wall Insulation	R-13	Assumes 3.5" of cellulose @ R-3.7 per inch	

The following inputs apply for the CR Window Film measure, in addition to (or substituting for) values shown in Table A6.e.

Shell Characteristic	Value	Source
Window Area	10% of floor area	Average window area per wall used during calibration of model; window area equal for each wall orientation
Air Infiltration	0.53 ACH	Average air changes per hour of air infiltration for existing homes used during calibration of model
Baseline Window Characteristics – double-pane model	0.87 U-value/ 0.66 SHGC	Default U-value used assuming metal framed, double-pane clear glass windows
Baseline Window Characteristics – single-pane model	1.27 U-value/ 0.75 SHGC	Default U-value used assuming metal framed, single-pane clear glass windows
Change Case Window Characteristics – double-pane model	0.87 U-value/ 0.49 SHGC	Efficiency Measure – values based on 3M product performance and technical data
Change Case Window Characteristics – single-pane model	1.27 U-value/ 0.40 SHGC	Efficiency Measure – values based on 3M product performance and technical data
Thermostat Settings	68° winter;78° summer	Average thermostat settings used during calibration of model

The following inputs apply to the Small Commercial Roof Deck Insulation measure. EQuest was used to estimate energy savings for this measure.

 Table A7: Roof Deck Insulation (SC) – Prototype Building Characteristics ⁶

Building	Building Type			
Characteristic	Stand-Alone Retail	Small Office		
General				
Ground Area (Sq. Ft.)	15,000	7,500		
# of Stories	1	2		
Floor Area (Sq. Ft.)	15,000	15,000		
Roof				
Construction	Metal Frame, > 24 in. o.c.	Metal Frame, > 24 in. o.c.		
Ext. Finish Roof, Built up		Roof, Built up		
Ext. Color	Med (abs = 0.6)	Med (abs = 0.6)		

⁶ The assumptions in this table were not used for the Equivalent Full Load Hour estimates. For those assumptions and work papers, please see <u>http://www.frontierassoc.com/links.html</u>.

Building	Building Type						
Characteristic	Stand-Alone Retail			Small Office			
Ext. Insulation	R-6, R-14			R-6, R-14			
Add'l Insulation	no batt or radiant barrier			no batt or radia	no batt or radiant barrier		
Walls							
Construction	Metal Frame,	2x6, 16 in. o	.c.	Metal Frame, 2	Metal Frame, 2x6, 24 in. o.c.		
Ext. Finish	CMU			Wood/Plywood	l		
Ext. Color	Med ($abs = 0$.	6)		Med (abs = 0.6)			
Ext. Insulation	3/4 in. fiber be	d sheathing (R-2)	3/4 in. fiber bd	sheathing (R	2-2)	
Add'l Insulation	R-11 batt			R-19 batt			
Ceiling							
Construction	Acoustic Tile			Acoustic Tile			
Insulation	R-13			R-13			
Windows							
Glass Category	Double Clr/Ti	nt 1/4", 1/2"	air	Double Clr/Tin	t 1/4", 1/2" a	ir	
Window Area	70% of North	wall; all othe	ers 0%	70% of all wall	s		
Lighting							
Lighting Density (W/Sq. Ft.)	2.030		1.330				
HVAC							
Cooling Source	DX Coils		DX Coils				
Heating Source	Air-source Heat Pump	Furnace	Elec. Res.	Air-source Heat Pump	Furnace	Elec. Res.	
Typ. Unit Size	auto-size	auto-size	auto-size	auto-size	auto-size	auto-size	
System Type	Split System Single Zone HP	Packaged Single Zone	Packaged Single Zone	Split System Single Zone HP	Package d Single Zone	Packaged Single Zone	
Typ. Unit Size	5.4 – 7.5 tons			5.4 – 7.5 tons			
EER (Base)	8.90 EER			8.90 EER			
Efficiency (AFUE)	COP = 3.00			COP = 3.00	0.780	not spec'd	
OA Economizer	none			none			
Fans							
Min. Design Flow (cfm/ft ²)	0.50		0.50				
Cycle Fans at Night?	Cycle Fans (no OA at night)		Cycle Fans (no OA at night))		
DHW							
Fuel	Natural Gas	Natural Gas			Natural Gas		
Туре	Storage			Storage			

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:50:37 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED TIME: 8/30/2024 9:50:37 AM: Recvd 8

Building	Building Type			
Characteristic	Stand-Alone Retail	Small Office		
Tank Insulation R-Value	12.00	12.00		
Tank Capacity (gal)	21	21		

The following inputs apply to the Commercial Occupancy-Based PTAC/PTHP Controls measure. BEopt[™] was used to estimate energy savings for this measure.

Table A8: Occupancy-Based PTAC/PTHP Controls – Prototype Building Characteristics				

Building Characteristic	Value	Source(s)			
Site/Layout					
Conditioned Floor Area	420 ft ²	Average square footage from DOE Commercial Prototype Building Model. ⁷			
Orientation	Average of all cardinal orientations	NA			
Number of Stories	Single story	NA			
Building Envelope	-				
Foundation	NA	NA			
Slab Insulation	Superinsulated R-1000 (simulating adiabatic floor)	Simulating non-bottom floor guest room with conditioned space below			
Ceiling Insulation	Superinsulated R-1000 (simulating adiabatic ceiling)	Simulating non-top floor guest room with conditioned space above			
Wall Insulation	R-11 (exterior wall); other 3 walls are modeled as adiabatic	BAHSP, p. 35 – value for homes built 1980- 1989			
Air Leakage	0.7 ACH	BAHSP cites ASHRAE, which provides two estimates based on samples from separate studies: one of new, energy-efficient homes (median ACH = 0.5) and one of older, low- income housing (median ACH = 0.9). Typical participant will be between these two extremes. ⁸			
Fenestration	Fenestration				
Window Area	24 ft ² window on single wall	CASE, Guest Room Occupancy Controls: 2013 California Building Energy Efficiency Standards			

⁷ Available at:

https://www.energycodes.gov/prototype-building-models#Commercial

1

⁸ Referenced information is from 2009 ASHRAE Fundamentals, Section 16.17 Residential Ventilation.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 Arkansas DKM Version 10:07 Journet 10:

Building Characteristic	Value		Source(s)	
Window U-value	0.49		NFRC rating for standard double-pane, clear, non-metal frame, air fill	
Window SHGC	0.56			ting for standard double-pane, clear, al frame, air fill
HVAC				
Efficiency Rating, A	Air Conditioner	10.7	EER	DOE Commercial Prototype Building Model.
Efficiency Rating, S	Space Heating (Gas Furnace)	NA		NA
Efficiency Rating, Space Heating (Electric Resistance Heat)	COP 1.0		Coefficient of Performance for central electric resistance heating systems	
Efficiency Rating, Space Heating (Heat Pump)	9.0 HSPF		IECC 2009 Min Efficiency (2.6 COP) for PTHP Replacements	
Thermostat Settings	Heating/Cooling: 70°F (base) 5°F and 10°F setback change cases weighted based on typical occupancy schedule		DOE Co	mmercial Prototype Building Model.
Duct Losses	NA		NA	
Duct Insulation	NA		NA	
Domestic Hot Wate	er			
Energy Factor, Electric Storage	NA		NA	
Energy Factor, Gas Storage	0.59		BAHSP (p. 42), midpoint between options 2 and 3	
Lighting				
Share of Lighting by Type	lamps are 66% incandescent, 21% CFL, 13% T-8 linear fluorescent		BAHSP (p. 16)	

Appendix B: Lighting Fixture Legend

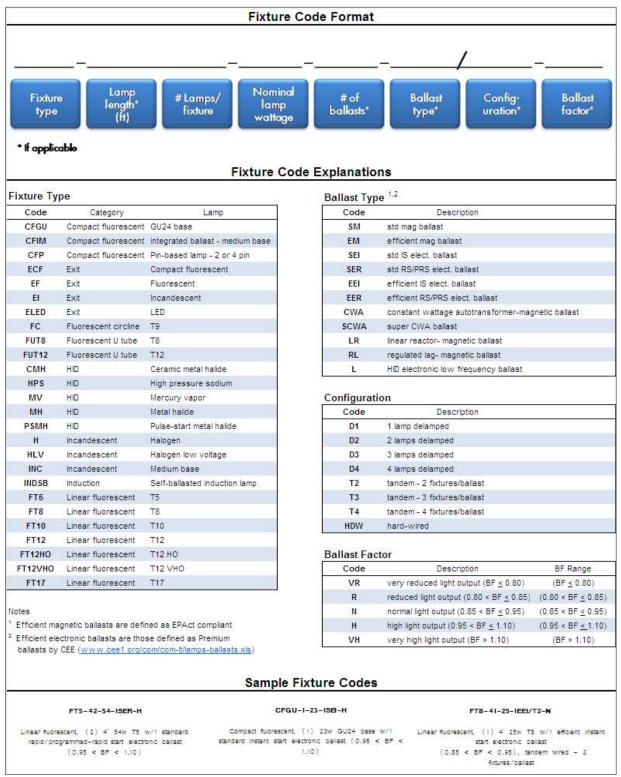
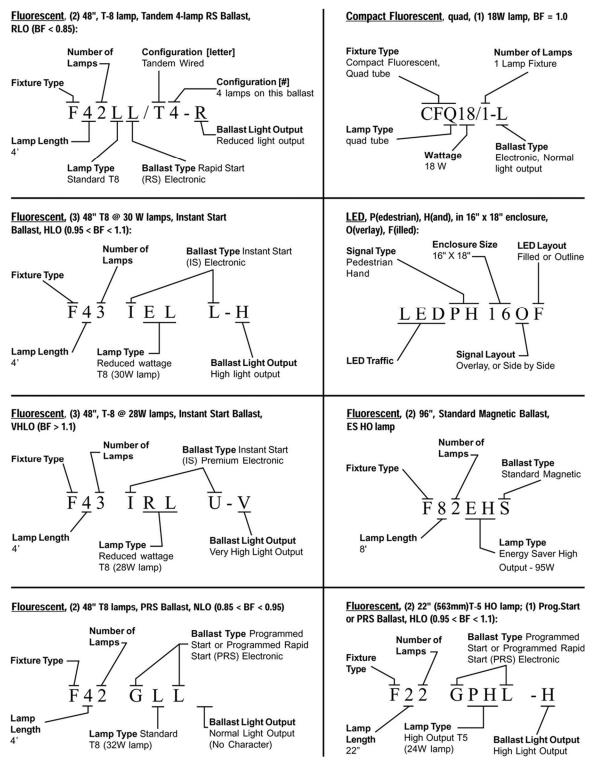



Figure B1: Lighting Fixture Code Format and Explanations

Table B1: Fixture Code Legend

	Legend				
Fixture Type	Description				
CF	Compact Fluorescent				
CFC	Compact Fluorescent, Cold Cathode				
CFD	Compact Fluorescent, Double-D Shape				
CFG	Compact Fluorescent, GU24 LVS Socket				
CFM	Compact Fluorescent, Multi Tube				
CFT	Compact Fluorescent, Twin Tube (including "Biaxial fixtures)				
CFQ	Compact Fluorescent, Quad Tube				
ECF	Exit Sign, Compact Fluorescent				
EF	Exit Sign, Linear Fluorescent (T1, T5)				
EI	Exit Sign, Incandescent				
ELED	Exit Sign, Light Emitting Diode				
EP	Exit Sign, Photoluminescent				
F	Fluorescent, Linear				
FC	Fluorescent, Circline				
FEI	Fluorescent, Electrodeless Induction				
FU	Fluorescent, U-Tube				
Н	Halogen Incandescent				
HLV	Halogen Low Voltage				
HPS	High Pressure Sodium				
Ι	Incandescent				
LED	Light Emitting Diode				
LEDT	LED Traffic Signal				
MH	Metal Halide				
MV	Mercury Vapor				
NEON	NEON				

Lamp Type	Description
For fluorescent fix	tures:
Α	T12, F25T12 type—25 watt, 4 ft.
В	T5, bi-axial twin lube for compact fluorescent
Е	T12, bi-pin, EPAct energy efficient
ЕН	T12, EPAct, high output (800 mA)
EI	T12, EPAct, 4 ft. or 8 ft., single pin instant start
EL	T8, reduced wattage 4 ft., 30 watt
ER	T8, 8 ft. reduced wattage linear (57, 55, 54, & 51 watt)
EV	T12, EPAct, very high output (1500 mA)
L	T8, bi-pin for instant start or rapid start
NL	T8, reduced wattage 4 ft., 25 watt
Р	T5, linear, 2-5 ft. lengths
РН	T5, linear high output lamp
PR	T5, reduced wattage linear high output (51 & 49 watt)
RL	T8, reduced wattage 4 ft., 28 watt
S	T12, bi-pin, standard wattage
SI	T12, standard, single pin, instant start
SH	T12, standard, high output
SV	T12, standard, very high output
Т	T10 lamp
For LED traffic sig	gnals and other LEDs:
12GA	12" green arrow
12GB	12" green ball
12RA	12" red arrow
12RB	12" red ball
12YA	12" yellow arrow
12YB	12" yellow bulb
8GB	8" green ball
8RB	8" red ball
8YB	8" yellow ball
F	Filled fixture
0	Overlay or outline fixture
00	Overlay and outline fixture
PCOUNT	Pedestrian count down timer
РН	Pedestrian hand signal

Table B2: Lamp Type Legend for Fluorescent and LED Fixtures

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:50:37 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:50:37 AM: Recvd 8/30/2024 9:50:37 AM: Rec

Lamp Type	Description	
РР	Pedestrian personal signal	
S	Side-by-side fixture	

Table B3: Ballast Type Legend for Fluorescent and Metal Halide Fixtures

Ballast Type	Description				
For fluorescent	For fluorescent fixtures:				
IxL	Electronic, Instant Start (IS) (x = lamp code)				
xL	Electronic, Rapid Start (RS) (x = lamp code)				
GxL	Electronic, Programmed Start or Program Rapid Start (PRS) (x = lamp code)				
S	Standard Magnetic				
E	EPAct Energy Efficient Magnetic				
U	Premium Ballast				
For Metal Hall	ide Fixtures:				
CWA	Constant Wattage Autotransformer – Magnetic				
RL	Regulated Lag – Magnetic				
LR	Linear Reactor – Magnetic				
L	Electronic Low Frequency (w/ Pulse Start or Ceramic Lamps)				

Table B4: Ballast Light Output Legend

2	Description
VR	Very Reduced light output, or VRLO (BF < 0.70)
R	Reduced light output, or RLO ($0.70 < BF < 0.85$
" " _	No character – Normal light output or, NLO (0.85 < BF < 0.95)
Н	High light output, or HLO $(0.95 < BF < 1.1)$
V	Very High light output, or VHLO (BF > 1.1)

Appendix C: Heating and Cooling Degree Days (65 °F Base)

Station Name	State	Heating Base (°F)	Cooling Base (°F)
Alicia	AR	3768	1937
Alum Fork	AR	3631	1569
Arkadelphia 2 N	AR	2672	2044
Arkansas Post	AR	2839	2087
Batesville Live	AR	3297	1918
Batesville L&D	AR	3970	1631
Beedeville 4 Ne	AR	3520	1829
Benton	AR	3278	1748
Bentonville 4 S	AR	4483	1269
Blakely Mountain	AR	3575	1548
Blue Mountain D	AR	3416	1909
Blytheville	AR	3544	1979
Booneville 3 Ss	AR	3171	1960
Brinkley	AR	3456	1827
Cabot 4 Sw	AR	3470	1699
Calico Rock 2 W	AR	4336	1251
Calion Lock & D	AR	2853	1999
Camden 1	AR	2872	1973
Clarendon	AR	3491	1854
Clarksville	AR	3804	1648
Conway	AR	3320	1961
Corning	AR	3958	1711
Crossett 2 Sse	AR	3030	1788
Dardanelle	AR	3221	1882
Deer	AR	5001	912
Dequeen	AR	3198	1860
Dermott 3 Ne	AR	2886	2105
Des Arc	AR	3266	2027
Dumas	AR	2697	2159
El Dorado Goodwin Field ⁹	AR	2946	2622
Eudora	AR	2574	2291
Eureka Springs	AR	3851	1520

Table C1: Heating and Cooling Degree Days (65°F Base)

⁹ Updated to TMY3 weather station El Dorado Goodwin Field.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100--Doc 847 Arkunsus TKM Version 10.0 Vol. 3

Station Name	State	Heating Base (°F)	Cooling Base (°F)
Evening Shade 1	AR	4095	1535
Fayetteville Drake Field ¹⁰	AR	3864	1885
Fordyce	AR	3374	1618
Fort Smith Regional AP ¹¹	AR	3919	2129
Gilbert	AR	3670	1578
Gravette	AR	3923	1515
Greenbrier	AR	3857	1587
Greers Ferry Da	AR	3808	1616
Harrison Boone Hro	AR	4063	1443
Hector 2 Ssw	AR	3599	1591
Helena	AR	3120	2098
Hope 3 Ne	AR	3093	1834
Hot Springs 1 N	AR	3133	1993
Huntsville 1 Ss	AR	3944	1381
Jonesboro 4 N	AR	3737	1858
Keiser	AR	3655	1829
Keo	AR	2932	2010
Lead Hill	AR	4372	1439
Leola	AR	2959	1893
Little Rock Adams Field ¹²	AR	3344	2184
Magnolia	AR	2876	1859
Malvern	AR	2989	1846
Mammoth Spring	AR	4319	1331
Marianna 2 S	AR	3409	1867
Marshall	AR	3897	1533
Mena	AR	3649	1463
Monticello 3 Sw	AR	2937	1960
Morrilton	AR	3614	1701
Mount Ida 3 Se	AR	3854	1417
Mountainburg 2	AR	3347	1683
Mountain Home 1	AR	4249	1413
Mountain View	AR	3848	1571

¹⁰ Updated to TMY3 weather station Fayetteville Drake Field.

¹¹ Updated to TMY3 weather station Fort Smith Regional AP.

¹² Updated to TMY3 weather station Little Rock Adams Field.

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446 APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 13-002-U-Doc. 446 Arkunsus PRM Version 10:07 Vol. 3

Station Name	State	Heating Base (°F)	Cooling Base (°F)
Murfreesboro 5	AR	3455	1648
Nashville	AR	3087	1879
Newport	AR	3490	1967
Nimrod Dam	AR	3594	1712
North Little Ro	AR	2980	2196
Okay	AR	2543	2180
Ozark	AR	3679	1739
Paragould 1 S	AR	3872	1725
Pine Bluff	AR	2935	2099
Pocahontas 1	AR	4037	1641
Portland	AR	2847	2079
Prescott	AR	2976	1947
Rogers AWOS ¹³	AR	4402	1757
Rohwer 2 Nne	AR	2979	2023
Saint Charles	AR	3123	1984
Searcy	AR	3655	1726
Sheridan	AR	3282	1813
Siloam Springs	AR	4283	1373
Sparkman	AR	3127	1908
Stamps	AR	2694	2031
Stuttgart 9 Ese	AR	3103	2073
Subiaco	AR	3366	1763
Texarkana Webb	AR	2421	2280
Waldron	AR	3272	1751
Warren 2 Wsw	AR	3032	1877
West Memphis	AR	3417	1903
Wynne	AR	3715	1722

¹³ Updated to TMY3 weather station Rogers AWOS.

Appendix D: Abbreviated Steam Tables

Steam	Saturated	Steam Saturated Heat of the Liquid Latent Heat of the Saturated V							
psig	Temperature	hf	h _{fg}	hg					
0	212	180	970	1,150					
1	215	183	969	1,152					
5	227	196	961	1,156					
10	240	209	950	1,161					
15	250	218	946	1,164					
20	259	228	938	1,168					
25	267	236	935	1,170					
30	274	243	928	1,173					
35	281	250	925	1,175					
40	287	256	919	1,176					
50	298	267	911	1,180					
60	308	278	905	1,183					
70	316	287	898	1,185					
75	320	290	896	1,186					
80	324	295	892	1,187					
90	331	302	887	1,189					
100	338	309	882	1,190					
110	344	316	876	1,192					
125	353	325	869	1,195					
130	356	328	867	1,196					
140	361	333	862	1,196					
150	366	339	858	1,197					
160	371	344	854	1,198					
170	375	348	850	1,198					
175	377	351	848	1,199					
180	380	353	846	1,199					
190	384	358	842	1,200					
200	388	362	838	1,201					
225	397	372	830	1,202					
250	406	381	821	1,203					
275	414	391	813	1,204					
300	421	398	806	1,204					
325	429	407	798	1,205					
350	436	414	791	1,205					
375	442	421	784	1,205					
400	448	428	778	1,205					

Table D1: Abbreviated Steam Tables

Source: Information extracted from http://www.boilerroom.com website

Appendix E: Standard Wattage Table

Table E1: Standard Wattage Table

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED001-SCRW	Integrated-ballast LED Lamps	(1) 1W screw-in lamp/base, any bulb shape	NA	NA	1	Electronic
LED002-SCRW	Integrated-ballast LED Lamps	(1) 2W screw-in lamp/base, any bulb shape	NA	NA	2	Electronic
LED003-SCRW	Integrated-ballast LED Lamps	(1) 3W screw-in lamp/base, any bulb shape	NA	NA	3	Electronic
LED004-SCRW	Integrated-ballast LED Lamps	(1) 4W screw-in lamp/base, any bulb shape	NA	NA	4	Electronic
LED005-SCRW	Integrated-ballast LED Lamps	(1) 5W screw-in lamp/base, any bulb shape	NA	NA	5	Electronic
LED006-SCRW	Integrated-ballast LED Lamps	(1) 6W screw-in lamp/base, any bulb shape	NA	NA	6	Electronic
LED007-SCRW	Integrated-ballast LED Lamps	(1) 7W screw-in lamp/base, any bulb shape	NA	NA	7	Electronic
LED008-SCRW	Integrated-ballast LED Lamps	(1) 8W screw-in lamp/base, any bulb shape	NA	NA	8	Electronic
LED009-SCRW	Integrated-ballast LED Lamps	(1) 9W screw-in lamp/base, any bulb shape	NA	NA	9	Electronic
LED010-SCRW	Integrated-ballast LED Lamps	(1) 10W screw-in lamp/base, any bulb shape	NA	NA	10	Electronic
LED011-SCRW	Integrated-ballast LED Lamps	(1) 11W screw-in lamp/base, any bulb shape	NA	NA	11	Electronic
LED012-SCRW	Integrated-ballast LED Lamps	(1) 12W screw-in lamp/base, any bulb shape	NA	NA	12	Electronic
LED013-SCRW	Integrated-ballast LED Lamps	(1) 13W screw-in lamp/base, any bulb shape	NA	NA	13	Electronic
LED014-SCRW	Integrated-ballast LED Lamps	(1) 14W screw-in lamp/base, any bulb shape	NA	NA	14	Electronic
LED015-SCRW	Integrated-ballast LED Lamps	(1) 15W screw-in lamp/base, any bulb shape	NA	NA	15	Electronic
LED016-SCRW	Integrated-ballast LED Lamps	(1) 16W screw-in lamp/base, any bulb shape	NA	NA	16	Electronic
LED017-SCRW	Integrated-ballast LED Lamps	(1) 17W screw-in lamp/base, any bulb shape	NA	NA	17	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED018-SCRW	Integrated-ballast LED Lamps	(1) 18W screw-in lamp/base, any bulb shape	NA	NA	18	Electronic
LED019-SCRW	Integrated-ballast LED Lamps	(1) 19W screw-in lamp/base, any bulb shape	NA	NA	19	Electronic
LED020-SCRW	Integrated-ballast LED Lamps	(1) 20W screw-in lamp/base, any bulb shape	NA	NA	20	Electronic
LED021-SCRW	Integrated-ballast LED Lamps	(1) 21W screw-in lamp/base, any bulb shape	NA	NA	21	Electronic
LED022-SCRW	Integrated-ballast LED Lamps	(1) 22W screw-in lamp/base, any bulb shape	NA	NA	22	Electronic
LED023-SCRW	Integrated-ballast LED Lamps	(1) 23W screw-in lamp/base, any bulb shape	NA	NA	23	Electronic
LED024-SCRW	Integrated-ballast LED Lamps	(1) 24W screw-in lamp/base, any bulb shape	NA	NA	24	Electronic
LED025-SCRW	Integrated-ballast LED Lamps	(1) 25W screw-in lamp/base, any bulb shape	NA	NA	25	Electronic
LED026-SCRW	Integrated-ballast LED Lamps	(1) 26W screw-in lamp/base, any bulb shape	NA	NA	26	Electronic
LED027-SCRW	Integrated-ballast LED Lamps	(1) 27W screw-in lamp/base, any bulb shape	NA	NA	27	Electronic
LED028-SCRW	Integrated-ballast LED Lamps	(1) 28W screw-in lamp/base, any bulb shape	NA	NA	28	Electronic
LED029-SCRW	Integrated-ballast LED Lamps	(1) 29W screw-in lamp/base, any bulb shape	NA	NA	29	Electronic
LED030-SCRW	Integrated-ballast LED Lamps	(1) 30W screw-in lamp/base, any bulb shape	NA	NA	30	Electronic
LED031-SCRW	Integrated-ballast LED Lamps	(1) 31W screw-in lamp/base, any bulb shape	NA	NA	31	Electronic
LED032-SCRW	Integrated-ballast LED Lamps	(1) 32W screw-in lamp/base, any bulb shape	NA	NA	32	Electronic
LED033-SCRW	Integrated-ballast LED Lamps	(1) 33W screw-in lamp/base, any bulb shape	NA	NA	33	Electronic
LED034-SCRW	Integrated-ballast LED Lamps	(1) 34W screw-in lamp/base, any bulb shape	NA	NA	34	Electronic
LED035-SCRW	Integrated-ballast LED Lamps	(1) 35W screw-in lamp/base, any bulb shape	NA	NA	35	Electronic
LED036-SCRW	Integrated-ballast LED Lamps	(1) 36W screw-in lamp/base, any bulb shape	NA	NA	36	Electronic
LED037-SCRW	Integrated-ballast LED Lamps	(1) 37W screw-in lamp/base, any bulb shape	NA	NA	37	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED038-SCRW	Integrated-ballast LED Lamps	(1) 38W screw-in lamp/base, any bulb shape	NA	NA	38	Electronic
LED039-SCRW	Integrated-ballast LED Lamps	(1) 39W screw-in lamp/base, any bulb shape	NA	NA	39	Electronic
LED040-SCRW	Integrated-ballast LED Lamps	(1) 40W screw-in lamp/base, any bulb shape	NA	NA	40	Electronic
LED041-SCRW	Integrated-ballast LED Lamps	(1) 41W screw-in lamp/base, any bulb shape	NA	NA	41	Electronic
LED042-SCRW	Integrated-ballast LED Lamps	(1) 42W screw-in lamp/base, any bulb shape	NA	NA	42	Electronic
LED043-SCRW	Integrated-ballast LED Lamps	(1) 43W screw-in lamp/base, any bulb shape	NA	NA	43	Electronic
LED044-SCRW	Integrated-ballast LED Lamps	(1) 44W screw-in lamp/base, any bulb shape	NA	NA	44	Electronic
LED045-SCRW	Integrated-ballast LED Lamps	(1) 45W screw-in lamp/base, any bulb shape	NA	NA	45	Electronic
LED046-SCRW	Integrated-ballast LED Lamps	(1) 46W screw-in lamp/base, any bulb shape	NA	NA	46	Electronic
LED047-SCRW	Integrated-ballast LED Lamps	(1) 47W screw-in lamp/base, any bulb shape	NA	NA	47	Electronic
LED048-SCRW	Integrated-ballast LED Lamps	(1) 48W screw-in lamp/base, any bulb shape	NA	NA	48	Electronic
LED049-SCRW	Integrated-ballast LED Lamps	(1) 49W screw-in lamp/base, any bulb shape	NA	NA	49	Electronic
LED050-SCRW	Integrated-ballast LED Lamps	(1) 50W screw-in lamp/base, any bulb shape	NA	NA	50	Electronic
LED001-FIXT	Light Emitting Diode (LED)	(1) 1W fixture, any bulb shape, any application	NA	NA	1	Electronic
LED002-FIXT	Light Emitting Diode (LED)	(1) 2W fixture, any bulb shape, any application	NA	NA	2	Electronic
LED003-FIXT	Light Emitting Diode (LED)	(1) 3W fixture, any bulb shape, any application	NA	NA	3	Electronic
LED004-FIXT	Light Emitting Diode (LED)	(1) 4W fixture, any bulb shape, any application	NA	NA	4	Electronic
LED005-FIXT	Light Emitting Diode (LED)	(1) 5W fixture, any bulb shape, any application	NA	NA	5	Electronic
LED006-FIXT	Light Emitting Diode (LED)	(1) 6W fixture, any bulb shape, any application	NA	NA	6	Electronic
LED007-FIXT	Light Emitting Diode (LED)	(1) 7W fixture, any bulb shape, any application	NA	NA	7	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED008-FIXT	Light Emitting Diode (LED)	(1) 8W fixture, any bulb shape, any application	NA	NA	8	Electronic
LED009-FIXT	Light Emitting Diode (LED)	(1) 9W fixture, any bulb shape, any application	NA	NA	9	Electronic
LED010-FIXT	Light Emitting Diode (LED)	(1) 10W fixture, any bulb shape, any application	NA	NA	10	Electronic
LED011-FIXT	Light Emitting Diode (LED)	(1) 11W fixture, any bulb shape, any application	NA	NA	11	Electronic
LED012-FIXT	Light Emitting Diode (LED)	(1) 12W fixture, any bulb shape, any application	NA	NA	12	Electronic
LED013-FIXT	Light Emitting Diode (LED)	(1) 13W fixture, any bulb shape, any application	NA	NA	13	Electronic
LED014-FIXT	Light Emitting Diode (LED)	(1) 14W fixture, any bulb shape, any application	NA	NA	14	Electronic
LED015-FIXT	Light Emitting Diode (LED)	(1) 15W fixture, any bulb shape, any application	NA	NA	15	Electronic
LED016-FIXT	Light Emitting Diode (LED)	(1) 16W fixture, any bulb shape, any application	NA	NA	16	Electronic
LED017-FIXT	Light Emitting Diode (LED)	(1) 17W fixture, any bulb shape, any application	NA	NA	17	Electronic
LED018-FIXT	Light Emitting Diode (LED)	(1) 18W fixture, any bulb shape, any application	NA	NA	18	Electronic
LED019-FIXT	Light Emitting Diode (LED)	(1) 19W fixture, any bulb shape, any application	NA	NA	19	Electronic
LED020-FIXT	Light Emitting Diode (LED)	(1) 20W fixture, any bulb shape, any application	NA	NA	20	Electronic
LED021-FIXT	Light Emitting Diode (LED)	(1) 21W fixture, any bulb shape, any application	NA	NA	21	Electronic
LED022-FIXT	Light Emitting Diode (LED)	(1) 22W fixture, any bulb shape, any application	NA	NA	22	Electronic
LED023-FIXT	Light Emitting Diode (LED)	(1) 23W fixture, any bulb shape, any application	NA	NA	23	Electronic
LED024-FIXT	Light Emitting Diode (LED)	(1) 24W fixture, any bulb shape, any application	NA	NA	24	Electronic
LED025-FIXT	Light Emitting Diode (LED)	(1) 25W fixture, any bulb shape, any application	NA	NA	25	Electronic
LED026-FIXT	Light Emitting Diode (LED)	(1) 26W fixture, any bulb shape, any application	NA	NA	26	Electronic
LED027-FIXT	Light Emitting Diode (LED)	(1) 27W fixture, any bulb shape, any application	NA	NA	27	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED028-FIXT	Light Emitting Diode (LED)	(1) 28W fixture, any bulb shape, any application	NA	NA	28	Electronic
LED029-FIXT	Light Emitting Diode (LED)	(1) 29W fixture, any bulb shape, any application	NA	NA	29	Electronic
LED030-FIXT	Light Emitting Diode (LED)	(1) 30W fixture, any bulb shape, any application	NA	NA	30	Electronic
LED031-FIXT	Light Emitting Diode (LED)	(1) 31W fixture, any bulb shape, any application	NA	NA	31	Electronic
LED032-FIXT	Light Emitting Diode (LED)	(1) 32W fixture, any bulb shape, any application	NA	NA	32	Electronic
LED033-FIXT	Light Emitting Diode (LED)	(1) 33W fixture, any bulb shape, any application	NA	NA	33	Electronic
LED034-FIXT	Light Emitting Diode (LED)	(1) 34W fixture, any bulb shape, any application	NA	NA	34	Electronic
LED035-FIXT	Light Emitting Diode (LED)	(1) 35W fixture, any bulb shape, any application	NA	NA	35	Electronic
LED036-FIXT	Light Emitting Diode (LED)	(1) 36W fixture, any bulb shape, any application	NA	NA	36	Electronic
LED037-FIXT	Light Emitting Diode (LED)	(1) 37W fixture, any bulb shape, any application	NA	NA	37	Electronic
LED038-FIXT	Light Emitting Diode (LED)	(1) 38W fixture, any bulb shape, any application	NA	NA	38	Electronic
LED039-FIXT	Light Emitting Diode (LED)	(1) 39W fixture, any bulb shape, any application	NA	NA	39	Electronic
LED040-FIXT	Light Emitting Diode (LED)	(1) 40W fixture, any bulb shape, any application	NA	NA	40	Electronic
LED041-FIXT	Light Emitting Diode (LED)	(1) 41W fixture, any bulb shape, any application	NA	NA	41	Electronic
LED042-FIXT	Light Emitting Diode (LED)	(1) 42W fixture, any bulb shape, any application	NA	NA	42	Electronic
LED043-FIXT	Light Emitting Diode (LED)	(1) 43W fixture, any bulb shape, any application	NA	NA	43	Electronic
LED044-FIXT	Light Emitting Diode (LED)	(1) 44W fixture, any bulb shape, any application	NA	NA	44	Electronic
LED045-FIXT	Light Emitting Diode (LED)	(1) 45W fixture, any bulb shape, any application	NA	NA	45	Electronic
LED046-FIXT	Light Emitting Diode (LED)	(1) 46W fixture, any bulb shape, any application	NA	NA	46	Electronic
LED047-FIXT	Light Emitting Diode (LED)	(1) 47W fixture, any bulb shape, any application	NA	NA	47	Electronic

Arkansas TRM Version 10.0 Vol. 3	Arkansas	TRM	Version	10.0	Vol. 3	3
----------------------------------	----------	-----	---------	------	--------	---

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED048-FIXT	Light Emitting Diode (LED)	(1) 48W fixture, any bulb shape, any application	NA	NA	48	Electronic
LED049-FIXT	Light Emitting Diode (LED)	(1) 49W fixture, any bulb shape, any application	NA	NA	49	Electronic
LED050-FIXT	Light Emitting Diode (LED)	(1) 50W fixture, any bulb shape, any application	NA	NA	50	Electronic
LED051-FIXT	Light Emitting Diode (LED)	(1) 51W fixture, any bulb shape, any application	NA	NA	51	Electronic
LED052-FIXT	Light Emitting Diode (LED)	(1) 52W fixture, any bulb shape, any application	NA	NA	52	Electronic
LED053-FIXT	Light Emitting Diode (LED)	(1) 53W fixture, any bulb shape, any application	NA	NA	53	Electronic
LED054-FIXT	Light Emitting Diode (LED)	(1) 54W fixture, any bulb shape, any application	NA	NA	54	Electronic
LED055-FIXT	Light Emitting Diode (LED)	(1) 55W fixture, any bulb shape, any application	NA	NA	55	Electronic
LED056-FIXT	Light Emitting Diode (LED)	(1) 56W fixture, any bulb shape, any application	NA	NA	56	Electronic
LED057-FIXT	Light Emitting Diode (LED)	(1) 57W fixture, any bulb shape, any application	NA	NA	57	Electronic
LED058-FIXT	Light Emitting Diode (LED)	(1) 58W fixture, any bulb shape, any application	NA	NA	58	Electronic
LED059-FIXT	Light Emitting Diode (LED)	(1) 59W fixture, any bulb shape, any application	NA	NA	59	Electronic
LED060-FIXT	Light Emitting Diode (LED)	(1) 60W fixture, any bulb shape, any application	NA	NA	60	Electronic
LED061-FIXT	Light Emitting Diode (LED)	(1) 61W fixture, any bulb shape, any application	NA	NA	61	Electronic
LED062-FIXT	Light Emitting Diode (LED)	(1) 62W fixture, any bulb shape, any application	NA	NA	62	Electronic
LED063-FIXT	Light Emitting Diode (LED)	(1) 63W fixture, any bulb shape, any application	NA	NA	63	Electronic
LED064-FIXT	Light Emitting Diode (LED)	(1) 64W fixture, any bulb shape, any application	NA	NA	64	Electronic
LED065-FIXT	Light Emitting Diode (LED)	(1) 65W fixture, any bulb shape, any application	NA	NA	65	Electronic
LED066-FIXT	Light Emitting Diode (LED)	(1) 66W fixture, any bulb shape, any application	NA	NA	66	Electronic
LED067-FIXT	Light Emitting Diode (LED)	(1) 67W fixture, any bulb shape, any application	NA	NA	67	Electronic

Arkansas TRM Version 10.0 Vol. 3	Arkansas	TRM	Version	10.0	Vol. 3	3
----------------------------------	----------	-----	---------	------	--------	---

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED068-FIXT	Light Emitting Diode (LED)	(1) 68W fixture, any bulb shape, any application	NA	NA	68	Electronic
LED069-FIXT	Light Emitting Diode (LED)	(1) 69W fixture, any bulb shape, any application	NA	NA	69	Electronic
LED070-FIXT	Light Emitting Diode (LED)	(1) 70W fixture, any bulb shape, any application	NA	NA	70	Electronic
LED071-FIXT	Light Emitting Diode (LED)	(1) 71W fixture, any bulb shape, any application	NA	NA	71	Electronic
LED072-FIXT	Light Emitting Diode (LED)	(1) 72W fixture, any bulb shape, any application	NA	NA	72	Electronic
LED073-FIXT	Light Emitting Diode (LED)	(1) 73W fixture, any bulb shape, any application	NA	NA	73	Electronic
LED074-FIXT	Light Emitting Diode (LED)	(1) 74W fixture, any bulb shape, any application	NA	NA	74	Electronic
LED075-FIXT	Light Emitting Diode (LED)	(1) 75W fixture, any bulb shape, any application	NA	NA	75	Electronic
LED076-FIXT	Light Emitting Diode (LED)	(1) 76W fixture, any bulb shape, any application	NA	NA	76	Electronic
LED077-FIXT	Light Emitting Diode (LED)	(1) 77W fixture, any bulb shape, any application	NA	NA	77	Electronic
LED078-FIXT	Light Emitting Diode (LED)	(1) 78W fixture, any bulb shape, any application	NA	NA	78	Electronic
LED079-FIXT	Light Emitting Diode (LED)	(1) 79W fixture, any bulb shape, any application	NA	NA	79	Electronic
LED080-FIXT	Light Emitting Diode (LED)	(1) 80W fixture, any bulb shape, any application	NA	NA	80	Electronic
LED081-FIXT	Light Emitting Diode (LED)	(1) 81W fixture, any bulb shape, any application	NA	NA	81	Electronic
LED082-FIXT	Light Emitting Diode (LED)	(1) 82W fixture, any bulb shape, any application	NA	NA	82	Electronic
LED083-FIXT	Light Emitting Diode (LED)	(1) 83W fixture, any bulb shape, any application	NA	NA	83	Electronic
LED084-FIXT	Light Emitting Diode (LED)	(1) 84W fixture, any bulb shape, any application	NA	NA	84	Electronic
LED085-FIXT	Light Emitting Diode (LED)	(1) 85W fixture, any bulb shape, any application	NA	NA	85	Electronic
LED086-FIXT	Light Emitting Diode (LED)	(1) 86W fixture, any bulb shape, any application	NA	NA	86	Electronic
LED087-FIXT	Light Emitting Diode (LED)	(1) 87W fixture, any bulb shape, any application	NA	NA	87	Electronic

Arkansas TRM Ve	ersion 10.0 Vol. 3
-----------------	--------------------

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED088-FIXT	Light Emitting Diode (LED)	(1) 88W fixture, any bulb shape, any application	NA	NA	88	Electronic
LED089-FIXT	Light Emitting Diode (LED)	(1) 89W fixture, any bulb shape, any application	NA	NA	89	Electronic
LED090-FIXT	Light Emitting Diode (LED)	(1) 90W fixture, any bulb shape, any application	NA	NA	90	Electronic
LED091-FIXT	Light Emitting Diode (LED)	(1) 91W fixture, any bulb shape, any application	NA	NA	91	Electronic
LED092-FIXT	Light Emitting Diode (LED)	(1) 92W fixture, any bulb shape, any application	NA	NA	92	Electronic
LED093-FIXT	Light Emitting Diode (LED)	(1) 93W fixture, any bulb shape, any application	NA	NA	93	Electronic
LED094-FIXT	Light Emitting Diode (LED)	(1) 94W fixture, any bulb shape, any application	NA	NA	94	Electronic
LED095-FIXT	Light Emitting Diode (LED)	(1) 95W fixture, any bulb shape, any application	NA	NA	95	Electronic
LED096-FIXT	Light Emitting Diode (LED)	(1) 96W fixture, any bulb shape, any application	NA	NA	96	Electronic
LED097-FIXT	Light Emitting Diode (LED)	(1) 97W fixture, any bulb shape, any application	NA	NA	97	Electronic
LED098-FIXT	Light Emitting Diode (LED)	(1) 98W fixture, any bulb shape, any application	NA	NA	98	Electronic
LED099-FIXT	Light Emitting Diode (LED)	(1) 99W fixture, any bulb shape, any application	NA	NA	99	Electronic
LED100-FIXT	Light Emitting Diode (LED)	(1) 100W fixture, any bulb shape, any application	NA	NA	100	Electronic
LED101-FIXT	Light Emitting Diode (LED)	(1) 101W fixture, any bulb shape, any application	NA	NA	101	Electronic
LED102-FIXT	Light Emitting Diode (LED)	(1) 102W fixture, any bulb shape, any application	NA	NA	102	Electronic
LED103-FIXT	Light Emitting Diode (LED)	(1) 103W fixture, any bulb shape, any application	NA	NA	103	Electronic
LED104-FIXT	Light Emitting Diode (LED)	(1) 104W fixture, any bulb shape, any application	NA	NA	104	Electronic
LED105-FIXT	Light Emitting Diode (LED)	(1) 105W fixture, any bulb shape, any application	NA	NA	105	Electronic
LED106-FIXT	Light Emitting Diode (LED)	(1) 106W fixture, any bulb shape, any application	NA	NA	106	Electronic
LED107-FIXT	Light Emitting Diode (LED)	(1) 107W fixture, any bulb shape, any application	NA	NA	107	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED108-FIXT	Light Emitting Diode (LED)	(1) 108W fixture, any bulb shape, any application	NA	NA	108	Electronic
LED109-FIXT	Light Emitting Diode (LED)	(1) 109W fixture, any bulb shape, any application	NA	NA	109	Electronic
LED110-FIXT	Light Emitting Diode (LED)	(1) 110W fixture, any bulb shape, any application	NA	NA	110	Electronic
LED111-FIXT	Light Emitting Diode (LED)	(1) 111W fixture, any bulb shape, any application	NA	NA	111	Electronic
LED112-FIXT	Light Emitting Diode (LED)	(1) 112W fixture, any bulb shape, any application	NA	NA	112	Electronic
LED113-FIXT	Light Emitting Diode (LED)	(1) 113W fixture, any bulb shape, any application	NA	NA	113	Electronic
LED114-FIXT	Light Emitting Diode (LED)	(1) 114W fixture, any bulb shape, any application	NA	NA	114	Electronic
LED115-FIXT	Light Emitting Diode (LED)	(1) 115W fixture, any bulb shape, any application	NA	NA	115	Electronic
LED116-FIXT	Light Emitting Diode (LED)	(1) 116W fixture, any bulb shape, any application	NA	NA	116	Electronic
LED117-FIXT	Light Emitting Diode (LED)	(1) 117W fixture, any bulb shape, any application	NA	NA	117	Electronic
LED118-FIXT	Light Emitting Diode (LED)	(1) 118W fixture, any bulb shape, any application	NA	NA	118	Electronic
LED119-FIXT	Light Emitting Diode (LED)	(1) 119W fixture, any bulb shape, any application	NA	NA	119	Electronic
LED120-FIXT	Light Emitting Diode (LED)	(1) 120W fixture, any bulb shape, any application	NA	NA	120	Electronic
LED121-FIXT	Light Emitting Diode (LED)	(1) 121W fixture, any bulb shape, any application	NA	NA	121	Electronic
LED122-FIXT	Light Emitting Diode (LED)	(1) 122W fixture, any bulb shape, any application	NA	NA	122	Electronic
LED123-FIXT	Light Emitting Diode (LED)	(1) 123W fixture, any bulb shape, any application	NA	NA	123	Electronic
LED124-FIXT	Light Emitting Diode (LED)	(1) 124W fixture, any bulb shape, any application	NA	NA	124	Electronic
LED125-FIXT	Light Emitting Diode (LED)	(1) 125W fixture, any bulb shape, any application	NA	NA	125	Electronic
LED126-FIXT	Light Emitting Diode (LED)	(1) 126W fixture, any bulb shape, any application	NA	NA	126	Electronic
LED127-FIXT	Light Emitting Diode (LED)	(1) 127W fixture, any bulb shape, any application	NA	NA	127	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED128-FIXT	Light Emitting Diode (LED)	(1) 128W fixture, any bulb shape, any application	NA	NA	128	Electronic
LED129-FIXT	Light Emitting Diode (LED)	(1) 129W fixture, any bulb shape, any application	NA	NA	129	Electronic
LED130-FIXT	Light Emitting Diode (LED)	(1) 130W fixture, any bulb shape, any application	NA	NA	130	Electronic
LED131-FIXT	Light Emitting Diode (LED)	(1) 131W fixture, any bulb shape, any application	NA	NA	131	Electronic
LED132-FIXT	Light Emitting Diode (LED)	(1) 132W fixture, any bulb shape, any application	NA	NA	132	Electronic
LED133-FIXT	Light Emitting Diode (LED)	(1) 133W fixture, any bulb shape, any application	NA	NA	133	Electronic
LED134-FIXT	Light Emitting Diode (LED)	(1) 134W fixture, any bulb shape, any application	NA	NA	134	Electronic
LED135-FIXT	Light Emitting Diode (LED)	(1) 135W fixture, any bulb shape, any application	NA	NA	135	Electronic
LED136-FIXT	Light Emitting Diode (LED)	(1) 136W fixture, any bulb shape, any application	NA	NA	136	Electronic
LED137-FIXT	Light Emitting Diode (LED)	(1) 137W fixture, any bulb shape, any application	NA	NA	137	Electronic
LED138-FIXT	Light Emitting Diode (LED)	(1) 138W fixture, any bulb shape, any application	NA	NA	138	Electronic
LED139-FIXT	Light Emitting Diode (LED)	(1) 139W fixture, any bulb shape, any application	NA	NA	139	Electronic
LED140-FIXT	Light Emitting Diode (LED)	(1) 140W fixture, any bulb shape, any application	NA	NA	140	Electronic
LED141-FIXT	Light Emitting Diode (LED)	(1) 141W fixture, any bulb shape, any application	NA	NA	141	Electronic
LED142-FIXT	Light Emitting Diode (LED)	(1) 142W fixture, any bulb shape, any application	NA	NA	142	Electronic
LED143-FIXT	Light Emitting Diode (LED)	(1) 143W fixture, any bulb shape, any application	NA	NA	143	Electronic
LED144-FIXT	Light Emitting Diode (LED)	(1) 144W fixture, any bulb shape, any application	NA	NA	144	Electronic
LED145-FIXT	Light Emitting Diode (LED)	(1) 145W fixture, any bulb shape, any application	NA	NA	145	Electronic
LED146-FIXT	Light Emitting Diode (LED)	(1) 146W fixture, any bulb shape, any application	NA	NA	146	Electronic
LED147-FIXT	Light Emitting Diode (LED)	(1) 147W fixture, any bulb shape, any application	NA	NA	147	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED148-FIXT	Light Emitting Diode (LED)	(1) 148W fixture, any bulb shape, any application	NA	NA	148	Electronic
LED149-FIXT	Light Emitting Diode (LED)	(1) 149W fixture, any bulb shape, any application	NA	NA	149	Electronic
LED150-FIXT	Light Emitting Diode (LED)	(1) 150W fixture, any bulb shape, any application	NA	NA	150	Electronic
LED151-FIXT	Light Emitting Diode (LED)	(1) 151W fixture, any bulb shape, any application	NA	NA	151	Electronic
LED152-FIXT	Light Emitting Diode (LED)	(1) 152W fixture, any bulb shape, any application	NA	NA	152	Electronic
LED153-FIXT	Light Emitting Diode (LED)	(1) 153W fixture, any bulb shape, any application	NA	NA	153	Electronic
LED154-FIXT	Light Emitting Diode (LED)	(1) 154W fixture, any bulb shape, any application	NA	NA	154	Electronic
LED155-FIXT	Light Emitting Diode (LED)	(1) 155W fixture, any bulb shape, any application	NA	NA	155	Electronic
LED156-FIXT	Light Emitting Diode (LED)	(1) 156W fixture, any bulb shape, any application	NA	NA	156	Electronic
LED157-FIXT	Light Emitting Diode (LED)	(1) 157W fixture, any bulb shape, any application	NA	NA	157	Electronic
LED158-FIXT	Light Emitting Diode (LED)	(1) 158W fixture, any bulb shape, any application	NA	NA	158	Electronic
LED159-FIXT	Light Emitting Diode (LED)	(1) 159W fixture, any bulb shape, any application	NA	NA	159	Electronic
LED160-FIXT	Light Emitting Diode (LED)	(1) 160W fixture, any bulb shape, any application	NA	NA	160	Electronic
LED161-FIXT	Light Emitting Diode (LED)	(1) 161W fixture, any bulb shape, any application	NA	NA	161	Electronic
LED162-FIXT	Light Emitting Diode (LED)	(1) 162W fixture, any bulb shape, any application	NA	NA	162	Electronic
LED163-FIXT	Light Emitting Diode (LED)	(1) 163W fixture, any bulb shape, any application	NA	NA	163	Electronic
LED164-FIXT	Light Emitting Diode (LED)	(1) 164W fixture, any bulb shape, any application	NA	NA	164	Electronic
LED165-FIXT	Light Emitting Diode (LED)	(1) 165W fixture, any bulb shape, any application	NA	NA	165	Electronic
LED166-FIXT	Light Emitting Diode (LED)	(1) 166W fixture, any bulb shape, any application	NA	NA	166	Electronic
LED167-FIXT	Light Emitting Diode (LED)	(1) 167W fixture, any bulb shape, any application	NA	NA	167	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED168-FIXT	Light Emitting Diode (LED)	(1) 168W fixture, any bulb shape, any application	NA	NA	168	Electronic
LED169-FIXT	Light Emitting Diode (LED)	(1) 169W fixture, any bulb shape, any application	NA	NA	169	Electronic
LED170-FIXT	Light Emitting Diode (LED)	(1) 170W fixture, any bulb shape, any application	NA	NA	170	Electronic
LED171-FIXT	Light Emitting Diode (LED)	(1) 171W fixture, any bulb shape, any application	NA	NA	171	Electronic
LED172-FIXT	Light Emitting Diode (LED)	(1) 172W fixture, any bulb shape, any application	NA	NA	172	Electronic
LED173-FIXT	Light Emitting Diode (LED)	(1) 173W fixture, any bulb shape, any application	NA	NA	173	Electronic
LED174-FIXT	Light Emitting Diode (LED)	(1) 174W fixture, any bulb shape, any application	NA	NA	174	Electronic
LED175-FIXT	Light Emitting Diode (LED)	(1) 175W fixture, any bulb shape, any application	NA	NA	175	Electronic
LED176-FIXT	Light Emitting Diode (LED)	(1) 176W fixture, any bulb shape, any application	NA	NA	176	Electronic
LED177-FIXT	Light Emitting Diode (LED)	(1) 177W fixture, any bulb shape, any application	NA	NA	177	Electronic
LED178-FIXT	Light Emitting Diode (LED)	(1) 178W fixture, any bulb shape, any application	NA	NA	178	Electronic
LED179-FIXT	Light Emitting Diode (LED)	(1) 179W fixture, any bulb shape, any application	NA	NA	179	Electronic
LED180-FIXT	Light Emitting Diode (LED)	(1) 180W fixture, any bulb shape, any application	NA	NA	180	Electronic
LED181-FIXT	Light Emitting Diode (LED)	(1) 181W fixture, any bulb shape, any application	NA	NA	181	Electronic
LED182-FIXT	Light Emitting Diode (LED)	(1) 182W fixture, any bulb shape, any application	NA	NA	182	Electronic
LED183-FIXT	Light Emitting Diode (LED)	(1) 183W fixture, any bulb shape, any application	NA	NA	183	Electronic
LED184-FIXT	Light Emitting Diode (LED)	(1) 184W fixture, any bulb shape, any application	NA	NA	184	Electronic
LED185-FIXT	Light Emitting Diode (LED)	(1) 185W fixture, any bulb shape, any application	NA	NA	185	Electronic
LED186-FIXT	Light Emitting Diode (LED)	(1) 186W fixture, any bulb shape, any application	NA	NA	186	Electronic
LED187-FIXT	Light Emitting Diode (LED)	(1) 187W fixture, any bulb shape, any application	NA	NA	187	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED188-FIXT	Light Emitting Diode (LED)	(1) 188W fixture, any bulb shape, any application	NA	NA	188	Electronic
LED189-FIXT	Light Emitting Diode (LED)	(1) 189W fixture, any bulb shape, any application	NA	NA	189	Electronic
LED190-FIXT	Light Emitting Diode (LED)	(1) 190W fixture, any bulb shape, any application	NA	NA	190	Electronic
LED191-FIXT	Light Emitting Diode (LED)	(1) 191W fixture, any bulb shape, any application	NA	NA	191	Electronic
LED192-FIXT	Light Emitting Diode (LED)	(1) 192W fixture, any bulb shape, any application	NA	NA	192	Electronic
LED193-FIXT	Light Emitting Diode (LED)	(1) 193W fixture, any bulb shape, any application	NA	NA	193	Electronic
LED194-FIXT	Light Emitting Diode (LED)	(1) 194W fixture, any bulb shape, any application	NA	NA	194	Electronic
LED195-FIXT	Light Emitting Diode (LED)	(1) 195W fixture, any bulb shape, any application	NA	NA	195	Electronic
LED196-FIXT	Light Emitting Diode (LED)	(1) 196W fixture, any bulb shape, any application	NA	NA	196	Electronic
LED197-FIXT	Light Emitting Diode (LED)	(1) 197W fixture, any bulb shape, any application	NA	NA	197	Electronic
LED198-FIXT	Light Emitting Diode (LED)	(1) 198W fixture, any bulb shape, any application	NA	NA	198	Electronic
LED199-FIXT	Light Emitting Diode (LED)	(1) 199W fixture, any bulb shape, any application	NA	NA	199	Electronic
LED200-FIXT	Light Emitting Diode (LED)	(1) 200W fixture, any bulb shape, any application	NA	NA	200	Electronic
LED201-FIXT	Light Emitting Diode (LED)	(1) 201W fixture, any bulb shape, any application	NA	NA	201	Electronic
LED202-FIXT	Light Emitting Diode (LED)	(1) 202W fixture, any bulb shape, any application	NA	NA	202	Electronic
LED203-FIXT	Light Emitting Diode (LED)	(1) 203W fixture, any bulb shape, any application	NA	NA	203	Electronic
LED204-FIXT	Light Emitting Diode (LED)	(1) 204W fixture, any bulb shape, any application	NA	NA	204	Electronic
LED205-FIXT	Light Emitting Diode (LED)	(1) 205W fixture, any bulb shape, any application	NA	NA	205	Electronic
LED206-FIXT	Light Emitting Diode (LED)	(1) 206W fixture, any bulb shape, any application	NA	NA	206	Electronic
LED207-FIXT	Light Emitting Diode (LED)	(1) 207W fixture, any bulb shape, any application	NA	NA	207	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED208-FIXT	Light Emitting Diode (LED)	(1) 208W fixture, any bulb shape, any application	NA	NA	208	Electronic
LED209-FIXT	Light Emitting Diode (LED)	(1) 209W fixture, any bulb shape, any application	NA	NA	209	Electronic
LED210-FIXT	Light Emitting Diode (LED)	(1) 210W fixture, any bulb shape, any application	NA	NA	210	Electronic
LED211-FIXT	Light Emitting Diode (LED)	(1) 211W fixture, any bulb shape, any application	NA	NA	211	Electronic
LED212-FIXT	Light Emitting Diode (LED)	(1) 212W fixture, any bulb shape, any application	NA	NA	212	Electronic
LED213-FIXT	Light Emitting Diode (LED)	(1) 213W fixture, any bulb shape, any application	NA	NA	213	Electronic
LED214-FIXT	Light Emitting Diode (LED)	(1) 214W fixture, any bulb shape, any application	NA	NA	214	Electronic
LED215-FIXT	Light Emitting Diode (LED)	(1) 215W fixture, any bulb shape, any application	NA	NA	215	Electronic
LED216-FIXT	Light Emitting Diode (LED)	(1) 216W fixture, any bulb shape, any application	NA	NA	216	Electronic
LED217-FIXT	Light Emitting Diode (LED)	(1) 217W fixture, any bulb shape, any application	NA	NA	217	Electronic
LED218-FIXT	Light Emitting Diode (LED)	(1) 218W fixture, any bulb shape, any application	NA	NA	218	Electronic
LED219-FIXT	Light Emitting Diode (LED)	(1) 219W fixture, any bulb shape, any application	NA	NA	219	Electronic
LED220-FIXT	Light Emitting Diode (LED)	(1) 220W fixture, any bulb shape, any application	NA	NA	220	Electronic
LED221-FIXT	Light Emitting Diode (LED)	(1) 221W fixture, any bulb shape, any application	NA	NA	221	Electronic
LED222-FIXT	Light Emitting Diode (LED)	(1) 222W fixture, any bulb shape, any application	NA	NA	222	Electronic
LED223-FIXT	Light Emitting Diode (LED)	(1) 223W fixture, any bulb shape, any application	NA	NA	223	Electronic
LED224-FIXT	Light Emitting Diode (LED)	(1) 224W fixture, any bulb shape, any application	NA	NA	224	Electronic
LED225-FIXT	Light Emitting Diode (LED)	(1) 225W fixture, any bulb shape, any application	NA	NA	225	Electronic
LED226-FIXT	Light Emitting Diode (LED)	(1) 226W fixture, any bulb shape, any application	NA	NA	226	Electronic
LED227-FIXT	Light Emitting Diode (LED)	(1) 227W fixture, any bulb shape, any application	NA	NA	227	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED228-FIXT	Light Emitting Diode (LED)	(1) 228W fixture, any bulb shape, any application	NA	NA	228	Electronic
LED229-FIXT	Light Emitting Diode (LED)	(1) 229W fixture, any bulb shape, any application	NA	NA	229	Electronic
LED230-FIXT	Light Emitting Diode (LED)	(1) 230W fixture, any bulb shape, any application	NA	NA	230	Electronic
LED231-FIXT	Light Emitting Diode (LED)	(1) 231W fixture, any bulb shape, any application	NA	NA	231	Electronic
LED232-FIXT	Light Emitting Diode (LED)	(1) 232W fixture, any bulb shape, any application	NA	NA	232	Electronic
LED233-FIXT	Light Emitting Diode (LED)	(1) 233W fixture, any bulb shape, any application	NA	NA	233	Electronic
LED234-FIXT	Light Emitting Diode (LED)	(1) 234W fixture, any bulb shape, any application	NA	NA	234	Electronic
LED235-FIXT	Light Emitting Diode (LED)	(1) 235W fixture, any bulb shape, any application	NA	NA	235	Electronic
LED236-FIXT	Light Emitting Diode (LED)	(1) 236W fixture, any bulb shape, any application	NA	NA	236	Electronic
LED237-FIXT	Light Emitting Diode (LED)	(1) 237W fixture, any bulb shape, any application	NA	NA	237	Electronic
LED238-FIXT	Light Emitting Diode (LED)	(1) 238W fixture, any bulb shape, any application	NA	NA	238	Electronic
LED239-FIXT	Light Emitting Diode (LED)	(1) 239W fixture, any bulb shape, any application	NA	NA	239	Electronic
LED240-FIXT	Light Emitting Diode (LED)	(1) 240W fixture, any bulb shape, any application	NA	NA	240	Electronic
LED241-FIXT	Light Emitting Diode (LED)	(1) 241W fixture, any bulb shape, any application	NA	NA	241	Electronic
LED242-FIXT	Light Emitting Diode (LED)	(1) 242W fixture, any bulb shape, any application	NA	NA	242	Electronic
LED243-FIXT	Light Emitting Diode (LED)	(1) 243W fixture, any bulb shape, any application	NA	NA	243	Electronic
LED244-FIXT	Light Emitting Diode (LED)	(1) 244W fixture, any bulb shape, any application	NA	NA	244	Electronic
LED245-FIXT	Light Emitting Diode (LED)	(1) 245W fixture, any bulb shape, any application	NA	NA	245	Electronic
LED246-FIXT	Light Emitting Diode (LED)	(1) 246W fixture, any bulb shape, any application	NA	NA	246	Electronic
LED247-FIXT	Light Emitting Diode (LED)	(1) 247W fixture, any bulb shape, any application	NA	NA	247	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED248-FIXT	Light Emitting Diode (LED)	(1) 248W fixture, any bulb shape, any application	NA	NA	248	Electronic
LED249-FIXT	Light Emitting Diode (LED)	(1) 249W fixture, any bulb shape, any application	NA	NA	249	Electronic
LED250-FIXT	Light Emitting Diode (LED)	(1) 250W fixture, any bulb shape, any application	NA	NA	250	Electronic
LED251-FIXT	Light Emitting Diode (LED)	(1) 251W fixture, any bulb shape, any application	NA	NA	251	Electronic
LED252-FIXT	Light Emitting Diode (LED)	(1) 252W fixture, any bulb shape, any application	NA	NA	252	Electronic
LED253-FIXT	Light Emitting Diode (LED)	(1) 253W fixture, any bulb shape, any application	NA	NA	253	Electronic
LED254-FIXT	Light Emitting Diode (LED)	(1) 254W fixture, any bulb shape, any application	NA	NA	254	Electronic
LED255-FIXT	Light Emitting Diode (LED)	(1) 255W fixture, any bulb shape, any application	NA	NA	255	Electronic
LED256-FIXT	Light Emitting Diode (LED)	(1) 256W fixture, any bulb shape, any application	NA	NA	256	Electronic
LED257-FIXT	Light Emitting Diode (LED)	(1) 257W fixture, any bulb shape, any application	NA	NA	257	Electronic
LED258-FIXT	Light Emitting Diode (LED)	(1) 258W fixture, any bulb shape, any application	NA	NA	258	Electronic
LED259-FIXT	Light Emitting Diode (LED)	(1) 259W fixture, any bulb shape, any application	NA	NA	259	Electronic
LED260-FIXT	Light Emitting Diode (LED)	(1) 260W fixture, any bulb shape, any application	NA	NA	260	Electronic
LED261-FIXT	Light Emitting Diode (LED)	(1) 261W fixture, any bulb shape, any application	NA	NA	261	Electronic
LED262-FIXT	Light Emitting Diode (LED)	(1) 262W fixture, any bulb shape, any application	NA	NA	262	Electronic
LED263-FIXT	Light Emitting Diode (LED)	(1) 263W fixture, any bulb shape, any application	NA	NA	263	Electronic
LED264-FIXT	Light Emitting Diode (LED)	(1) 264W fixture, any bulb shape, any application	NA	NA	264	Electronic
LED265-FIXT	Light Emitting Diode (LED)	(1) 265W fixture, any bulb shape, any application	NA	NA	265	Electronic
LED266-FIXT	Light Emitting Diode (LED)	(1) 266W fixture, any bulb shape, any application	NA	NA	266	Electronic
LED267-FIXT	Light Emitting Diode (LED)	(1) 267W fixture, any bulb shape, any application	NA	NA	267	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED268-FIXT	Light Emitting Diode (LED)	(1) 268W fixture, any bulb shape, any application	NA	NA	268	Electronic
LED269-FIXT	Light Emitting Diode (LED)	(1) 269W fixture, any bulb shape, any application	NA	NA	269	Electronic
LED270-FIXT	Light Emitting Diode (LED)	(1) 270W fixture, any bulb shape, any application	NA	NA	270	Electronic
LED271-FIXT	Light Emitting Diode (LED)	(1) 271W fixture, any bulb shape, any application	NA	NA	271	Electronic
LED272-FIXT	Light Emitting Diode (LED)	(1) 272W fixture, any bulb shape, any application	NA	NA	272	Electronic
LED273-FIXT	Light Emitting Diode (LED)	(1) 273W fixture, any bulb shape, any application	NA	NA	273	Electronic
LED274-FIXT	Light Emitting Diode (LED)	(1) 274W fixture, any bulb shape, any application	NA	NA	274	Electronic
LED275-FIXT	Light Emitting Diode (LED)	(1) 275W fixture, any bulb shape, any application	NA	NA	275	Electronic
LED276-FIXT	Light Emitting Diode (LED)	(1) 276W fixture, any bulb shape, any application	NA	NA	276	Electronic
LED277-FIXT	Light Emitting Diode (LED)	(1) 277W fixture, any bulb shape, any application	NA	NA	277	Electronic
LED278-FIXT	Light Emitting Diode (LED)	(1) 278W fixture, any bulb shape, any application	NA	NA	278	Electronic
LED279-FIXT	Light Emitting Diode (LED)	(1) 279W fixture, any bulb shape, any application	NA	NA	279	Electronic
LED280-FIXT	Light Emitting Diode (LED)	(1) 280W fixture, any bulb shape, any application	NA	NA	280	Electronic
LED281-FIXT	Light Emitting Diode (LED)	(1) 281W fixture, any bulb shape, any application	NA	NA	281	Electronic
LED282-FIXT	Light Emitting Diode (LED)	(1) 282W fixture, any bulb shape, any application	NA	NA	282	Electronic
LED283-FIXT	Light Emitting Diode (LED)	(1) 283W fixture, any bulb shape, any application	NA	NA	283	Electronic
LED284-FIXT	Light Emitting Diode (LED)	(1) 284W fixture, any bulb shape, any application	NA	NA	284	Electronic
LED285-FIXT	Light Emitting Diode (LED)	(1) 285W fixture, any bulb shape, any application	NA	NA	285	Electronic
LED286-FIXT	Light Emitting Diode (LED)	(1) 286W fixture, any bulb shape, any application	NA	NA	286	Electronic
LED287-FIXT	Light Emitting Diode (LED)	(1) 287W fixture, any bulb shape, any application	NA	NA	287	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED288-FIXT	Light Emitting Diode (LED)	(1) 288W fixture, any bulb shape, any application	NA	NA	288	Electronic
LED289-FIXT	Light Emitting Diode (LED)	(1) 289W fixture, any bulb shape, any application	NA	NA	289	Electronic
LED290-FIXT	Light Emitting Diode (LED)	(1) 290W fixture, any bulb shape, any application	NA	NA	290	Electronic
LED291-FIXT	Light Emitting Diode (LED)	(1) 291W fixture, any bulb shape, any application	NA	NA	291	Electronic
LED292-FIXT	Light Emitting Diode (LED)	(1) 292W fixture, any bulb shape, any application	NA	NA	292	Electronic
LED293-FIXT	Light Emitting Diode (LED)	(1) 293W fixture, any bulb shape, any application	NA	NA	293	Electronic
LED294-FIXT	Light Emitting Diode (LED)	(1) 294W fixture, any bulb shape, any application	NA	NA	294	Electronic
LED295-FIXT	Light Emitting Diode (LED)	(1) 295W fixture, any bulb shape, any application	NA	NA	295	Electronic
LED296-FIXT	Light Emitting Diode (LED)	(1) 296W fixture, any bulb shape, any application	NA	NA	296	Electronic
LED297-FIXT	Light Emitting Diode (LED)	(1) 297W fixture, any bulb shape, any application	NA	NA	297	Electronic
LED298-FIXT	Light Emitting Diode (LED)	(1) 298W fixture, any bulb shape, any application	NA	NA	298	Electronic
LED299-FIXT	Light Emitting Diode (LED)	(1) 299W fixture, any bulb shape, any application	NA	NA	299	Electronic
LED300-FIXT	Light Emitting Diode (LED)	(1) 300W fixture, any bulb shape, any application	NA	NA	300	Electronic
LED301-FIXT	Light Emitting Diode (LED)	(1) 301W fixture, any bulb shape, any application	NA	NA	301	Electronic
LED302-FIXT	Light Emitting Diode (LED)	(1) 302W fixture, any bulb shape, any application	NA	NA	302	Electronic
LED303-FIXT	Light Emitting Diode (LED)	(1) 303W fixture, any bulb shape, any application	NA	NA	303	Electronic
LED304-FIXT	Light Emitting Diode (LED)	(1) 304W fixture, any bulb shape, any application	NA	NA	304	Electronic
LED305-FIXT	Light Emitting Diode (LED)	(1) 305W fixture, any bulb shape, any application	NA	NA	305	Electronic
LED306-FIXT	Light Emitting Diode (LED)	(1) 306W fixture, any bulb shape, any application	NA	NA	306	Electronic
LED307-FIXT	Light Emitting Diode (LED)	(1) 307W fixture, any bulb shape, any application	NA	NA	307	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED308-FIXT	Light Emitting Diode (LED)	(1) 308W fixture, any bulb shape, any application	NA	NA	308	Electronic
LED309-FIXT	Light Emitting Diode (LED)	(1) 309W fixture, any bulb shape, any application	NA	NA	309	Electronic
LED310-FIXT	Light Emitting Diode (LED)	(1) 310W fixture, any bulb shape, any application	NA	NA	310	Electronic
LED311-FIXT	Light Emitting Diode (LED)	(1) 311W fixture, any bulb shape, any application	NA	NA	311	Electronic
LED312-FIXT	Light Emitting Diode (LED)	(1) 312W fixture, any bulb shape, any application	NA	NA	312	Electronic
LED313-FIXT	Light Emitting Diode (LED)	(1) 313W fixture, any bulb shape, any application	NA	NA	313	Electronic
LED314-FIXT	Light Emitting Diode (LED)	(1) 314W fixture, any bulb shape, any application	NA	NA	314	Electronic
LED315-FIXT	Light Emitting Diode (LED)	(1) 315W fixture, any bulb shape, any application	NA	NA	315	Electronic
LED316-FIXT	Light Emitting Diode (LED)	(1) 316W fixture, any bulb shape, any application	NA	NA	316	Electronic
LED317-FIXT	Light Emitting Diode (LED)	(1) 317W fixture, any bulb shape, any application	NA	NA	317	Electronic
LED318-FIXT	Light Emitting Diode (LED)	(1) 318W fixture, any bulb shape, any application	NA	NA	318	Electronic
LED319-FIXT	Light Emitting Diode (LED)	(1) 319W fixture, any bulb shape, any application	NA	NA	319	Electronic
LED320-FIXT	Light Emitting Diode (LED)	(1) 320W fixture, any bulb shape, any application	NA	NA	320	Electronic
LED321-FIXT	Light Emitting Diode (LED)	(1) 321W fixture, any bulb shape, any application	NA	NA	321	Electronic
LED322-FIXT	Light Emitting Diode (LED)	(1) 322W fixture, any bulb shape, any application	NA	NA	322	Electronic
LED323-FIXT	Light Emitting Diode (LED)	(1) 323W fixture, any bulb shape, any application	NA	NA	323	Electronic
LED324-FIXT	Light Emitting Diode (LED)	(1) 324W fixture, any bulb shape, any application	NA	NA	324	Electronic
LED325-FIXT	Light Emitting Diode (LED)	(1) 325W fixture, any bulb shape, any application	NA	NA	325	Electronic
LED326-FIXT	Light Emitting Diode (LED)	(1) 326W fixture, any bulb shape, any application	NA	NA	326	Electronic
LED327-FIXT	Light Emitting Diode (LED)	(1) 327W fixture, any bulb shape, any application	NA	NA	327	Electronic

Arkansas TRM Version 10.0 Vol. 3

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED328-FIXT	Light Emitting Diode (LED)	(1) 328W fixture, any bulb shape, any application	NA	NA	328	Electronic
LED329-FIXT	Light Emitting Diode (LED)	(1) 329W fixture, any bulb shape, any application	NA	NA	329	Electronic
LED330-FIXT	Light Emitting Diode (LED)	(1) 330W fixture, any bulb shape, any application	NA	NA	330	Electronic
LED331-FIXT	Light Emitting Diode (LED)	(1) 331W fixture, any bulb shape, any application	NA	NA	331	Electronic
LED332-FIXT	Light Emitting Diode (LED)	(1) 332W fixture, any bulb shape, any application	NA	NA	332	Electronic
LED333-FIXT	Light Emitting Diode (LED)	(1) 333W fixture, any bulb shape, any application	NA	NA	333	Electronic
LED334-FIXT	Light Emitting Diode (LED)	(1) 334W fixture, any bulb shape, any application	NA	NA	334	Electronic
LED335-FIXT	Light Emitting Diode (LED)	(1) 335W fixture, any bulb shape, any application	NA	NA	335	Electronic
LED336-FIXT	Light Emitting Diode (LED)	(1) 336W fixture, any bulb shape, any application	NA	NA	336	Electronic
LED337-FIXT	Light Emitting Diode (LED)	(1) 337W fixture, any bulb shape, any application	NA	NA	337	Electronic
LED338-FIXT	Light Emitting Diode (LED)	(1) 338W fixture, any bulb shape, any application	NA	NA	338	Electronic
LED339-FIXT	Light Emitting Diode (LED)	(1) 339W fixture, any bulb shape, any application	NA	NA	339	Electronic
LED340-FIXT	Light Emitting Diode (LED)	(1) 340W fixture, any bulb shape, any application	NA	NA	340	Electronic
LED341-FIXT	Light Emitting Diode (LED)	(1) 341W fixture, any bulb shape, any application	NA	NA	341	Electronic
LED342-FIXT	Light Emitting Diode (LED)	(1) 342W fixture, any bulb shape, any application	NA	NA	342	Electronic
LED343-FIXT	Light Emitting Diode (LED)	(1) 343W fixture, any bulb shape, any application	NA	NA	343	Electronic
LED344-FIXT	Light Emitting Diode (LED)	(1) 344W fixture, any bulb shape, any application	NA	NA	344	Electronic
LED345-FIXT	Light Emitting Diode (LED)	(1) 345W fixture, any bulb shape, any application	NA	NA	345	Electronic
LED346-FIXT	Light Emitting Diode (LED)	(1) 346W fixture, any bulb shape, any application	NA	NA	346	Electronic
LED347-FIXT	Light Emitting Diode (LED)	(1) 347W fixture, any bulb shape, any application	NA	NA	347	Electronic

Arkansas TRM Version 10.0 Vol. 3

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED348-FIXT	Light Emitting Diode (LED)	(1) 348W fixture, any bulb shape, any application	NA	NA	348	Electronic
LED349-FIXT	Light Emitting Diode (LED)	(1) 349W fixture, any bulb shape, any application	NA	NA	349	Electronic
LED350-FIXT	Light Emitting Diode (LED)	(1) 350W fixture, any bulb shape, any application	NA	NA	350	Electronic
LED351-FIXT	Light Emitting Diode (LED)	(1) 351W fixture, any bulb shape, any application	NA	NA	351	Electronic
LED352-FIXT	Light Emitting Diode (LED)	(1) 352W fixture, any bulb shape, any application	NA	NA	352	Electronic
LED353-FIXT	Light Emitting Diode (LED)	(1) 353W fixture, any bulb shape, any application	NA	NA	353	Electronic
LED354-FIXT	Light Emitting Diode (LED)	(1) 354W fixture, any bulb shape, any application	NA	NA	354	Electronic
LED355-FIXT	Light Emitting Diode (LED)	(1) 355W fixture, any bulb shape, any application	NA	NA	355	Electronic
LED356-FIXT	Light Emitting Diode (LED)	(1) 356W fixture, any bulb shape, any application	NA	NA	356	Electronic
LED357-FIXT	Light Emitting Diode (LED)	(1) 357W fixture, any bulb shape, any application	NA	NA	357	Electronic
LED358-FIXT	Light Emitting Diode (LED)	(1) 358W fixture, any bulb shape, any application	NA	NA	358	Electronic
LED359-FIXT	Light Emitting Diode (LED)	(1) 359W fixture, any bulb shape, any application	NA	NA	359	Electronic
LED360-FIXT	Light Emitting Diode (LED)	(1) 360W fixture, any bulb shape, any application	NA	NA	360	Electronic
LED361-FIXT	Light Emitting Diode (LED)	(1) 361W fixture, any bulb shape, any application	NA	NA	361	Electronic
LED362-FIXT	Light Emitting Diode (LED)	(1) 362W fixture, any bulb shape, any application	NA	NA	362	Electronic
LED363-FIXT	Light Emitting Diode (LED)	(1) 363W fixture, any bulb shape, any application	NA	NA	363	Electronic
LED364-FIXT	Light Emitting Diode (LED)	(1) 364W fixture, any bulb shape, any application	NA	NA	364	Electronic
LED365-FIXT	Light Emitting Diode (LED)	(1) 365W fixture, any bulb shape, any application	NA	NA	365	Electronic
LED366-FIXT	Light Emitting Diode (LED)	(1) 366W fixture, any bulb shape, any application	NA	NA	366	Electronic
LED367-FIXT	Light Emitting Diode (LED)	(1) 367W fixture, any bulb shape, any application	NA	NA	367	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED368-FIXT	Light Emitting Diode (LED)	(1) 368W fixture, any bulb shape, any application	NA	NA	368	Electronic
LED369-FIXT	Light Emitting Diode (LED)	(1) 369W fixture, any bulb shape, any application	NA	NA	369	Electronic
LED370-FIXT	Light Emitting Diode (LED)	(1) 370W fixture, any bulb shape, any application	NA	NA	370	Electronic
LED371-FIXT	Light Emitting Diode (LED)	(1) 371W fixture, any bulb shape, any application	NA	NA	371	Electronic
LED372-FIXT	Light Emitting Diode (LED)	(1) 372W fixture, any bulb shape, any application	NA	NA	372	Electronic
LED373-FIXT	Light Emitting Diode (LED)	(1) 373W fixture, any bulb shape, any application	NA	NA	373	Electronic
LED374-FIXT	Light Emitting Diode (LED)	(1) 374W fixture, any bulb shape, any application	NA	NA	374	Electronic
LED375-FIXT	Light Emitting Diode (LED)	(1) 375W fixture, any bulb shape, any application	NA	NA	375	Electronic
LED376-FIXT	Light Emitting Diode (LED)	(1) 376W fixture, any bulb shape, any application	NA	NA	376	Electronic
LED377-FIXT	Light Emitting Diode (LED)	(1) 377W fixture, any bulb shape, any application	NA	NA	377	Electronic
LED378-FIXT	Light Emitting Diode (LED)	(1) 378W fixture, any bulb shape, any application	NA	NA	378	Electronic
LED379-FIXT	Light Emitting Diode (LED)	(1) 379W fixture, any bulb shape, any application	NA	NA	379	Electronic
LED380-FIXT	Light Emitting Diode (LED)	(1) 380W fixture, any bulb shape, any application	NA	NA	380	Electronic
LED381-FIXT	Light Emitting Diode (LED)	(1) 381W fixture, any bulb shape, any application	NA	NA	381	Electronic
LED382-FIXT	Light Emitting Diode (LED)	(1) 382W fixture, any bulb shape, any application	NA	NA	382	Electronic
LED383-FIXT	Light Emitting Diode (LED)	(1) 383W fixture, any bulb shape, any application	NA	NA	383	Electronic
LED384-FIXT	Light Emitting Diode (LED)	(1) 384W fixture, any bulb shape, any application	NA	NA	384	Electronic
LED385-FIXT	Light Emitting Diode (LED)	(1) 385W fixture, any bulb shape, any application	NA	NA	385	Electronic
LED386-FIXT	Light Emitting Diode (LED)	(1) 386W fixture, any bulb shape, any application	NA	NA	386	Electronic
LED387-FIXT	Light Emitting Diode (LED)	(1) 387W fixture, any bulb shape, any application	NA	NA	387	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED388-FIXT	Light Emitting Diode (LED)	(1) 388W fixture, any bulb shape, any application	NA	NA	388	Electronic
LED389-FIXT	Light Emitting Diode (LED)	(1) 389W fixture, any bulb shape, any application	NA	NA	389	Electronic
LED390-FIXT	Light Emitting Diode (LED)	(1) 390W fixture, any bulb shape, any application	NA	NA	390	Electronic
LED391-FIXT	Light Emitting Diode (LED)	(1) 391W fixture, any bulb shape, any application	NA	NA	391	Electronic
LED392-FIXT	Light Emitting Diode (LED)	(1) 392W fixture, any bulb shape, any application	NA	NA	392	Electronic
LED393-FIXT	Light Emitting Diode (LED)	(1) 393W fixture, any bulb shape, any application	NA	NA	393	Electronic
LED394-FIXT	Light Emitting Diode (LED)	(1) 394W fixture, any bulb shape, any application	NA	NA	394	Electronic
LED395-FIXT	Light Emitting Diode (LED)	(1) 395W fixture, any bulb shape, any application	NA	NA	395	Electronic
LED396-FIXT	Light Emitting Diode (LED)	(1) 396W fixture, any bulb shape, any application	NA	NA	396	Electronic
LED397-FIXT	Light Emitting Diode (LED)	(1) 397W fixture, any bulb shape, any application	NA	NA	397	Electronic
LED398-FIXT	Light Emitting Diode (LED)	(1) 398W fixture, any bulb shape, any application	NA	NA	398	Electronic
LED399-FIXT	Light Emitting Diode (LED)	(1) 399W fixture, any bulb shape, any application	NA	NA	399	Electronic
LED400-FIXT	Light Emitting Diode (LED)	(1) 400W fixture, any bulb shape, any application	NA	NA	400	Electronic
LED401-FIXT	Light Emitting Diode (LED)	(1) 401W fixture, any bulb shape, any application	NA	NA	401	Electronic
LED402-FIXT	Light Emitting Diode (LED)	(1) 402W fixture, any bulb shape, any application	NA	NA	402	Electronic
LED403-FIXT	Light Emitting Diode (LED)	(1) 403W fixture, any bulb shape, any application	NA	NA	403	Electronic
LED404-FIXT	Light Emitting Diode (LED)	(1) 404W fixture, any bulb shape, any application	NA	NA	404	Electronic
LED405-FIXT	Light Emitting Diode (LED)	(1) 405W fixture, any bulb shape, any application	NA	NA	405	Electronic
LED406-FIXT	Light Emitting Diode (LED)	(1) 406W fixture, any bulb shape, any application	NA	NA	406	Electronic
LED407-FIXT	Light Emitting Diode (LED)	(1) 407W fixture, any bulb shape, any application	NA	NA	407	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED408-FIXT	Light Emitting Diode (LED)	(1) 408W fixture, any bulb shape, any application	NA	NA	408	Electronic
LED409-FIXT	Light Emitting Diode (LED)	(1) 409W fixture, any bulb shape, any application	NA	NA	409	Electronic
LED410-FIXT	Light Emitting Diode (LED)	(1) 410W fixture, any bulb shape, any application	NA	NA	410	Electronic
LED411-FIXT	Light Emitting Diode (LED)	(1) 411W fixture, any bulb shape, any application	NA	NA	411	Electronic
LED412-FIXT	Light Emitting Diode (LED)	(1) 412W fixture, any bulb shape, any application	NA	NA	412	Electronic
LED413-FIXT	Light Emitting Diode (LED)	(1) 413W fixture, any bulb shape, any application	NA	NA	413	Electronic
LED414-FIXT	Light Emitting Diode (LED)	(1) 414W fixture, any bulb shape, any application	NA	NA	414	Electronic
LED415-FIXT	Light Emitting Diode (LED)	(1) 415W fixture, any bulb shape, any application	NA	NA	415	Electronic
LED416-FIXT	Light Emitting Diode (LED)	(1) 416W fixture, any bulb shape, any application	NA	NA	416	Electronic
LED417-FIXT	Light Emitting Diode (LED)	(1) 417W fixture, any bulb shape, any application	NA	NA	417	Electronic
LED418-FIXT	Light Emitting Diode (LED)	(1) 418W fixture, any bulb shape, any application	NA	NA	418	Electronic
LED419-FIXT	Light Emitting Diode (LED)	(1) 419W fixture, any bulb shape, any application	NA	NA	419	Electronic
LED420-FIXT	Light Emitting Diode (LED)	(1) 420W fixture, any bulb shape, any application	NA	NA	420	Electronic
LED421-FIXT	Light Emitting Diode (LED)	(1) 421W fixture, any bulb shape, any application	NA	NA	421	Electronic
LED422-FIXT	Light Emitting Diode (LED)	(1) 422W fixture, any bulb shape, any application	NA	NA	422	Electronic
LED423-FIXT	Light Emitting Diode (LED)	(1) 423W fixture, any bulb shape, any application	NA	NA	423	Electronic
LED424-FIXT	Light Emitting Diode (LED)	(1) 424W fixture, any bulb shape, any application	NA	NA	424	Electronic
LED425-FIXT	Light Emitting Diode (LED)	(1) 425W fixture, any bulb shape, any application	NA	NA	425	Electronic
LED426-FIXT	Light Emitting Diode (LED)	(1) 426W fixture, any bulb shape, any application	NA	NA	426	Electronic
LED427-FIXT	Light Emitting Diode (LED)	(1) 427W fixture, any bulb shape, any application	NA	NA	427	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED428-FIXT	Light Emitting Diode (LED)	(1) 428W fixture, any bulb shape, any application	NA	NA	428	Electronic
LED429-FIXT	Light Emitting Diode (LED)	(1) 429W fixture, any bulb shape, any application	NA	NA	429	Electronic
LED430-FIXT	Light Emitting Diode (LED)	(1) 430W fixture, any bulb shape, any application	NA	NA	430	Electronic
LED431-FIXT	Light Emitting Diode (LED)	(1) 431W fixture, any bulb shape, any application	NA	NA	431	Electronic
LED432-FIXT	Light Emitting Diode (LED)	(1) 432W fixture, any bulb shape, any application	NA	NA	432	Electronic
LED433-FIXT	Light Emitting Diode (LED)	(1) 433W fixture, any bulb shape, any application	NA	NA	433	Electronic
LED434-FIXT	Light Emitting Diode (LED)	(1) 434W fixture, any bulb shape, any application	NA	NA	434	Electronic
LED435-FIXT	Light Emitting Diode (LED)	(1) 435W fixture, any bulb shape, any application	NA	NA	435	Electronic
LED436-FIXT	Light Emitting Diode (LED)	(1) 436W fixture, any bulb shape, any application	NA	NA	436	Electronic
LED437-FIXT	Light Emitting Diode (LED)	(1) 437W fixture, any bulb shape, any application	NA	NA	437	Electronic
LED438-FIXT	Light Emitting Diode (LED)	(1) 438W fixture, any bulb shape, any application	NA	NA	438	Electronic
LED439-FIXT	Light Emitting Diode (LED)	(1) 439W fixture, any bulb shape, any application	NA	NA	439	Electronic
LED440-FIXT	Light Emitting Diode (LED)	(1) 440W fixture, any bulb shape, any application	NA	NA	440	Electronic
LED441-FIXT	Light Emitting Diode (LED)	(1) 441W fixture, any bulb shape, any application	NA	NA	441	Electronic
LED442-FIXT	Light Emitting Diode (LED)	(1) 442W fixture, any bulb shape, any application	NA	NA	442	Electronic
LED443-FIXT	Light Emitting Diode (LED)	(1) 443W fixture, any bulb shape, any application	NA	NA	443	Electronic
LED444-FIXT	Light Emitting Diode (LED)	(1) 444W fixture, any bulb shape, any application	NA	NA	444	Electronic
LED445-FIXT	Light Emitting Diode (LED)	(1) 445W fixture, any bulb shape, any application	NA	NA	445	Electronic
LED446-FIXT	Light Emitting Diode (LED)	(1) 446W fixture, any bulb shape, any application	NA	NA	446	Electronic
LED447-FIXT	Light Emitting Diode (LED)	(1) 447W fixture, any bulb shape, any application	NA	NA	447	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED448-FIXT	Light Emitting Diode (LED)	(1) 448W fixture, any bulb shape, any application	NA	NA	448	Electronic
LED449-FIXT	Light Emitting Diode (LED)	(1) 449W fixture, any bulb shape, any application	NA	NA	449	Electronic
LED450-FIXT	Light Emitting Diode (LED)	(1) 450W fixture, any bulb shape, any application	NA	NA	450	Electronic
LED451-FIXT	Light Emitting Diode (LED)	(1) 451W fixture, any bulb shape, any application	NA	NA	451	Electronic
LED452-FIXT	Light Emitting Diode (LED)	(1) 452W fixture, any bulb shape, any application	NA	NA	452	Electronic
LED453-FIXT	Light Emitting Diode (LED)	(1) 453W fixture, any bulb shape, any application	NA	NA	453	Electronic
LED454-FIXT	Light Emitting Diode (LED)	(1) 454W fixture, any bulb shape, any application	NA	NA	454	Electronic
LED455-FIXT	Light Emitting Diode (LED)	(1) 455W fixture, any bulb shape, any application	NA	NA	455	Electronic
LED456-FIXT	Light Emitting Diode (LED)	(1) 456W fixture, any bulb shape, any application	NA	NA	456	Electronic
LED457-FIXT	Light Emitting Diode (LED)	(1) 457W fixture, any bulb shape, any application	NA	NA	457	Electronic
LED458-FIXT	Light Emitting Diode (LED)	(1) 458W fixture, any bulb shape, any application	NA	NA	458	Electronic
LED459-FIXT	Light Emitting Diode (LED)	(1) 459W fixture, any bulb shape, any application	NA	NA	459	Electronic
LED460-FIXT	Light Emitting Diode (LED)	(1) 460W fixture, any bulb shape, any application	NA	NA	460	Electronic
LED461-FIXT	Light Emitting Diode (LED)	(1) 461W fixture, any bulb shape, any application	NA	NA	461	Electronic
LED462-FIXT	Light Emitting Diode (LED)	(1) 462W fixture, any bulb shape, any application	NA	NA	462	Electronic
LED463-FIXT	Light Emitting Diode (LED)	(1) 463W fixture, any bulb shape, any application	NA	NA	463	Electronic
LED464-FIXT	Light Emitting Diode (LED)	(1) 464W fixture, any bulb shape, any application	NA	NA	464	Electronic
LED465-FIXT	Light Emitting Diode (LED)	(1) 465W fixture, any bulb shape, any application	NA	NA	465	Electronic
LED466-FIXT	Light Emitting Diode (LED)	(1) 466W fixture, any bulb shape, any application	NA	NA	466	Electronic
LED467-FIXT	Light Emitting Diode (LED)	(1) 467W fixture, any bulb shape, any application	NA	NA	467	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED468-FIXT	Light Emitting Diode (LED)	(1) 468W fixture, any bulb shape, any application	NA	NA	468	Electronic
LED469-FIXT	Light Emitting Diode (LED)	(1) 469W fixture, any bulb shape, any application	NA	NA	469	Electronic
LED470-FIXT	Light Emitting Diode (LED)	(1) 470W fixture, any bulb shape, any application	NA	NA	470	Electronic
LED471-FIXT	Light Emitting Diode (LED)	(1) 471W fixture, any bulb shape, any application	NA	NA	471	Electronic
LED472-FIXT	Light Emitting Diode (LED)	(1) 472W fixture, any bulb shape, any application	NA	NA	472	Electronic
LED473-FIXT	Light Emitting Diode (LED)	(1) 473W fixture, any bulb shape, any application	NA	NA	473	Electronic
LED474-FIXT	Light Emitting Diode (LED)	(1) 474W fixture, any bulb shape, any application	NA	NA	474	Electronic
LED475-FIXT	Light Emitting Diode (LED)	(1) 475W fixture, any bulb shape, any application	NA	NA	475	Electronic
LED476-FIXT	Light Emitting Diode (LED)	(1) 476W fixture, any bulb shape, any application	NA	NA	476	Electronic
LED477-FIXT	Light Emitting Diode (LED)	(1) 477W fixture, any bulb shape, any application	NA	NA	477	Electronic
LED478-FIXT	Light Emitting Diode (LED)	(1) 478W fixture, any bulb shape, any application	NA	NA	478	Electronic
LED479-FIXT	Light Emitting Diode (LED)	(1) 479W fixture, any bulb shape, any application	NA	NA	479	Electronic
LED480-FIXT	Light Emitting Diode (LED)	(1) 480W fixture, any bulb shape, any application	NA	NA	480	Electronic
LED481-FIXT	Light Emitting Diode (LED)	(1) 481W fixture, any bulb shape, any application	NA	NA	481	Electronic
LED482-FIXT	Light Emitting Diode (LED)	(1) 482W fixture, any bulb shape, any application	NA	NA	482	Electronic
LED483-FIXT	Light Emitting Diode (LED)	(1) 483W fixture, any bulb shape, any application	NA	NA	483	Electronic
LED484-FIXT	Light Emitting Diode (LED)	(1) 484W fixture, any bulb shape, any application	NA	NA	484	Electronic
LED485-FIXT	Light Emitting Diode (LED)	(1) 485W fixture, any bulb shape, any application	NA	NA	485	Electronic
LED486-FIXT	Light Emitting Diode (LED)	(1) 486W fixture, any bulb shape, any application	NA	NA	486	Electronic
LED487-FIXT	Light Emitting Diode (LED)	(1) 487W fixture, any bulb shape, any application	NA	NA	487	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED488-FIXT	Light Emitting Diode (LED)	(1) 488W fixture, any bulb shape, any application	NA	NA	488	Electronic
LED489-FIXT	Light Emitting Diode (LED)	(1) 489W fixture, any bulb shape, any application	NA	NA	489	Electronic
LED490-FIXT	Light Emitting Diode (LED)	(1) 490W fixture, any bulb shape, any application	NA	NA	490	Electronic
LED491-FIXT	Light Emitting Diode (LED)	(1) 491W fixture, any bulb shape, any application	NA	NA	491	Electronic
LED492-FIXT	Light Emitting Diode (LED)	(1) 492W fixture, any bulb shape, any application	NA	NA	492	Electronic
LED493-FIXT	Light Emitting Diode (LED)	(1) 493W fixture, any bulb shape, any application	NA	NA	493	Electronic
LED494-FIXT	Light Emitting Diode (LED)	(1) 494W fixture, any bulb shape, any application	NA	NA	494	Electronic
LED495-FIXT	Light Emitting Diode (LED)	(1) 495W fixture, any bulb shape, any application	NA	NA	495	Electronic
LED496-FIXT	Light Emitting Diode (LED)	(1) 496W fixture, any bulb shape, any application	NA	NA	496	Electronic
LED497-FIXT	Light Emitting Diode (LED)	(1) 497W fixture, any bulb shape, any application	NA	NA	497	Electronic
LED498-FIXT	Light Emitting Diode (LED)	(1) 498W fixture, any bulb shape, any application	NA	NA	498	Electronic
LED499-FIXT	Light Emitting Diode (LED)	(1) 499W fixture, any bulb shape, any application	NA	NA	499	Electronic
LED500-FIXT	Light Emitting Diode (LED)	(1) 500W fixture, any bulb shape, any application	NA	NA	500	Electronic
LED505-FIXT	Light Emitting Diode (LED)	(1) 505W fixture, any bulb shape, any application	NA	NA	505	Electronic
LED510-FIXT	Light Emitting Diode (LED)	(1) 510W fixture, any bulb shape, any application	NA	NA	510	Electronic
LED515-FIXT	Light Emitting Diode (LED)	(1) 515W fixture, any bulb shape, any application	NA	NA	515	Electronic
LED520-FIXT	Light Emitting Diode (LED)	(1) 520W fixture, any bulb shape, any application	NA	NA	520	Electronic
LED525-FIXT	Light Emitting Diode (LED)	(1) 525W fixture, any bulb shape, any application	NA	NA	525	Electronic
LED530-FIXT	Light Emitting Diode (LED)	(1) 530W fixture, any bulb shape, any application	NA	NA	530	Electronic
LED535-FIXT	Light Emitting Diode (LED)	(1) 535W fixture, any bulb shape, any application	NA	NA	535	Electronic

Arkansas TRM Ve	ersion 10.0 Vol. 3
-----------------	--------------------

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED540-FIXT	Light Emitting Diode (LED)	(1) 540W fixture, any bulb shape, any application	NA	NA	540	Electronic
LED545-FIXT	Light Emitting Diode (LED)	(1) 545W fixture, any bulb shape, any application	NA	NA	545	Electronic
LED550-FIXT	Light Emitting Diode (LED)	(1) 550W fixture, any bulb shape, any application	NA	NA	550	Electronic
LED005-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 5W	1	5	5	Electronic
LED006-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 6W	1	6	6	Electronic
LED007-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 7W	1	7	7	Electronic
LED008-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 8W	1	8	8	Electronic
LED009-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 9W	1	9	9	Electronic
LED010-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 10W	1	10	10	Electronic
LED011-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 11W	1	11	11	Electronic
LED012-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 12W	1	12	12	Electronic
LED013-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 13W	1	13	13	Electronic
LED014-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 14W	1	14	14	Electronic
LED015-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 15W	1	15	15	Electronic
LED016-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 16W	1	16	16	Electronic
LED017-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 17W	1	17	17	Electronic
LED018-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 18W	1	18	18	Electronic
LED019-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 19W	1	19	19	Electronic
LED020-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 20W	1	20	20	Electronic
LED021-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 21W	1	21	21	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED022-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 22W	1	22	22	Electronic
LED023-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 23W	1	23	23	Electronic
LED024-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 24W	1	24	24	Electronic
LED025-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 25W	1	25	25	Electronic
LED026-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 26W	1	26	26	Electronic
LED027-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 27W	1	27	27	Electronic
LED028-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 28W	1	28	28	Electronic
LED029-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 29W	1	29	29	Electronic
LED030-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 30W	1	30	30	Electronic
LED031-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 31W	1	31	31	Electronic
LED032-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 32W	1	32	32	Electronic
LED033-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 33W	1	33	33	Electronic
LED034-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 34W	1	34	34	Electronic
LED035-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 35W	1	35	35	Electronic
LED036-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 36W	1	36	36	Electronic
LED037-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 37W	1	37	37	Electronic
LED038-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 38W	1	38	38	Electronic
LED039-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 39W	1	39	39	Electronic
LED040-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 40W	1	40	40	Electronic
LED041-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 41W	1	41	41	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED042-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 42W	1	42	42	Electronic
LED043-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 43W	1	43	43	Electronic
LED044-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 44W	1	44	44	Electronic
LED045-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 45W	1	45	45	Electronic
LED046-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 46W	1	46	46	Electronic
LED047-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 47W	1	47	47	Electronic
LED048-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 48W	1	48	48	Electronic
LED049-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 49W	1	49	49	Electronic
LED050-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 50W	1	50	50	Electronic
LED051-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 51W	1	51	51	Electronic
LED052-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 52W	1	52	52	Electronic
LED053-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 53W	1	53	53	Electronic
LED054-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 54W	1	54	54	Electronic
LED055-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 55W	1	55	55	Electronic
LED056-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 56W	1	56	56	Electronic
LED057-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 57W	1	57	57	Electronic
LED058-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 58W	1	58	58	Electronic
LED059-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 59W	1	59	59	Electronic
LED060-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 60W	1	60	60	Electronic
LED061-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 61W	1	61	61	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED062-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 62W	1	62	62	Electronic
LED063-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 63W	1	63	63	Electronic
LED064-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 64W	1	64	64	Electronic
LED065-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 65W	1	65	65	Electronic
LED066-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 66W	1	66	66	Electronic
LED067-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 67W	1	67	67	Electronic
LED068-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 68W	1	68	68	Electronic
LED069-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 69W	1	69	69	Electronic
LED070-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 70W	1	70	70	Electronic
LED071-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 71W	1	71	71	Electronic
LED072-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 72W	1	72	72	Electronic
LED073-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 73W	1	73	73	Electronic
LED074-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 74W	1	74	74	Electronic
LED075-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 75W	1	75	75	Electronic
LED076-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 76W	1	76	76	Electronic
LED077-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 77W	1	77	77	Electronic
LED078-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 78W	1	78	78	Electronic
LED079-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 79W	1	79	79	Electronic
LED080-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 80W	1	80	80	Electronic
LED081-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 81W	1	81	81	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
LED082-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 82W	1	82	82	Electronic
LED083-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 83W	1	83	83	Electronic
LED084-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 84W	1	84	84	Electronic
LED085-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 85W	1	85	85	Electronic
LED086-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 86W	1	86	86	Electronic
LED087-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 87W	1	87	87	Electronic
LED088-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 88W	1	88	88	Electronic
LED089-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 89W	1	89	89	Electronic
LED090-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 90W	1	90	90	Electronic
LED091-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 91W	1	91	91	Electronic
LED092-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 92W	1	92	92	Electronic
LED093-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 93W	1	93	93	Electronic
LED094-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 94W	1	94	94	Electronic
LED095-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 95W	1	95	95	Electronic
LED096-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 96W	1	96	96	Electronic
LED097-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 97W	1	97	97	Electronic
LED098-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 98W	1	98	98	Electronic
LED099-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 99W	1	99	99	Electronic
LED100-TUBE	LED Linear Replacement Lamp	LED Linear Replacement Lamp, (1) 100W	1	100	100	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF2/1-SCRW	Integrated-ballast CFL Lamps	(1) 2W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	2	2	Mag. or Elec.
CF3/1-SCRW	Integrated-ballast CFL Lamps	(1) 3W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	3	3	Mag. or Elec.
CF4/1-SCRW	Integrated-ballast CFL Lamps	(1) 4W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	4	4	Mag. or Elec.
CF5/1-SCRW	Integrated-ballast CFL Lamps	(1) 5W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	5	5	Mag. or Elec.
CF6/1-SCRW	Integrated-ballast CFL Lamps	(1) 6W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	6	6	Mag. or Elec.
CF7/1-SCRW	Integrated-ballast CFL Lamps	(1) 7W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	7	7	Mag. or Elec.
CF8/1-SCRW	Integrated-ballast CFL Lamps	(1) 8W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	8	8	Mag. or Elec.
CF9/1-SCRW	Integrated-ballast CFL Lamps	(1) 9W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	9	9	Mag. or Elec.
CF10/1-SCRW	Integrated-ballast CFL Lamps	(1) 10W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	10	10	Mag. or Elec.
CF11/1-SCRW	Integrated-ballast CFL Lamps	(1) 11W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	11	11	Mag. or Elec.
CF12/1-SCRW	Integrated-ballast CFL Lamps	(1) 12W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	12	12	Mag. or Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF13/1-SCRW	Integrated-ballast CFL Lamps	(1) 13W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	13	13	Mag. or Elec.
CF14/1-SCRW	Integrated-ballast CFL Lamps	(1) 14W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	14	14	Mag. or Elec.
CF15/1-SCRW	Integrated-ballast CFL Lamps	(1) 15W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	15	15	Mag. or Elec.
CF16/1-SCRW	Integrated-ballast CFL Lamps	(1) 16W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	16	16	Mag. or Elec.
CF17/1-SCRW	Integrated-ballast CFL Lamps	(1) 17W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	17	17	Mag. or Elec.
CF18/1-SCRW	Integrated-ballast CFL Lamps	(1) 18W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	18	18	Mag. or Elec.
CF19/1-SCRW	Integrated-ballast CFL Lamps	(1) 19W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	19	19	Mag. or Elec.
CF20/1-SCRW	Integrated-ballast CFL Lamps	(1) 20W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	20	20	Mag. or Elec.
CF21/1-SCRW	Integrated-ballast CFL Lamps	(1) 21W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	21	21	Mag. or Elec.
CF22/1-SCRW	Integrated-ballast CFL Lamps	(1) 22W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	22	22	Mag. or Elec.
CF23/1-SCRW	Integrated-ballast CFL Lamps	(1) 23W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	23	23	Mag. or Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF24/1-SCRW	Integrated-ballast CFL Lamps	(1) 24W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	24	24	Mag. or Elec.
CF25/1-SCRW	Integrated-ballast CFL Lamps	(1) 25W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	25	25	Mag. or Elec.
CF26/1-SCRW	Integrated-ballast CFL Lamps	(1) 26W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	26	26	Mag. or Elec.
CF27/1-SCRW	Integrated-ballast CFL Lamps	(1) 27W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	27	27	Mag. or Elec.
CF28/1-SCRW	Integrated-ballast CFL Lamps	(1) 28W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	28	28	Mag. or Elec.
CF29/1-SCRW	Integrated-ballast CFL Lamps	(1) 29W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	29	29	Mag. or Elec.
CF30/1-SCRW	Integrated-ballast CFL Lamps	(1) 30W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	30	30	Mag. or Elec.
CF31/1-SCRW	Integrated-ballast CFL Lamps	(1) 31W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	31	31	Mag. or Elec.
CF32/1-SCRW	Integrated-ballast CFL Lamps	(1) 32W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	32	32	Mag. or Elec.
CF33/1-SCRW	Integrated-ballast CFL Lamps	(1) 33W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	33	33	Mag. or Elec.
CF34/1-SCRW	Integrated-ballast CFL Lamps	(1) 34W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	34	34	Mag. or Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF35/1-SCRW	Integrated-ballast CFL Lamps	(1) 35W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	35	35	Mag. or Elec.
CF36/1-SCRW	Integrated-ballast CFL Lamps	(1) 36W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	36	36	Mag. or Elec.
CF37/1-SCRW	Integrated-ballast CFL Lamps	(1) 37W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	37	37	Mag. or Elec.
CF38/1-SCRW	Integrated-ballast CFL Lamps	(1) 38W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	38	38	Mag. or Elec.
CF39/1-SCRW	Integrated-ballast CFL Lamps	(1) 39W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	39	39	Mag. or Elec.
CF40/1-SCRW	Integrated-ballast CFL Lamps	(1) 40W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	40	40	Mag. or Elec.
CF41/1-SCRW	Integrated-ballast CFL Lamps	(1) 41W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	41	41	Mag. or Elec.
CF42/1-SCRW	Integrated-ballast CFL Lamps	(1) 42W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	42	42	Mag. or Elec.
CF43/1-SCRW	Integrated-ballast CFL Lamps	(1) 43W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	43	43	Mag. or Elec.
CF44/1-SCRW	Integrated-ballast CFL Lamps	(1) 44W screw-in lamp/base w/permanent disk installed, any bulb shape	1	44	44	Mag. or Elec.
CF45/1-SCRW	Integrated-ballast CFL Lamps	(1) 45W screw-in lamp/base w/permanent disk installed, any bulb shape	1	45	45	Mag. or Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF46/1-SCRW	Integrated-ballast CFL Lamps	(1) 46W screw-in lamp/base w/permanent disk installed, any bulb shape	1	46	46	Mag. or Elec.
CF47/1-SCRW	Integrated-ballast CFL Lamps	(1) 47W screw-in lamp/base w/permanent disk installed, any bulb shape	1	47	47	Mag. or Elec.
CF48/1-SCRW	Integrated-ballast CFL Lamps	(1) 48W screw-in lamp/base w/permanent disk installed, any bulb shape	1	48	48	Mag. or Elec.
CF49/1-SCRW	Integrated-ballast CFL Lamps	(1) 49W screw-in lamp/base w/permanent disk installed, any bulb shape	1	49	49	Mag. or Elec.
CF50/1-SCRW	Integrated-ballast CFL Lamps	(1) 50W screw-in lamp/base w/permanent disk installed, any bulb shape	1	50	50	Mag. or Elec.
CF51/1-SCRW	Integrated-ballast CFL Lamps	(1) 51W screw-in lamp/base w/permanent disk installed, any bulb shape	1	51	51	Mag. or Elec.
CF52/1-SCRW	Integrated-ballast CFL Lamps	(1) 52W screw-in lamp/base w/permanent disk installed, any bulb shape	1	52	52	Mag. or Elec.
CF53/1-SCRW	Integrated-ballast CFL Lamps	(1) 53W screw-in lamp/base w/permanent disk installed, any bulb shape	1	53	53	Mag. or Elec.
CF54/1-SCRW	Integrated-ballast CFL Lamps	(1) 54W screw-in lamp/base w/permanent disk installed, any bulb shape	1	54	54	Mag. or Elec.
CF55/1-SCRW	Integrated-ballast CFL Lamps	(1) 55W screw-in lamp/base w/permanent disk installed, any bulb shape	1	55	55	Mag. or Elec.
CF56/1-SCRW	Integrated-ballast CFL Lamps	(1) 56W screw-in lamp/base w/permanent disk installed, any bulb shape	1	56	56	Mag. or Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF57/1-SCRW	Integrated-ballast CFL Lamps	(1) 57W screw-in lamp/base w/permanent disk installed, any bulb shape	1	57	57	Mag. or Elec.
CF58/1-SCRW	Integrated-ballast CFL Lamps	(1) 58W screw-in lamp/base w/permanent disk installed, any bulb shape	1	58	58	Mag. or Elec.
CF59/1-SCRW	Integrated-ballast CFL Lamps	(1) 59W screw-in lamp/base w/permanent disk installed, any bulb shape	1	59	59	Mag. or Elec.
CF60/1-SCRW	Integrated-ballast CFL Lamps	(1) 60W screw-in lamp/base w/permanent disk installed, any bulb shape	1	60	60	Mag. or Elec.
CF61/1-SCRW	Integrated-ballast CFL Lamps	(1) 61W screw-in lamp/base w/permanent disk installed, any bulb shape	1	61	61	Mag. or Elec.
CF62/1-SCRW	Integrated-ballast CFL Lamps	(1) 62W screw-in lamp/base w/permanent disk installed, any bulb shape	1	62	62	Mag. or Elec.
CF63/1-SCRW	Integrated-ballast CFL Lamps	(1) 63W screw-in lamp/base w/permanent disk installed, any bulb shape	1	63	63	Mag. or Elec.
CF64/1-SCRW	Integrated-ballast CFL Lamps	(1) 64W screw-in lamp/base w/permanent disk installed, any bulb shape	1	64	64	Mag. or Elec.
CF65/1-SCRW	Integrated-ballast CFL Lamps	(1) 65W screw-in lamp/base w/permanent disk installed, any bulb shape	1	65	65	Mag. or Elec.
CF66/1-SCRW	Integrated-ballast CFL Lamps	(1) 66W screw-in lamp/base w/permanent disk installed, any bulb shape	1	66	66	Mag. or Elec.
CF67/1-SCRW	Integrated-ballast CFL Lamps	(1) 67W screw-in lamp/base w/permanent disk installed, any bulb shape	1	67	67	Mag. or Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF68/1-SCRW	Integrated-ballast CFL Lamps	(1) 68W screw-in lamp/base w/permanent disk installed, any bulb shape	1	68	68	Mag. or Elec.
CF69/1-SCRW	Integrated-ballast CFL Lamps	(1) 69W screw-in lamp/base w/permanent disk installed, any bulb shape	1	69	69	Mag. or Elec.
CF70/1-SCRW	Integrated-ballast CFL Lamps	(1) 70W screw-in lamp/base w/permanent disk installed, any bulb shape	1	70	70	Mag. or Elec.
CF71/1-SCRW	Integrated-ballast CFL Lamps	(1) 71W screw-in lamp/base w/permanent disk installed, any bulb shape	1	71	71	Mag. or Elec.
CF72/1-SCRW	Integrated-ballast CFL Lamps	(1) 72W screw-in lamp/base w/permanent disk installed, any bulb shape	1	72	72	Mag. or Elec.
CF73/1-SCRW	Integrated-ballast CFL Lamps	(1) 73W screw-in lamp/base w/permanent disk installed, any bulb shape	1	73	73	Mag. or Elec.
CF74/1-SCRW	Integrated-ballast CFL Lamps	(1) 74W screw-in lamp/base w/permanent disk installed, any bulb shape	1	74	74	Mag. or Elec.
CF75/1-SCRW	Integrated-ballast CFL Lamps	(1) 75W screw-in lamp/base w/permanent disk installed, any bulb shape	1	75	75	Mag. or Elec.
CF80/1-SCRW	Integrated-ballast CFL Lamps	(1) 80W screw-in lamp/base w/permanent disk installed, any bulb shape	1	80	80	Mag. or Elec.
CF85/1-SCRW	Integrated-ballast CFL Lamps	(1) 85W screw-in lamp/base w/permanent disk installed, any bulb shape	1	85	85	Mag. or Elec.
CF100/1-SCRW	Integrated-ballast CFL Lamps	(1) 100W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	100	100	Mag. or Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CF125/1-SCRW	Integrated-ballast CFL Lamps	(1) 125W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	125	125	Mag. or Elec.
CF150/1-SCRW	Integrated-ballast CFL Lamps	(1) 150W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	150	150	Mag. or Elec.
CF200/1-SCRW	Integrated-ballast CFL Lamps	(1) 200W screw-in lamp/base w/ permanent disk installed, any bulb shape	1	200	200	Mag. or Elec.
CFC2/1-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (1) 2W screw-in lamp/base w/ permanent locking device, any bulb shape	1	2	2	Electronic
CFC2/2-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (2) 2W screw-in lamp/base w/ permanent locking device, any bulb shape	2	2	4	Electronic
CFC3/1-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (1) 3W screw-in lamp/base w/ permanent locking device, any bulb shape	1	3	3	Electronic
CFC3/2-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (2) 3W screw-in lamp/base w/ permanent locking device, any bulb shape	2	3	6	Electronic
CFC4/1-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (1) 4W screw-in lamp/base w/ permanent locking device, any bulb shape	1	4	4	Electronic
CFC4/2-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (2) 4W screw-in lamp/base w/ permanent locking device, any bulb shape	2	4	8	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFC5/1-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (1) 5W screw-in lamp/base w/ permanent locking device, any bulb shape	1	5	5	Electronic
CFC5/2-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (2) 5W screw-in lamp/base w/ permanent locking device, any bulb shape	2	5	10	Electronic
CFC8/1-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (1) 8W screw-in lamp/base w/ permanent locking device, any bulb shape	1	8	8	Electronic
CFC8/2-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (2) 8W screw-in lamp/base w/ permanent locking device, any bulb shape	2	8	16	Electronic
CFC13/1-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (1) 13W screw-in lamp/base w/ permanent locking device, any bulb shape	1	13	13	Electronic
CFC18/1-SCRW	Integrated-ballast CCFL Lamps	Compact Fluorescent, Cold Cathode, (1) 18W screw-in lamp/base w/ permanent locking device, any bulb shape	1	18	18	Electronic
CFD10/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 10W lamp	1	10	16	Mag-STD
CFD10/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 10W lamp	1	10	14	Electronic
CFD16/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 16W lamp	1	16	26	Mag-STD
CFD16/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 16W lamp	1	16	18	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFD21/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 21W lamp	1	21	26	Mag-STD
CFD21/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 21W lamp	1	21	22	Electronic
CFD28/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 28W lamp	1	28	35	Mag-STD
CFD28/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 28W lamp	1	28	29	Electronic
CFD38/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 38W lamp	1	38	46	Mag-STD
CFD38/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, 2D, (1) 38W lamp	1	38	32	Electronic
CFG13/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 13W lamp	1	13	13	Electronic
CFG18/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 18W lamp	1	18	18	Electronic
CFG23/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 23W lamp	1	23	23	Electronic
CFG26/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 26W lamp	1	26	26	Electronic
CFG32/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 32W lamp	1	32	32	Electronic
CFG42/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, GU24 with Integrated Ballast, (1) 42W lamp	1	42	42	Electronic
CFM13/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 13W lamp	1	13	16	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFM13/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (2) 13W lamps	2	13	30	Electronic
CFM15/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 15W lamp	1	15	18	Electronic
CFM18/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 18W lamp	1	18	20	Electronic
CFM18/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (2) 18W lamps	2	18	40	Electronic
CFM21/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 21W lamp	1	21	23	Electronic
CFM26/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 26W lamp	1	26	29	Electronic
CFM26/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (2) 26W lamps	2	26	51	Electronic
CFM28/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 28W lamp	1	28	31	Electronic
CFM32/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 32W lamp	1	32	35	Electronic
CFM42/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 42W lamp	1	42	46	Electronic
CFM42/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (2) 42W lamps	2	42	93	Electronic
CFM42/8-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (8) 42W lamps, (4) 2-lamp ballasts	8	42	372	Electronic
CFM57/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 57W lamp	1	57	59	Electronic
CFM60/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 60W lamp	1	60	70	Electronic
CFM70/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 70W lamp	1	70	73	Electronic
CFM85/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 85W lamp	1	85	96	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFM120/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, Multi, 4-pin, (1) 120W lamp	1	120	135	Electronic
CFQ9/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (1) 9W lamp	1	9	14	Mag-STD
CFQ9/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (2) 9W lamps	2	9	23	Mag-STD
CFQ10/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 10W lamp	1	10	15	Mag-STD
CFQ13/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 13W lamp	1	13	17	Mag-STD
CFQ13/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 13W lamp, BF=1.05	1	13	15	Electronic
CFQ13/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 13W lamps	2	13	31	Mag-STD
CFQ13/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 13W lamps, BF=1.0	2	13	28	Electronic
CFQ13/3	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (3) 13W lamps	3	13	48	Mag-STD
CFQ15/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 15W lamp	1	15	20	Mag-STD
CFQ17/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 17W lamp	1	17	24	Mag-STD
CFQ17/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 17W lamps	2	17	48	Mag-STD
CFQ18/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 18W lamp	1	18	26	Mag-STD
CFQ18/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 18W lamp, BF=1.0	1	18	20	Electronic
CFQ18/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 18W lamps	2	18	45	Mag-STD
CFQ18/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 18W lamp, BF=1.0	2	18	38	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFQ18/4	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (4) 18W lamps	2	18	90	Mag-STD
CFQ20/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 20W lamp	1	20	23	Mag-STD
CFQ20/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 20W lamps	2	20	46	Mag-STD
CFQ22/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (1) 22W lamp	1	22	24	Mag-STD
CFQ22/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (2) 22W lamps	2	22	48	Mag-STD
CFQ22/3	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (3) 22W lamps	3	22	72	Mag-STD
CFQ23/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (1) 23W lamp	1	23	27	Mag-STD
CFQ25/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (1) 25W lamp	1	25	33	Mag-STD
CFQ25/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, Quad, (2) 25W lamps	2	25	66	Mag-STD
CFQ26/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 26W lamp	1	26	33	Mag-STD
CFQ26/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 26W lamp, BF=0.95	1	26	27	Electronic
CFQ26/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 26W lamps	2	26	66	Mag-STD
CFQ26/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 26W lamps, BF=0.95	2	26	50	Electronic
CFQ26/3	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (3) 26W lamps	3	26	99	Mag-STD
CFQ26/6-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (6) 26W lamps, BF=0.95	6	26	150	Electronic
CFQ28/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 28W lamp	1	28	33	Mag-STD
CFQ28/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (1) 28W lamp	1	28	31	Electronic
CFQ28/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, quad, (2) 28W lamps	2	28	60	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFT5/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 5W lamp	1	5	9	Mag-STD
CFT5/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (2) 5W lamps	2	5	18	Mag-STD
CFT7/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 7W lamp	1	7	10	Mag-STD
CFT7/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 7W lamps	2	7	21	Mag-STD
CFT9/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 9W lamp	1	9	12	Mag-STD
CFT9/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 9W lamps	2	9	23	Mag-STD
CFT9/3	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (3) 9 W lamps	3	9	34	Mag-STD
CFT13/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 13W lamp	1	13	17	Mag-STD
CFT13/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 13W lamp	1	13	15	Electronic
CFT13/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 13W lamps	2	13	31	Mag-STD
CFT13/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 13W lamps	2	13	28	Electronic
CFT13/3	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (3) 13 W lamps	3	13	48	Mag-STD
CFT18/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, Long twin., (1) 18W lamp	1	18	24	Mag-STD
CFT18/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 18W lamp	1	18	20	Electronic
CFT18/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 18 W lamps	2	18	38	Mag-STD
CFT22/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 22W lamp	1	22	27	Mag-STD
CFT22/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 22W lamps	2	22	54	Mag-STD
CFT22/4	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (4) 22W lamps	4	22	108	Mag-STD
CFT24/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (1) 24W lamp	1	24	32	Mag-STD
CFT26/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 26W lamp	1	26	32	Mag-STD

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFT26/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 26W lamp	1	26	27	Electronic
CFT26/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 26W lamps	2	26	51	Electronic
CFT28/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 28W lamp	1	28	33	Mag-STD
CFT28/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 28W lamps	2	28	66	Mag-STD
CFT32/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (1) 32W lamp	1	32	34	Electronic
CFT32/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (2) 32W lamps	2	32	62	Electronic
CFT32/6-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, twin, (6) 32W lamps	6	32	186	Electronic
CFT36/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (1) 36W lamp	1	36	51	Mag-STD
CFT40/1	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (1) 40W lamp	1	40	46	Mag-STD
CFT40/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (1) 40W lamp	1	40	43	Electronic
CFT40/2	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (2) 40W lamps	2	40	85	Mag-STD
CFT40/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (2) 40W lamps	2	40	72	Electronic
CFT40/3	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (3) 40 W lamps	3	40	133	Mag-STD
CFT40/3-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (3) 40W lamps	3	40	105	Electronic
CFT40/5-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (5) 40W lamps	5	40	177	Electronic
CFT50/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (1) 50W lamp	1	50	54	Electronic
CFT50/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (2) 50W lamps	1	50	108	Electronic
CFT55/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (1) 55W lamp	1	55	58	Electronic
CFT55/2-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (2) 55W lamps	2	55	108	Electronic
CFT55/3-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (3) 55W lamps	3	55	168	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
CFT55/4-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (4) 55W lamps	4	55	220	Electronic
CFT80/1-L	Modular CFL and CCFL Fixtures	Compact Fluorescent, long twin, (1) 80W lamp	1	80	90	Electronic
ECF5/1	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (1) 5W lamp	1	5	9	Mag-STD
ECF5/2	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (2) 5W lamps	2	5	20	Mag-STD
ECF6/1	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (1) 6W lamp	1	6	13	Mag-STD
ECF6/2	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (2) 6W lamps, (2) ballasts	2	6	26	Mag-STD
ECF7/1	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (1) 7W lamp	1	7	10	Mag-STD
ECF7/2	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (2) 7W lamps	2	7	21	Mag-STD
ECF9/1	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (1) 9W lamp	1	9	12	Mag-STD
ECF9/2	Exit Sign (Modular CFL/CCFL)	EXIT Compact Fluorescent, (2) 9W lamps	2	9	20	Mag-STD
EF2/2	Exit Sign (Modular CFL/CCFL)	EXIT Sub-Miniature T-1 Fluorescent, (2) lamps	2	2	5	Electronic
EF6/1	Exit Sign (Modular CFL/CCFL)	EXIT Miniature Bi-pin Fluorescent, (1) 6W lamp, (1) ballast	1	6	9	Mag-STD
EF6/2	Exit Sign (Modular CFL/CCFL)	EXIT Miniature Bi-pin Fluorescent, (2) 6W lamps, (2) ballasts	2	6	18	Mag-STD
EF8/1	Exit Sign (Modular CFL/CCFL)	EXIT T5 Fluorescent, (1) 8W lamp	1	8	12	Mag-STD
EF8/2	Exit Sign (Modular CFL/CCFL)	EXIT T5 Fluorescent, (2) 8W lamps	2	8	24	Mag-STD
EI5/1	Exit Sign (Halogen)	EXIT Incandescent, (1) 5W lamp	1	5	5	NA
EI5/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 5W lamps	2	5	10	NA
EI7.5/1	Exit Sign (Halogen)	EXIT Tungsten, (1) 7.5 W lamp	1	7.5	8	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
EI7.5/2	Exit Sign (Halogen)	EXIT Tungsten, (2) 7.5 W lamps	2	7.5	15	NA
EI10/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 10W lamps	2	10	20	NA
EI15/1	Exit Sign (Halogen)	EXIT Incandescent, (1) 15W lamp	1	15	15	NA
EI15/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 15W lamps	2	15	30	NA
EI20/1	Exit Sign (Halogen)	EXIT Incandescent, (1) 20W lamp	1	20	20	NA
EI20/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 20W lamps	2	20	40	NA
EI25/1	Exit Sign (Halogen)	EXIT Incandescent, (1) 25W lamp	1	25	25	NA
EI25/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 25W lamps	2	25	50	NA
EI34/1	Exit Sign (Halogen)	EXIT Incandescent, (1) 34W lamp	1	34	34	NA
EI34/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 34W lamps	2	34	68	NA
EI40/1	Exit Sign (Halogen)	EXIT Incandescent, (1) 40W lamp	1	40	40	NA
EI40/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 40W lamps	2	40	80	NA
EI50/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 50W lamps	2	50	100	NA
EI6/1	Exit Sign (Halogen)	EXIT Incandescent, (1) 6 W lamp	1	6	6	NA
EI6/2	Exit Sign (Halogen)	EXIT Incandescent, (2) 6 W lamps	2	6	12	NA
ELED2/1	Exit Sign (LED)	EXIT Light Emitting Diode, (1) 2W lamp, Single Sided	1	2	6	NA
ELED2/2	Exit Sign (LED)	EXIT Light Emitting Diode, (2) 2W lamps, Dual Sided	2	2	9	NA
ELED3	Exit Sign (LED)	EXIT Light Emitting Diode, (1) 3W lamp, Single Sided	1	3	3	NA

Arkansas	TRM	Version	10.0	Vol.	3
111100115005	1 1 1 1 1 1	, 6, 5, 0, 1	10.0	, 0,.	2

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
EP	Exit Sign (LED)	EXIT Photoluminescent, 0W	0	0	0	NA
F22PS	T5 Linear Fluorescent	Fluorescent, (2) 21", Preheat T5 lamps, (1) Magnetic ballasts with integral starter, (BF=0.80)	2	13	26	Mag-STD
F24PS	T5 Linear Fluorescent	Fluorescent, (4) 21", Preheat T5 lamps, (2) Magnetic ballasts with integral starter (BF=0.80)	4	13	53	Mag-STD
F21GPL-H	T5 Linear Fluorescent	Fluorescent (1) 22" (563mm) T-5 lamp; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	1	14	18	PRS Elec.
F22GPL-H	T5 Linear Fluorescent	Fluorescent (2) 22" (563mm) T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	2	14	33	PRS Elec.
F23GPL-H	T5 Linear Fluorescent	Fluorescent (3) 22" (563mm) T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	3	14	50	PRS Elec.
F23GPL/2-H	T5 Linear Fluorescent	Fluorescent (3) 22" (563mm) T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	3	14	51	PRS Elec.
F24GPL/2-H	T5 Linear Fluorescent	Fluorescent (4) 22" (563mm) T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	4	14	66	PRS Elec.
F31GPL-H	T5 Linear Fluorescent	Fluorescent (1) 34" (863mm) T-5 lamp; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	1	21	25	PRS Elec.
F32GPL-H	T5 Linear Fluorescent	Fluorescent (2) 34" (863mm) T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	2	21	48	PRS Elec.
F33GPL/2-H	T5 Linear Fluorescent	Fluorescent (3) 34" (863mm) T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	3	21	73	PRS Elec.
F34GPL/2-H	T5 Linear Fluorescent	Fluorescent (4) 34" (863mm) T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	4	21	96	PRS Elec.

Arkansas TRM Version 10.0 Vol. 3

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F21GPHL-H	T5 Linear Fluorescent	Fluorescent (1) 22" (563mm) T-5 HO lamp; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	1	24	27	PRS Elec.
F22GPHL-H	T5 Linear Fluorescent	Fluorescent (2) 22" (563mm) T-5 HO lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	2	24	52	PRS Elec.
F23GPHL/2-H	T5 Linear Fluorescent	Fluorescent (3) 22" (563mm) T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	3	24	79	PRS Elec.
F24GPHL/2-H	T5 Linear Fluorescent	Fluorescent (4) 22" (563mm) T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	4	24	104	PRS Elec.
F41GPL-H	T5 Linear Fluorescent	Fluorescent (1) 45.8" (1163mm) T-5 lamp; (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	1	28	33	PRS Elec.
F41GPL/T2-H	T5 Linear Fluorescent	Fluorescent (1) 45.8" (1163mm) T-5 lamp; Tandem 2-lamp PRS Ballast, HLO (.95 < BF < 1.1)	1	28	32	PRS Elec.
F42GPL-H	T5 Linear Fluorescent	Fluorescent (2) 45.8" (1163mm) T-5 lamps; (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	2	28	63	PRS Elec.
F43GPL/2-H	T5 Linear Fluorescent	Fluorescent (3) 45.8" (1163mm) T-5 lamps; (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	3	28	96	PRS Elec.
F44GPL/2-H	T5 Linear Fluorescent	Fluorescent (4) 45.8" (1163mm) T-5 lamps; (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	4	28	126	PRS Elec.
F51GPL-H	T5 Linear Fluorescent	Fluorescent (1) 57.6" (1463mm) T-5 lamp; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	1	35	40	PRS Elec.
F52GPL-H	T5 Linear Fluorescent	Fluorescent (2) 57.6" (1463mm) T-5 lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	2	35	78	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F53GPL/2-H	T5 Linear Fluorescent	Fluorescent (3) 57.6" (1463mm) T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	3	35	118	PRS Elec.
F54GPL/2-H	T5 Linear Fluorescent	Fluorescent (4) 57.6" (1463mm) T-5 lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	4	35	156	PRS Elec.
F31GPHL-H	T5 Linear Fluorescent	Fluorescent (1) 34" (863mm) T-5 HO lamp; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	1	39	44	PRS Elec.
F32GPHL-H	T5 Linear Fluorescent	Fluorescent (2) 34" (863mm) T-5 HO lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	2	39	86	PRS Elec.
F33GPHL/2-H	T5 Linear Fluorescent	Fluorescent (3) 34" (863mm) T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	3	39	130	PRS Elec.
F34GPHL/2-H	T5 Linear Fluorescent	Fluorescent (4) 34" (863mm) T-5 HO lamps; (2) Prog.Start or PRS Ballasts, HLO (.95 < BF < 1.1)	4	39	172	PRS Elec.
F46GPRL/2-H	T5 Linear Fluorescent	Fluorescent, (6) 45.8" T-5 HO reduced-wattage lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	6	54	332	PRS Elec.
F46GPRL/3-H	T5 Linear Fluorescent	Fluorescent, (6) 45.8" T-5 HO reduced-wattage lamps, (3) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	6	54	330	PRS Elec.
F41GPHL-H	T5 Linear Fluorescent	Fluorescent (1) 45.8" T-5 HO lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	1	54	64	PRS Elec.
F41GPHL/T2-H	T5 Linear Fluorescent	Fluorescent (1) 45.8" T-5 HO lamp, Tandem 2- lamp PRS Ballast, HLO (.95 < BF < 1.1)	1	54	59	PRS Elec.
F42GPHL-H	T5 Linear Fluorescent	Fluorescent (2) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	2	54	117	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F43GPHL-H	T5 Linear Fluorescent	Fluorescent, (3) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	3	54	181	PRS Elec.
F43GPHL/2-H	T5 Linear Fluorescent	Fluorescent (3) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	3	54	181	PRS Elec.
F44GPHL-H	T5 Linear Fluorescent	Fluorescent, (4) 45.8" T-5 HO lamps, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	4	54	230	PRS Elec.
F44GPHL/2-H	T5 Linear Fluorescent	Fluorescent (4) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	4	54	234	PRS Elec.
F45GPHL/2-H	T5 Linear Fluorescent	Fluorescent (5) 45.8" T-5 HO lamps, (2) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	5	54	298	PRS Elec.
F45GPRL/2-H	T5 Linear Fluorescent	Fluorescent (5) 45.2" T-5 HO reduced-wattage lamp, (2) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	5	47-51	276	PRS Elec.
F46GPHL/2-H	T5 Linear Fluorescent	Fluorescent, (6) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	6	54	362	PRS Elec.
F46GPHL/3-H	T5 Linear Fluorescent	Fluorescent, (6) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	6	54	351	PRS Elec.
F48GPHL/2-H	T5 Linear Fluorescent	Fluorescent, (8) 45.8" T-5 HO lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	8	54	460	PRS Elec.
F48GPHL/4-H	T5 Linear Fluorescent	Fluorescent, (8) 45.8" T-5 HO lamps, (4) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	8	54	468	PRS Elec.
F410GPHL/3-H	T5 Linear Fluorescent	Fluorescent, (10) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	10	54	577	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F410GPHL/5-H	T5 Linear Fluorescent	Fluorescent, (10) 45.8" T-5 HO lamps, (5) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	10	54	585	PRS Elec.
F412GPHL/3-H	T5 Linear Fluorescent	Fluorescent, (12) 45.8" T-5 HO lamps, (3) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	12	54	690	PRS Elec.
F412GPHL/6-H	T5 Linear Fluorescent	Fluorescent, (12) 45.8" T-5 HO lamps, (6) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	12	54	702	PRS Elec.
F41GPRL-H	T5 Linear Fluorescent	Fluorescent (1) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	1	47-51	61	PRS Elec.
F42GPRL-H	T5 Linear Fluorescent	Fluorescent (2) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	2	47-51	110	PRS Elec.
F43GPRL-H	T5 Linear Fluorescent	Fluorescent (3) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	3	47-51	166	PRS Elec.
F44GPRL-H	T5 Linear Fluorescent	Fluorescent (4) 45.2" T-5 HO reduced-wattage lamp, (1) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	4	47-51	211	PRS Elec.
F48GPRL/2-H	T5 Linear Fluorescent	Fluorescent, (8) 45.8" T-5 HO reduced-wattage lamps, (2) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	8	50	428	PRS Elec.
F48GPRL/4-H	T5 Linear Fluorescent	Fluorescent, (8) 45.8" T-5 HO reduced-wattage lamps, (4) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	8	50	436	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F410GPRL/3-H	T5 Linear Fluorescent	Fluorescent, (10) 45.8" T-5 HO reduced-wattage lamps, (3) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	10	50	537	PRS Elec.
F410GPRL/5-H	T5 Linear Fluorescent	Fluorescent, (10) 45.8" T-5 HO reduced-wattage lamps, (5) PRS Electronic Ballast, HLO (.95 < BF < 1.1)	10	50	545	PRS Elec.
F412GPRL/3-H	T5 Linear Fluorescent	Fluorescent, (12) 45.8" T-5 HO reduced-wattage lamps, (3) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	12	50	642	PRS Elec.
F412GPRL/6-H	T5 Linear Fluorescent	Fluorescent, (12) 45.8" T-5 HO reduced-wattage lamps, (6) PRS Electronic Ballasts, HLO (.95 < BF < 1.1)	12	50	654	PRS Elec.
F51GPHL-H	T5 Linear Fluorescent	Fluorescent (1) 57.6" (1463mm) T-5 HO lamp; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	1	80	90	PRS Elec.
F52GPHL/2-H	T5 Linear Fluorescent	Fluorescent (2) 57.6" (1463mm) T-5 HO lamps; (1) Prog.Start or PRS Ballast, HLO (.95 < BF < 1.1)	2	80	180	PRS Elec.
F1.51LS	T8 Linear Fluorescent	Fluorescent, (1) 18" T-8 lamp	1	15	19	Mag-STD
F1.52LS	T8 Linear Fluorescent	Fluorescent, (2) 18" T-8 lamps	2	15	36	Mag-STD
F21GLL	T8 Linear Fluorescent	Fluorescent (1) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	1	17	18	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F21ILL	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	17	18	Electronic
F21ILL-R	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	1	17	17	Electronic
F21ILL/T2	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	17	17	Electronic
F21ILL/T2-R	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)	1	17	15	Electronic
F21ILL/T3	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	17	16	Electronic
F21ILL/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	1	17	14	Electronic
F21ILL/T4	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	17	15	Electronic
F21ILL/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	1	17	13	Electronic
F21ILU	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	17	17	Prem. Elec.
F21ILU-R	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	1	17	15	Prem. Elec.
F21ILU-V	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	1	17	22	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F21LL	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	1	17	16	Electronic
F21LL-R	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	1	17	15	Electronic
F21LL/T2	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 2-Lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	17	16	Electronic
F21LL/T3	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 3-Lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	17	17	Electronic
F21LL/T4	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Tandem 4-Lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	17	17	Electronic
F21SL	T8 Linear Fluorescent	Fluorescent, (1) 24", T-8 lamp, Standard Ballast	1	17	24	Mag-STD
F22GLL	T8 Linear Fluorescent	Fluorescent (2) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	2	17	31	PRS Elec.
F22ILL	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	17	33	Electronic
F22ILL-R	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2	17	30	Electronic
F22ILL/T4	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2	17	30	Electronic
F22ILL/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF<.85)	2	17	27	Electronic
F22ILU	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	17	30	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F22ILU-R	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2	17	27	Prem. Elec.
F22ILU-V	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	17	41	Prem. Elec.
F22ILU/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	17	26	Prem. Elec.
F22LL	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	2	17	31	Electronic
F22LL-R	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	2	17	28	Electronic
F22LL/T4	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	2	17	34	Electronic
F23GLL	T8 Linear Fluorescent	Fluorescent (3) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	3	17	47	PRS Elec.
F23ILL	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	17	47	Electronic
F23ILL-H	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	3	17	51	Electronic
F23ILL-R	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3	17	41	Electronic
F23ILU	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	17	45	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F23ILU-R	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3	17	40	Prem. Elec.
F23ILU-V	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	17	59	Prem. Elec.
F22ILU-V	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	17	41	Prem. Elec.
F22ILU/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	17	26	Prem. Elec.
F22LL	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	2	17	31	Electronic
F22LL-R	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	2	17	28	Electronic
F22LL/T4	T8 Linear Fluorescent	Fluorescent, (2) 24", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	2	17	34	Electronic
F23GLL	T8 Linear Fluorescent	Fluorescent (3) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	3	17	47	PRS Elec.
F23ILL	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	17	47	Electronic
F23ILL-H	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	3	17	51	Electronic
F23ILL-R	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3	17	41	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F23ILU	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	17	45	Prem. Elec.
F23ILU-R	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3	17	40	Prem. Elec.
F23ILU-V	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	17	59	Prem. Elec.
F23LL	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	3	17	52	Electronic
F23LL-R	T8 Linear Fluorescent	Fluorescent, (3) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	3	17	41	Electronic
F24GLL	T8 Linear Fluorescent	Fluorescent (4) 24" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	4	17	59	PRS Elec.
F24ILL	T8 Linear Fluorescent	Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	17	59	Electronic
F24ILL-R	T8 Linear Fluorescent	Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	4	17	53	Electronic
F24ILU	T8 Linear Fluorescent	Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	17	57	Prem. Elec.
F24ILU-R	T8 Linear Fluorescent	Fluorescent, (4) 24", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	4	17	52	Prem. Elec.
F24LL	T8 Linear Fluorescent	Fluorescent, (4) 24", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	4	17	68	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F24LL-R	T8 Linear Fluorescent	Fluorescent, (4) 24", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	4	17	57	Electronic
F31ILL	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	25	26	Electronic
F31ILL-H	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	1	25	28	Electronic
F31ILL-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	1	25	22	Electronic
F31ILL/T2	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	25	23	Electronic
F31ILL/T2-H	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	1	25	26	Electronic
F31ILL/T2-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)	1	25	21	Electronic
F31ILL/T3	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	25	23	Electronic
F31ILL/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	1	25	20	Electronic
F31ILL/T4	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	25	22	Electronic
F31ILL/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	1	25	20	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F31ILU	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	25	23	Prem. Elec.
F31ILU-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	1	25	20	Prem. Elec.
F31ILU/T2	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	25	22	Prem. Elec.
F31ILU/T2-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)	1	25	20	Prem. Elec.
F31ILU/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	1	25	19	Prem. Elec.
F31ILU/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	1	25	19	Prem. Elec.
F31LL	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	1	25	24	Electronic
F31LL-H	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)	1	25	26	Electronic
F31LL-R	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	1	25	23	Electronic
F31LL/T2	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 2-lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	25	23	Electronic
F31LL/T3	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 3-lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	25	24	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F31LL/T4	T8 Linear Fluorescent	Fluorescent, (1) 36", T-8 lamp, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	25	22	Electronic
F32ILL	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	25	46	Electronic
F32ILL-H	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	2	25	52	Electronic
F32ILL-R	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2	25	42	Electronic
F32ILL/2-R	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)	2	25	44	Electronic
F32ILL/T4	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2	25	44	Electronic
F32ILL/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	25	39	Electronic
F32ILU	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	25	44	Prem. Elec.
F32ILU-R	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2	25	39	Prem. Elec.
F32ILU/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	25	39	Prem. Elec.
F32LL	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	2	25	46	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F32LL-H	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, HLO (0.95 < BF < 1.1)	2	25	50	Electronic
F32LL-R	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	2	25	42	Electronic
F32LL-V	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Rapid Start Ballast, VHLO (BF > 1.1)	2	25	70	Electronic
F32LL/T4	T8 Linear Fluorescent	Fluorescent, (2) 36", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	2	25	45	Electronic
F33ILL	T8 Linear Fluorescent	Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	25	68	Electronic
F33ILL-R	T8 Linear Fluorescent	Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3	25	61	Electronic
F33ILU	T8 Linear Fluorescent	Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	25	65	Prem. Elec.
F33ILU-R	T8 Linear Fluorescent	Fluorescent, (3) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	3	25	58	Prem. Elec.
F33LL	T8 Linear Fluorescent	Fluorescent, (3) 36", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	3	25	72	Electronic
F33LL-R	T8 Linear Fluorescent	Fluorescent, (3) 36", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	3	25	62	Electronic
F34ILL	T8 Linear Fluorescent	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	25	88	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F34ILL-R	T8 Linear Fluorescent	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	4	25	78	Electronic
F34ILL/2-R	T8 Linear Fluorescent	Fluorescent, (4) 36", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)	4	25	84	Electronic
F34ILU	T8 Linear Fluorescent	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	25	86	Prem. Elec.
F34ILU-R	T8 Linear Fluorescent	Fluorescent, (4) 36", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	4	25	77	Prem. Elec.
F34LL	T8 Linear Fluorescent	Fluorescent, (4) 36", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	4	25	89	Electronic
F34LL-R	T8 Linear Fluorescent	Fluorescent, (4) 36", T-8 lamps, Rapid Start Ballast, RLO (BF< 0.85)	4	25	84	Electronic
F36ILL/2	T8 Linear Fluorescent	Fluorescent, (6) 36", T-8 lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)	6	25	135	Electronic
F36ILL/2-R	T8 Linear Fluorescent	Fluorescent, (6) 36", T-8 lamps, (2) Instant Start Ballasts, RLO (BF< 0.85)	6	25	121	Electronic
F42GRLL-V	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	2	28	66	PRS Elec.
F43GRLL-V	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	3	28	92	PRS Elec.
F41GLL	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	1	32	30	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41GLL-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)	1	32	25	PRS Elec.
F41ILL	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	32	31	Electronic
F41ILL-H	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	1	32	36	Electronic
F41ILL-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	1	32	27	Electronic
F41ILL/T2	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	32	29	Electronic
F41ILL/T2-H	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	1	32	33	Electronic
F41ILL/T2-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)	1	32	26	Electronic
F41ILL/T3	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	32	28	Electronic
F41ILL/T3-H	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	1	32	31	Electronic
F41ILL/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	1	32	25	Electronic
F41ILL/T4	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	32	28	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41ILL/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	1	32	25	Electronic
F41ILU	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	32	28	Prem. Elec.
F41ILU-H	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	1	32	35	Prem. Elec.
F41ILU-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Instant Start Ballast, RLO (BF< 0.85)	1	32	25	Prem. Elec.
F41ILU/T2	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	32	27	Prem. Elec.
F41ILU/T2-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF< 0.85)	1	32	24	Prem. Elec.
F41ILU/T3	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	32	27	Prem. Elec.
F41ILU/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	1	32	24	Prem. Elec.
F41ILU/T4	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	32	27	Prem. Elec.
F41ILU/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	1	32	24	Prem. Elec.
F41LE	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp	1	32	35	Mag-ES
F41LL	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	1	32	32	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41LL-H	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)	1	32	39	Electronic
F41LL-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	1	32	27	Electronic
F41LL/T2	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	32	30	Electronic
F41LL/T2-H	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	1	32	35	Electronic
F41LL/T2-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 2-lamp RS Ballast, RLO (BF< 0.85)	1	32	27	Electronic
F41LL/T3	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	32	31	Electronic
F41LL/T3-H	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	1	32	33	Electronic
F41LL/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 3-lamp RS Ballast, RLO (BF< 0.85)	1	32	25	Electronic
F41LL/T4	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	1	32	30	Electronic
F41LL/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 lamp, Tandem 4-lamp RS Ballast, RLO (BF< 0.85)	1	32	26	Electronic
F42GLL	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	2	32	59	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F42GLL-R	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	2	32	47	PRS Elec.
F42GLL-V	T8 Linear Fluorescent	Fluorescent, (2) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	2	32	74	Electronic
F42ILL	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	32	58	Electronic
F42ILL-H	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	2	32	66	Electronic
F42ILL-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, RLO (BF< 0.85)	2	32	51	Electronic
F42ILL-V	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	32	77	Electronic
F42ILL/2	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, (2) 1-lampInstant Start Ballast, NLO (0.85 < BF < 0.95)	2	32	62	Electronic
F42ILL/2-R	T8 Linear Fluorescent	Fluorescent, (2) 48" T-8 lamps, (2) 1-lamp Instant Start Ballasts, RLO (BF< 0.85)	2	32	54	Electronic
F42ILL/T4	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2	32	56	Electronic
F42ILL/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	32	49	Electronic
F42ILU	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	32	54	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F42ILU-H	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	2	32	64	Prem. Elec.
F42ILU-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Instant Start, RLO (BF< 0.85)	2	32	48	Prem. Elec.
F42ILU-V	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Instant Start, VHLO (BF> 1.1)	2	32	73	Prem. Elec.
F42ILU/T4	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2	32	54	Prem. Elec.
F42ILU/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	32	48	Prem. Elec.
F42LE	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamp	2	32	71	Mag-ES
F42LL	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	2	32	60	Electronic
F42LL-H	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, HLO (0.95 < BF < 1.1)	2	32	70	Electronic
F42LL-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, RLO (BF< 0.85)	2	32	54	Electronic
F42LL-V	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamp, Rapid Start Ballast, VHLO (BF > 1.1)	2	32	85	Electronic
F42LL/2	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, (2) 1-lamp Rapid Start Ballasts, NLO (0.85 < BF < 0.95)	2	32	64	Electronic
F42LL/T4	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamps, Tandem 4-lamp RS Ballast, NLO (0.85 < BF < 0.95)	2	32	59	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F42LL/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 lamp, Tandem 4-lamp RS Ballast, RLO (BF< 0.85)	2	32	53	Electronic
F43GLL	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	3	32	88	PRS Elec.
F43GLL-R	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	3	32	72	PRS Elec.
F43GLL-V	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	3	32	108	Electronic
F43ILL	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	32	85	Electronic
F43ILL-H	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	3	32	93	Electronic
F43ILL-R	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	3	32	76	Electronic
F43ILL-V	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	32	112	Electronic
F43ILL/2	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)	3	32	89	Electronic
F43ILL/2-H	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 lamps, (1) 2-lamp and (1) 3-lamp IS Ballast,1 lead capped, HLO (0.95 < BF < 1.1)	3	32	102	Electronic
F43ILL/2-R	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, (1) 1-lamp and (1) 2-lamp IS Ballast, RLO (BF < 0.85)	3	32	78	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F43ILU	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	32	81	Prem. Elec.
F43ILU-H	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	3	32	92	Prem. Elec.
F43ILU-R	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	3	32	72	Prem. Elec.
F43ILU-V	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	32	108	Prem. Elec.
F43LE	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 lamp	3	32	110	Mag-ES
F43LL	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	3	32	93	Electronic
F43LL-H	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, HLO (.95 < BF < 1.1)	3	32	98	Electronic
F43LL-R	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 lamp, Rapid Start Ballast, RLO (BF < 0.85)	3	32	76	Electronic
F43LL/2	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 lamps, (1) 1-lamp and (1) 2-lamp RS Ballast, NLO (0.85 < BF < 0.95)	3	32	92	Electronic
F44GLL	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	4	32	115	PRS Elec.
F44GLL-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4	32	92	PRS Elec.
F44GLL-V	T8 Linear Fluorescent	Fluorescent, (4) 48" T-8 lamps, Prog. Start or PRS Ballast, VHLO (BF > 1.1)	4	32	144	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F44ILL	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	32	112	Electronic
F44ILL-R	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	4	32	98	Electronic
F44ILL-V	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	4	32	151	Electronic
F44ILL/2	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp IS Ballasts, NLO (0.85 < BF < 0.95)	4	32	116	Electronic
F44ILL/2-H	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, (2) 3-lamp IS Ballasts, 1 lead capped, HLO (.95 < BF < 1.1)	4	32	132	Electronic
F44ILL/2-R	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp IS Ballasts, RLO (BF < 0.85)	4	32	102	Electronic
F44ILL/2-V	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp IS Ballasts, VHLO (BF > 1.1)	4	32	154	Electronic
F44ILU	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	32	107	Prem. Elec.
F44ILU-H	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	4	32	121	Prem. Elec.
F44ILU-R	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	4	32	95	Prem. Elec.
F44ILU-V	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	4	32	146	Prem. Elec.
F44LE	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps	4	32	142	Mag-ES

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F44LL	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Rapid Start Ballast, NLO (0.85 < BF < 0.95)	4	32	118	Electronic
F44LL-R	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Rapid Start Ballast, RLO (BF < 0.85)	4	32	105	Electronic
F44LL/2	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp Rapid Start Ballast, NLO (0.85 < BF < 0.95)	4	32	120	Electronic
F45ILL/2	T8 Linear Fluorescent	Fluorescent, (5) 48", T-8 lamps, (1) 3-lamp and (1) 2-lamp IS ballast, NLO (0.85 < BF < 0.95)	5	32	143	Electronic
F45GLL/2-V	T8 Linear Fluorescent	Fluorescent, (5) 48", T-8 lamps, (1) 3-lamp and (1) 2-lamp Prog. Start Ballast, VHLO (BF > 1.1)	5	32	182	Electronic
F46GLL/2	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO (0.85 < BF < 0.95)	6	32	175	PRS Elec.
F46GLL/2-R	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)	6	32	142	PRS Elec.
F46GLL/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)	6	32	217	PRS Elec.
F46ILL/2	T8 Linear Fluorescent	Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, NLO (0.85 < BF < 0.95)	6	32	170	Electronic
F46ILL/2-R	T8 Linear Fluorescent	Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)	6	32	151	Electronic
F46ILL/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)	6	32	226	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F46ILU/2	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, NLO (0.85 < BF < 0.95)	6	32	162	Prem. Elec.
F46ILU/2-R	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)	6	32	144	Prem. Elec.
F46ILU/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)	6	32	218	Prem. Elec.
F46LL/2	T8 Linear Fluorescent	Fluorescent, (6) 48", T-8 lamps, (2) Rapid Start Ballasts, NLO (0.85 < BF < 0.95)	6	32	182	Electronic
F48GLL/2	T8 Linear Fluorescent	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO (0.85 < BF < 0.95)	8	32	230	PRS Elec.
F48GLL/2-R	T8 Linear Fluorescent	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)	8	32	184	PRS Elec.
F48GLL/2-V	T8 Linear Fluorescent	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)	8	32	288	PRS Elec.
F48ILL/2	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, NLO (0.85 < BF < 0.95)	8	32	224	Electronic
F48ILL/2-R	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, RLO (BF < 0.85)	8	32	196	Electronic
F48ILU/2	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, NLO (0.85 < BF < 0.95)	8	32	214	Prem. Elec.
F48ILU/2-R	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, RLO (BF < 0.85)	8	32	190	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F48ILU/2-V	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, VHLO (BF > 1.1)	8	32	292	Prem. Elec.
F41GNLL	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 25W lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	1	25	24	PRS Elec.
F44LL-R	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, Rapid Start Ballast, RLO (BF < 0.85)	4	32	105	Electronic
F44LL/2	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 lamps, (2) 2-lamp Rapid Start Ballast, NLO (0.85 < BF < 0.95)	4	32	120	Electronic
F45ILL/2	T8 Linear Fluorescent	Fluorescent, (5) 48", T-8 lamps, (1) 3-lamp and (1) 2-lamp IS ballast, NLO (0.85 < BF < 0.95)	5	32	143	Electronic
F45GLL/2-V	T8 Linear Fluorescent	Fluorescent, (5) 48", T-8 lamps, (1) 3-lamp and (1) 2-lamp Prog. Start Ballast, VHLO (BF > 1.1)	5	32	182	Electronic
F46GLL/2	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO $(0.85 < BF < 0.95)$	6	32	175	PRS Elec.
F46GLL/2-R	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)	6	32	142	PRS Elec.
F46GLL/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)	6	32	217	PRS Elec.
F46ILL/2	T8 Linear Fluorescent	Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, NLO (0.85 < BF < 0.95)	6	32	170	Electronic
F46ILL/2-R	T8 Linear Fluorescent	Fluorescent, (6) 48", T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)	6	32	151	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F46ILL/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)	6	32	226	Electronic
F46ILU/2	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, NLO (0.85 < BF < 0.95)	6	32	162	Prem. Elec.
F46ILU/2-R	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, RLO (BF < 0.85)	6	32	144	Prem. Elec.
F46ILU/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 lamps, (2) IS Ballasts, VHLO (BF > 1.1)	6	32	218	Prem. Elec.
F46LL/2	T8 Linear Fluorescent	Fluorescent, (6) 48", T-8 lamps, (2) Rapid Start Ballasts, NLO (0.85 < BF < 0.95)	6	32	182	Electronic
F48GLL/2	T8 Linear Fluorescent	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, NLO (0.85 < BF < 0.95)	8	32	230	PRS Elec.
F48GLL/2-R	T8 Linear Fluorescent	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, RLO (BF < 0.85)	8	32	184	PRS Elec.
F48GLL/2-V	T8 Linear Fluorescent	Fluorescent (8) 48" T-8 lamps, (2) Prog. Start or PRS Ballasts, VHLO (BF > 1.1)	8	32	288	PRS Elec.
F48ILL/2	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, NLO (0.85 < BF < 0.95)	8	32	224	Electronic
F48ILL/2-R	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, RLO (BF < 0.85)	8	32	196	Electronic
F48ILU/2	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, NLO (0.85 < BF < 0.95)	8	32	214	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F48ILU/2-R	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, RLO (BF < 0.85)	8	32	190	Prem. Elec.
F48ILU/2-V	T8 Linear Fluorescent	Fluorescent, (8) 48", T-8 lamps, (2) 4-lamp IS Ballasts, VHLO (BF > 1.1)	8	32	292	Prem. Elec.
F41GNLL	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 25W lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	1	25	24	PRS Elec.
F41GNLL-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 25W lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)	1	25	21	PRS Elec.
F41INLL	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	25	24	Electronic
F41INLU	T8 Linear Fluorescent	Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	25	23	Prem. Elec.
F41INLU-R	T8 Linear Fluorescent	Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, RLO (BF< 0.85)	1	25	21	Prem. Elec.
F41INLU-V	T8 Linear Fluorescent	Fluorescent, (1), T-8 @ 25W lamp, Instant Start Ballast, VHLO (BF > 1.1)	1	25	32	Prem. Elec.
F41INLU/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 @ 25W lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	1	25	19	Prem. Elec.
F41INLU/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 @ 25W lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	1	25	19	Prem. Elec.
F42GNLL	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	2	25	44	PRS Elec.

|--|

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F42GNLL-R	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO (BF< 0.85)	2	25	38	PRS Elec.
F42INLL	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	25	46	Electronic
F42INLL-V	T8 Linear Fluorescent	Fluorescent, (2) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	25	65	Electronic
F42INLU	T8 Linear Fluorescent	Fluorescent, (2), T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	25	43	Prem. Elec.
F42INLU-R	T8 Linear Fluorescent	Fluorescent (2) 48" T8 @ 25W lamps, Instant Start Ballast, RLO (BF< 0.85)	2	25	38	Prem. Elec.
F42INLU-V	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	25	60	Prem. Elec.
F42INLU/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 @ 25W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	25	38	Prem. Elec.
F43GNLL	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	3	25	66	PRS Elec.
F43GNLL-R	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	3	25	56	PRS Elec.
F43INLL	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	25	66	Electronic
F43INLL-V	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	25	95	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F43INLU	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps @ 25W, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	25	64	Prem. Elec.
F43INLU-R	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, RLO (BF < 0.85)	3	25	57	Prem. Elec.
F43INLU-V	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	25	93	Prem. Elec.
F44GNLL	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	4	25	85	PRS Elec.
F44GNLL-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 25W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4	25	73	PRS Elec.
F44INLL	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	25	86	Electronic
F44INLU	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 @ 25W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	25	85	Prem. Elec.
F44INLU-R	T8 Linear Fluorescent	Fluorescent, (4) 48" T-8 @ 25W lamps, Instant Start Ballast, RLO (BF < 0.85)	4	25	75	Prem. Elec.
F44INLU-V	T8 Linear Fluorescent	Fluorescent, (4) 48" T-8 @ 25W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4	25	122	Prem. Elec.
F46INLU/2-R	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 @ 25W lamps, (2) IS Ballasts, RLO (BF < 0.85)	6	25	114	Prem. Elec.
F46INLU/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 @ 25W lamps, (2) IS Ballasts, VHLO (BF > 1.1)	6	25	184	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41GRLL	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 28W lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	1	28	26	PRS Elec.
F41GRLL-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 28W lamp, Prog. Start or PRS Ballast, RLO (BF< 0.85)	1	28	22	PRS Elec.
F41IRLL	T8 Linear Fluorescent	Fluorescent, (1) 48" T-8 @ 28W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	28	27	Electronic
F41IRLL-V	T8 Linear Fluorescent	Fluorescent, (1) 48" T-8 @ 28W lamp, Instant Start Ballast, VHLO (BF > 1.1)	1	28	35	Electronic
F41IRLU	T8 Linear Fluorescent	Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	28	25	Prem. Elec.
F41IRLU-R	T8 Linear Fluorescent	Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, RLO (BF< 0.85)	1	28	22	Prem. Elec.
F41IRLU-V	T8 Linear Fluorescent	Fluorescent, (1), T-8 @ 28W lamp, Instant Start Ballast, VHLO (BF > 1.1)	1	28	33	Prem. Elec.
F41IRLU/T3-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 @ 28W lamp, Tandem 3-lamp IS Ballast, RLO (BF< 0.85)	1	28	21	Prem. Elec.
F41IRLU/T4-R	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 @ 28W lamp, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	1	28	21	Prem. Elec.
F42GRLL	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	2	28	49	PRS Elec.
F42GRLL-R	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO (BF< 0.85)	2	28	40	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F42IRLL	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	28	52	Electronic
F42IRLL-V	T8 Linear Fluorescent	Fluorescent, (2) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	28	68	Electronic
F42IRLU	T8 Linear Fluorescent	Fluorescent, (2), T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	28	48	Prem. Elec.
F42IRLU-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, RLO (BF< 0.85)	2	28	43	Prem. Elec.
F42IRLU-V	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	28	65	Prem. Elec.
F42IRLU/T4-R	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 @ 28W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	28	42	Prem. Elec.
F43GRLL	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	3	28	75	PRS Elec.
F43GRLL-R	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	3	28	62	PRS Elec.
F43IRLL	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	28	76	Electronic
F43IRLL-H	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, HLO (.95 < BF < 1.1)	3	28	82	Electronic
F43IRLL-V	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	28	97	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F43IRLU	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 lamps @ 28W, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	28	72	Prem. Elec.
F43IRLU-R	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)	3	28	63	Prem. Elec.
F43IRLU-V	T8 Linear Fluorescent	Fluorescent, (3) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	28	96	Prem. Elec.
F44GRLL	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	4	28	99	PRS Elec.
F44GRLL-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 28W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4	28	80	PRS Elec.
F44IRLL	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	28	99	Electronic
F44IRLL-R	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)	4	28	85	Electronic
F44IRLU	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 @ 28W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	28	94	Prem. Elec.
F44IRLU-R	T8 Linear Fluorescent	Fluorescent, (4) 48" T-8 @ 28W lamps, Instant Start Ballast, RLO (BF < 0.85)	4	28	83	Prem. Elec.
F44IRLU-V	T8 Linear Fluorescent	Fluorescent, (4) 48" T-8 @ 28W lamps, Instant Start Ballast, VHLO (BF > 1.1)	4	28	131	Prem. Elec.
F46IRLU/2-R	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 @ 28W lamps, (2) IS Ballasts, RLO (BF < 0.85)	6	28	126	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F46IRLU/2-V	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 @ 28W lamps, (2) IS Ballasts, VHLO (BF > 1.1)	6	28	194	Prem. Elec.
F48IRLU/2-V	T8 Linear Fluorescent	Fluorescent (8) 48" T-8 @ 28W lamps, (2) IS Ballasts, VHLO (BF > 1.1)	8	28	250	Prem. Elec.
F41GELL	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	1	30	28	PRS Elec.
F41GELL-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Prog. Start or PRS Ballast, RLO (BF < 0.85)	1	30	24	PRS Elec.
F41IELL	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	30	29	Electronic
F41IELL-H	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	1	30	34	Electronic
F41IELL-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, RLO (BF < 0.85)	1	30	26	Electronic
F41IELL/T2	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2- lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	30	28	Electronic
F41IELL/T3	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3- lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	30	27	Electronic
F41IELL/T4	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4- lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	30	27	Electronic
F41IELU	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 @ 30W lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	30	27	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41IELU-H	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, HLO (0.95 < BF < 1.1)	1	30	32	Prem. Elec.
F41IELU-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Instant Start Ballast, RLO (BF< 0.85)	1	30	24	Prem. Elec.
F41IELU/T2	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2- lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	30	26	Prem. Elec.
F41IELU/T2-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 2- lamp IS Ballast, RLO (BF< 0.85)	1	30	23	Prem. Elec.
F41IELU/T3	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3- lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	30	26	Prem. Elec.
F41IELU/T3-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 3- lamp IS Ballast, RLO (BF< 0.85)	1	30	23	Prem. Elec.
F41IELU/T4	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4- lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	30	25	Prem. Elec.
F41IELU/T4-R	T8 Linear Fluorescent	Fluorescent (1) 48" T-8 @ 30W lamp, Tandem 4- lamp IS Ballast, RLO (BF< 0.85)	1	30	22	Prem. Elec.
F42GELL	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	2	30	56	PRS Elec.
F42GELL-R	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	2	30	43	PRS Elec.
F42IELL	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	30	55	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F42IELL-H	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	2	30	62	Electronic
F42IELL-R	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF< 0.85)	2	30	49	Electronic
F42IELL/T4	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2	30	53	Electronic
F42IELL/T4-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	30	46	Electronic
F42IELU	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	30	52	Prem. Elec.
F42IELU-R	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start, RLO (BF< 0.85)	2	30	45	Prem. Elec.
F42IELU-V	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Instant Start, VHLO (BF > 1.1)	2	30	70	Prem. Elec.
F42IELU/T4	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2	30	51	Prem. Elec.
F42IELU/T4-R	T8 Linear Fluorescent	Fluorescent (2) 48" T-8 @ 30W lamps, Tandem 4-lamp IS Ballast, RLO (BF< 0.85)	2	30	45	Prem. Elec.
F43GELL	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	3	30	83	PRS Elec.
F43GELL-R	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	3	30	67	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F43IELL	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	30	81	Electronic
F43IELL-H	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, HLO (0.95 < BF < 1.1)	3	30	86	Electronic
F43IELL-R	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30 W lamps, Instant Start Ballast, RLO (BF < 0.85)	3	30	71	Electronic
F43IELL/2	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 1- lamp and (1) 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	3	30	84	Electronic
F43IELL/2-H	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 2- lamp, (1) 3-lamp IS Ballast, 1 lead capped, HLO (0.95 < BF < 1.1)	3	30	96	Electronic
F43IELL/2-R	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30 W lamps, (1) 1- lamp and (1) 2-lamp IS Ballast, RLO (BF < 0.85)	3	30	75	Electronic
F43IELU	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	30	77	Prem. Elec.
F43IELU-R	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)	3	30	68	Prem. Elec.
F43IELU-V	T8 Linear Fluorescent	Fluorescent (3) 48" T-8 @ 30W lamps, Instant Start Ballast, VHLO (BF > 1.1)	3	30	104	Prem. Elec.
F44GELL	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, NLO (0.85 < BF < 0.95)	4	30	109	PRS Elec.
F44GELL-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Prog. Start or PRS Ballast, RLO (BF < 0.85)	4	30	86	PRS Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F44IELL	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	30	106	Electronic
F44IELL-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)	4	30	92	Electronic
F44IELL/2	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, (2) 2- lamp IS Ballasts, NLO (0.85 < BF < 0.95)	4	30	110	Electronic
F44IELL/2-H	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, (2) 3- lamp IS Ballasts, 1 lead capped, HLO (.95 < BF < 1.1)	4	30	124	Electronic
F44IELL/2-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, (2) 2- lamp IS Ballasts, RLO (BF< 0.85)	4	30	98	Electronic
F44IELU	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	30	101	Prem. Elec.
F44IELU-R	T8 Linear Fluorescent	Fluorescent (4) 48" T-8 @ 30W lamps, Instant Start Ballast, RLO (BF < 0.85)	4	30	89	Prem. Elec.
F46IELU/2	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 @ 30W lamps, (2) IS Ballasts, NLO (0.85 < BF < 0.95)	6	30	154	Prem. Elec.
F46IELU/2-R	T8 Linear Fluorescent	Fluorescent (6) 48" T-8 @ 30W lamps, (2) IS Ballasts, RLO (BF < 0.85)	6	30	135	Prem. Elec.
F51ILL	T8 Linear Fluorescent	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	40	36	Electronic
F51ILL-R	T8 Linear Fluorescent	Fluorescent, (1) 60", T-8 lamp, Instant Start Ballast, RLO (BF < 0.85)	1	40	43	Electronic

Arkansas TRM Version 10.0 Vol. 3	0 Vol. 3
----------------------------------	----------

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F51ILL/T2	T8 Linear Fluorescent	Fluorescent, (1) 60", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	40	36	Electronic
F51ILL/T3	T8 Linear Fluorescent	Fluorescent, (1) 60", T-8 lamp, Tandem 3-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	40	35	Electronic
F51ILL/T4	T8 Linear Fluorescent	Fluorescent, (1) 60", T-8 lamp, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	40	34	Electronic
F52ILL	T8 Linear Fluorescent	Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	40	72	Electronic
F52ILL-H	T8 Linear Fluorescent	Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, HILO (.95 < BF < 1.1)	2	40	80	Electronic
F52ILL-R	T8 Linear Fluorescent	Fluorescent, (2) 60", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	2	40	73	Electronic
F52ILL/T4	T8 Linear Fluorescent	Fluorescent, (2) 60", T-8 lamps, Tandem 4-lamp IS Ballast, NLO (0.85 < BF < 0.95)	2	40	67	Electronic
F53ILL	T8 Linear Fluorescent	Fluorescent, (3) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	40	106	Electronic
F53ILL-H	T8 Linear Fluorescent	Fluorescent, (3) 60", T-8 lamps, Instant Start Ballast, HILO (.95 < BF < 1.1)	3	40	108	Electronic
F54ILL	T8 Linear Fluorescent	Fluorescent, (4) 60", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	40	134	Electronic
F54ILL-H	T8 Linear Fluorescent	Fluorescent, (4) 60", T-8 lamps, Instant Start Ballast, HLO (.95 < BF < 1.1)	4	40	126	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41LHL	T8 Linear Fluorescent	Fluorescent, (1) 48", T-8 HO lamps, (1) Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	44	59	Electronic
F42LHL	T8 Linear Fluorescent	Fluorescent, (2) 48", T-8 HO lamps, (1) Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	44	98	Electronic
F43LHL	T8 Linear Fluorescent	Fluorescent, (3) 48", T-8 HO lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)	3	44	141	Electronic
F44LHL	T8 Linear Fluorescent	Fluorescent, (4) 48", T-8 HO lamps, (2) Instant Start Ballasts, NLO (0.85 < BF < 0.95)	4	44	168	Electronic
F81ILL	T8 Linear Fluorescent	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	59	69	Electronic
F81ILL-H	T8 Linear Fluorescent	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, HILO (.95 < BF < 1.1)	1	59	70	Electronic
F81ILL-R	T8 Linear Fluorescent	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, RLO (BF < 0.85)	1	59	67	Electronic
F81ILL-V	T8 Linear Fluorescent	Fluorescent, (1) 96", T-8 lamp, Instant Start Ballast, VHLO (BF > 1.1)	1	59	72	Electronic
F81ILL/T2	T8 Linear Fluorescent	Fluorescent, (1) 96", T-8 lamp, Tandem 2-lamp IS Ballast, NLO (0.85 < BF < 0.95)	1	59	55	Electronic
F81ILL/T2-R	T8 Linear Fluorescent	Fluorescent, (1) 96", T-8 lamp, Tandem 2-lamp IS Ballast, RLO (BF < 0.85)	1	59	50	Electronic
F81ILU	T8 Linear Fluorescent	Fluorescent, (1) 96" T-8 lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	59	67	Prem. Elec.

|--|

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F82ILL	T8 Linear Fluorescent	Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	59	110	Electronic
F82ILL-R	T8 Linear Fluorescent	Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, RLO (BF < 0.85)	2	59	100	Electronic
F82ILL-V	T8 Linear Fluorescent	Fluorescent, (2) 96", T-8 lamps, Instant Start Ballast, VHLO (BF > 1.1)	2	59	149	Electronic
F82ILU	T8 Linear Fluorescent	Fluorescent, (2) 96" T-8 ES lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	59	107	Prem. Elec.
F83ILL	T8 Linear Fluorescent	Fluorescent, (3) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	3	59	179	Electronic
F84ILL	T8 Linear Fluorescent	Fluorescent, (4) 96", T-8 lamps, Instant Start Ballast, NLO (0.85 < BF < 0.95)	4	59	219	Electronic
F84ILL/2-V	T8 Linear Fluorescent	Fluorescent, (4) 96", T-8 lamps, (2) Instant Start Ballasts, VHLO (BF > 1.1)	4	59	298	Electronic
F86ILL	T8 Linear Fluorescent	Fluorescent, (6) 96", T-8 lamps, (2) 3-lamp IS Ballasts, NLO (0.85 < BF < 0.95)	6	59	330	Electronic
F81LHL/T2	T8 Linear Fluorescent	Fluorescent, (1) 96", T-8 HO lamp, Tandem 2- lamp Ballast	1	86	80	Electronic
F82LHL	T8 Linear Fluorescent	Fluorescent, (2) 96", T-8 HO lamps	2	86	160	Electronic
F84LHL	T8 Linear Fluorescent	Fluorescent, (4) 96", T-8 HO lamps	4	86	320	Electronic
F81IERU	T8 Linear Fluorescent	Fluorescent, (1) 96" T-8 reduced-wattage lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	1	54	61	Prem. Elec.

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F82IERU	T8 Linear Fluorescent	Fluorescent, (2) 96" T-8 @ reduced-wattage lamp, Instant Start Ballast, NLO (0.85 < BF < 0.95)	2	54	93	Prem. Elec.
F41T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (1) 48" T12 lamp (T8 Baseline)	1	32	31	Mag/Elec
F42T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (2) 48" T12 lamps (T8 Baseline)	2	32	58	Mag/Elec
F43T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (3) 48" T12 lamps (T8 Baseline)	3	32	85	Mag/Elec
F44T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (4) 48" T12 lamps (T8 Baseline)	4	32	112	Mag/Elec
F46T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (6) 48" T12 lamps (T8 Baseline)	6	32	170	Mag/Elec
F48T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (8) 48" T12 lamps (T8 Baseline)	8	32	224	Mag/Elec
F41T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (1) 48" T12 HO lamp (T8 Baseline)	1	32	31	Mag/Elec
F42T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (2) 48" T12 HO lamps (T8 Baseline)	2	32	58	Mag/Elec
F43T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (3) 48" T12 HO lamps (T8 Baseline)	3	32	85	Mag/Elec
F44T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (4) 48" T12 HO lamps (T8 Baseline)	4	32	112	Mag/Elec

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F46T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (6) 48" T12 HO lamps (T8 Baseline)	6	32	170	Mag/Elec
F48T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (8) 48" T12 HO lamps (T8 Baseline)	8	32	224	Mag/Elec
F41T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (1) 48" T12 VHO lamp (T8 Baseline)	1	32	31	Mag/Elec
F42T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (2) 48" T12 VHO lamps (T8 Baseline)	2	32	58	Mag/Elec
F43T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (3) 48" T12 VHO lamps (T8 Baseline)	3	32	85	Mag/Elec
F44T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (4) 48" T12 VHO lamps (T8 Baseline)	4	32	112	Mag/Elec
F46T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (6) 48" T12 VHO lamps (T8 Baseline)	6	32	170	Mag/Elec
F48T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (8) 48" T12 VHO lamps (T8 Baseline)	8	32	224	Mag/Elec
F81T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (1) 96", T12 lamp (T8 Baseline)	1	59	69	Mag/Elec
F82T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (2) 96", T12 lamps (T8 Baseline)	2	59	110	Mag/Elec
F83T12	T12 Linear Fluorescent	Fluorescent, (3) 96", T12 lamps (T8 Baseline)	3	59	179	Mag/Elec

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
	(T8 Baseline)					
F84T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (4) 96", T12 lamps (T8 Baseline)	4	59	219	Mag/Elec
F86T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (6) 96", T12 lamps (T8 Baseline)	6	59	330	Mag/Elec
F88T12	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (8) 96", T12 lamps (T8 Baseline)	8	59	438	Mag/Elec
F81T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (1) 96", T12 HO lamp (T8 Baseline)	1	86	101	Mag/Elec
F82T12-НО	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (2) 96", T12 HO lamps (T8 Baseline)	2	86	160	Mag/Elec
F83T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (3) 96", T12 HO lamps (T8 Baseline)	3	86	261	Mag/Elec
F84T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (4) 96", T12 HO lamps (T8 Baseline)	4	86	319	Mag/Elec
F86T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (6) 96", T12 HO lamps (T8 Baseline)	6	86	481	Mag/Elec
F88T12-HO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (8) 96", T12 HO lamps (T8 Baseline)	8	86	638	Mag/Elec
F81T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (1) 96", T12 VHO lamp (T8 Baseline)	1	86	101	Mag/Elec

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F82T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (2) 96", T12 VHO lamps (T8 Baseline)	2	86	160	Mag/Elec
F83T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (3) 96", T12 VHO lamps (T8 Baseline)	3	86	261	Mag/Elec
F84T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (4) 96", T12 VHO lamps (T8 Baseline)	4	86	319	Mag/Elec
F86T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (6) 96", T12 VHO lamps (T8 Baseline)	6	86	481	Mag/Elec
F88T12-VHO	T12 Linear Fluorescent (T8 Baseline)	Fluorescent, (8) 96", T12 VHO lamps (T8 Baseline)	8	86	638	Mag/Elec
F1.51SS	T12 Linear Fluorescent	Fluorescent, (1) 18" T12 lamp	1	15	19	Mag-STD
F1.52SS	T12 Linear Fluorescent	Fluorescent, (2) 18", T12 lamps	2	15	36	Mag-STD
F21SS	T12 Linear Fluorescent	Fluorescent, (1) 24", STD lamp	1	20	25	Mag-STD
F22SS	T12 Linear Fluorescent	Fluorescent, (2) 24", STD lamps	2	20	50	Mag-STD
F23SS	T12 Linear Fluorescent	Fluorescent, (3) 24", STD lamps	3	20	71	Mag-STD
F24SS	T12 Linear Fluorescent	Fluorescent, (4) 24", STD lamps	4	20	100	Mag-STD
F26SS/2	T12 Linear Fluorescent	Fluorescent, (6) 24", STD lamps, (2) ballasts	6	20	146	Mag-STD
F21HS	T12 Linear Fluorescent	Fluorescent, (1) 24", HO lamp	1	35	62	Mag-STD
F22HS	T12 Linear Fluorescent	Fluorescent, (2) 24", HO lamps	2	35	90	Mag-STD
F31EE/T2	T12 Linear Fluorescent	Fluorescent, (1) 36", ES lamp, Tandem 2-lamp ballast	1	25	33	Mag-ES

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F31EL	T12 Linear Fluorescent	Fluorescent, (1) 36", ES lamp	1	25	26	Electronic
F31ES	T12 Linear Fluorescent	Fluorescent, (1) 36", ES lamp	1	25	42	Mag-STD
F31ES/T2	T12 Linear Fluorescent	Fluorescent, (1) 36", ES lamp, Tandem 2-lamp ballast	1	25	33	Mag-STD
F31SE/T2	T12 Linear Fluorescent	Fluorescent, (1) 36", STD lamp, Tandem 2-lamp ballast	1	30	37	Mag-ES
F31SHS	T12 Linear Fluorescent	Fluorescent, (1) 36", HO lamp	1	50	70	Mag-STD
F31SL	T12 Linear Fluorescent	Fluorescent, (1) 36", STD lamp	1	30	31	Electronic
F31SS	T12 Linear Fluorescent	Fluorescent, (1) 36", STD lamp	1	30	46	Mag-STD
F31SS/T2	T12 Linear Fluorescent	Fluorescent, (1) 36", STD lamp, Tandem 2-lamp ballast	1	30	41	Mag-STD
F32EE	T12 Linear Fluorescent	Fluorescent, (2) 36", ES lamp	2	25	66	Mag-ES
F32EL	T12 Linear Fluorescent	Fluorescent, (2) 36", ES lamps	2	25	50	Electronic
F32EL/T4	T12 Linear Fluorescent	Fluorescent, (2) 36" ES lamps, Tandem 4-lamp ballast, NLO (0.85 < BF < 0.95)	2	25	50	Electronic
F32ES	T12 Linear Fluorescent	Fluorescent, (2) 36", ES lamps	2	25	73	Mag-STD
F32SE	T12 Linear Fluorescent	Fluorescent, (2) 36", STD lamps	2	30	74	Mag-ES
F32SHS	T12 Linear Fluorescent	Fluorescent, (2) 36", HO, lamps	2	50	114	Mag-STD
F32SL	T12 Linear Fluorescent	Fluorescent, (2) 36", STD lamps	2	30	58	Electronic
F32SS	T12 Linear Fluorescent	Fluorescent, (2) 36", STD lamps	2	30	75	Mag-STD
F33ES	T12 Linear Fluorescent	Fluorescent, (3) 36", ES lamps	3	25	115	Mag-STD

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F33SE	T12 Linear Fluorescent	Fluorescent, (3) 36", STD lamps, (1) STD ballast and (1) ES ballast	3	30	120	Mag-ES
F33SS	T12 Linear Fluorescent	Fluorescent, (3) 36", STD lamps	3	30	127	Mag-STD
F34EE	T12 Linear Fluorescent	Fluorescent, (4) 36", ES lamps	4	25	132	Mag-ES
F34SE	T12 Linear Fluorescent	Fluorescent, (4) 36", STD lamps	4	30	148	Mag-ES
F34SL	T12 Linear Fluorescent	Fluorescent, (4) 36", STD lamps	4	30	116	Electronic
F34SS	T12 Linear Fluorescent	Fluorescent, (4) 36", STD lamps	4	30	150	Mag-STD
F36EE	T12 Linear Fluorescent	Fluorescent, (6) 36", ES lamps	6	30	198	Mag-ES
F36ES	T12 Linear Fluorescent	Fluorescent, (6) 36", ES lamps	6	30	219	Mag-STD
F36SE	T12 Linear Fluorescent	Fluorescent, (6) 36", STD lamps	6	30	213	Mag-ES
F36SS	T12 Linear Fluorescent	Fluorescent, (6) 36", STD lamps	6	30	225	Mag-STD
F41EE	T12 Linear Fluorescent	Fluorescent, (1) 48", ES lamp	1	34	43	Mag-ES
F41EE/2	T12 Linear Fluorescent	Fluorescent, (1) 48", ES lamp, 2 ballast	1	34	43	Mag-ES
F41EE/T2	T12 Linear Fluorescent	Fluorescent, (1) 48", ES lamp, Tandem 2-lamp ballast	1	34	36	Mag-ES
F41EL	T12 Linear Fluorescent	Fluorescent, (1) 48", T12 ES lamp, Electronic Ballast	1	34	32	Electronic
F41IAL	T12 Linear Fluorescent	Fluorescent, (1) 48", F25T12 lamp, Instant Start Ballast	1	25	25	Electronic
F41IAL/T2-R	T12 Linear Fluorescent	Fluorescent, (1) 48", F25T12 lamp, Tandem 2- Lamp IS ballast, RLO (BF < 0.85)	1	25	19	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41IAL/T3-R	T12 Linear Fluorescent	Fluorescent, (1) 48", F25T12 lamp, Tandem 3- Lamp IS ballast, RLO (BF < 0.85)	1	25	20	Electronic
F41IAL/T4-R	T12 Linear Fluorescent	Fluorescent, (1) 48", F25T12 lamp, Tandem 4- Lamp IS ballast, RLO (BF < 0.85)	1	25	20	Electronic
F41SIL	T12 Linear Fluorescent	Fluorescent, (1) 48", STD IS lamp, Electronic ballast	1	39	46	Electronic
F41SIL/T2	T12 Linear Fluorescent	Fluorescent, (1) 48", STD IS lamp, Tandem 2- lamp IS ballast	1	39	37	Electronic
F41TS	T12 Linear Fluorescent	Fluorescent, (1) 48", T-10 lamp	1	40	51	Mag-STD
F42EE	T12 Linear Fluorescent	Fluorescent, (2) 48", ES lamp	2	34	72	Mag-ES
F42EE/2	T12 Linear Fluorescent	Fluorescent, (2) 48", ES lamps, (2) 1-lamp ballasts	2	34	86	Mag-ES
F42EE/D2	T12 Linear Fluorescent	Fluorescent, (2) 48", ES lamps, 2 Ballasts (delamped)	2	34	76	Mag-ES
F42EL	T12 Linear Fluorescent	Fluorescent, (2) 48", T12 ES lamps, Electronic Ballast	2	34	60	Electronic
F42IAL-R	T12 Linear Fluorescent	Fluorescent, (2) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85)	2	25	39	Electronic
F42IAL/T4-R	T12 Linear Fluorescent	Fluorescent, (2) 48", F25T12 lamps, Tandem 4- lamp IS Ballast, RLO (BF < 0.85)	2	25	40	Electronic
F42SIL	T12 Linear Fluorescent	Fluorescent, (2) 48", STD IS lamps, Electronic ballast	2	39	74	Electronic
F43EE	T12 Linear Fluorescent	Fluorescent, (3) 48", ES lamps	3	34	115	Mag-ES

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F43EE/T2	T12 Linear Fluorescent	Fluorescent, (3) 48", ES lamps, Tandem 2-lamp ballasts	3	34	108	Mag-ES
F43EL	T12 Linear Fluorescent	Fluorescent, (3) 48", T12 ES lamps, Electronic Ballast	3	34	92	Electronic
F43IAL-R	T12 Linear Fluorescent	Fluorescent, (3) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85)	3	25	60	Electronic
F43SIL	T12 Linear Fluorescent	Fluorescent, (3) 48", STD IS lamps, Electronic ballast	3	39	120	Electronic
F44EE	T12 Linear Fluorescent	Fluorescent, (4) 48", ES lamps	4	34	144	Mag-ES
F44EE/D3	T12 Linear Fluorescent	Fluorescent, (4) 48", ES lamps, 3 Ballasts (delamped)	4	34	148	Mag-ES
F44EE/D4	T12 Linear Fluorescent	Fluorescent, (4) 48", ES lamps, 4 Ballasts (delamped)	4	34	152	Mag-ES
F44EL	T12 Linear Fluorescent	Fluorescent, (4) 48", T12 ES lamps, Electronic Ballast	4	34	120	Electronic
F44IAL-R	T12 Linear Fluorescent	Fluorescent, (4) 48", F25T12 lamps, Instant Start Ballast, RLO (BF < 0.85)	4	25	80	Electronic
F46EE	T12 Linear Fluorescent	Fluorescent, (6) 48", ES lamps	6	34	216	Mag-ES
F46EL	T12 Linear Fluorescent	Fluorescent, (6) 48", ES lamps	6	34	180	Electronic
F48EE	T12 Linear Fluorescent	Fluorescent, (8) 48", ES lamps	8	34	288	Mag-ES
F42EHS	T12 Linear Fluorescent	Fluorescent, (2) 42", HO lamps (3.5' lamp)	2	55	135	Mag-STD
F43EHS	T12 Linear Fluorescent	Fluorescent, (3) 42", HO lamps (3.5' lamp)	3	55	215	Mag-STD

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F41EIS	T12 Linear Fluorescent	Fluorescent, (1) 48" ES Instant Start lamp. Magnetic ballast	1	30	51	Mag-STD
F42EIS	T12 Linear Fluorescent	Fluorescent, (2) 48" ES Instant Start lamps. Magnetic ballast	2	30	82	Mag-STD
F43EIS	T12 Linear Fluorescent	Fluorescent, (3) 48" ES Instant Start lamps. Magnetic ballast	3	30	133	Mag-STD
F44EIS	T12 Linear Fluorescent	Fluorescent, (4) 48" ES Instant Start lamps. Magnetic ballast	4	30	164	Mag-STD
F41SHS	T12 Linear Fluorescent	Fluorescent, (1) 48", STD HO lamp	1	60	85	Mag-STD
F42SHS	T12 Linear Fluorescent	Fluorescent, (2) 48", STD HO lamps	2	60	145	Mag-STD
F43SHS	T12 Linear Fluorescent	Fluorescent, (3) 48", STD HO lamps	3	60	230	Mag-STD
F44SHS	T12 Linear Fluorescent	Fluorescent, (4) 48", STD HO lamps	4	60	290	Mag-STD
F41EHS	T12 Linear Fluorescent	Fluorescent, (1) 48", ES HO lamp	1	55	80	Mag-STD
F44EHS	T12 Linear Fluorescent	Fluorescent, (4) 48", ES HO lamps	4	55	270	Mag-STD
F41SVS	T12 Linear Fluorescent	Fluorescent, (1) 48", STD VHO lamp	1	110	140	Mag-STD
F42SVS	T12 Linear Fluorescent	Fluorescent, (2) 48", STD VHO lamps	2	110	252	Mag-STD
F43SVS	T12 Linear Fluorescent	Fluorescent, (3) 48", STD VHO lamps	3	110	377	Mag-STD
F44SVS	T12 Linear Fluorescent	Fluorescent, (4) 48", STD VHO lamps	4	110	484	Mag-STD
F44EVS	T12 Linear Fluorescent	Fluorescent, (4) 48", VHO ES lamps	4	100	420	Mag-STD
F44SIL	T12 Linear Fluorescent	Fluorescent, (4) 48", STD IS lamps, Electronic ballast	4	39	148	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F46SL	T12 Linear Fluorescent	Fluorescent, (6) 48", STD lamps	6	40	186	Electronic
F51SL	T12 Linear Fluorescent	Fluorescent, (1) 60", STD lamp	1	50	44	Electronic
F51SS	T12 Linear Fluorescent	Fluorescent, (1) 60", STD lamp	1	50	63	Mag-STD
F52SL	T12 Linear Fluorescent	Fluorescent, (2) 60", STD lamps	2	50	88	Electronic
F52SS	T12 Linear Fluorescent	Fluorescent, (2) 60", STD lamps	2	50	128	Mag-STD
F51SHE	T12 Linear Fluorescent	Fluorescent, (1) 60", STD HO lamp	1	75	88	Mag-ES
F51SHL	T12 Linear Fluorescent	Fluorescent, (1) 60", STD HO lamp	1	75	69	Electronic
F51SHS	T12 Linear Fluorescent	Fluorescent, (1) 60", STD HO lamp	1	75	92	Mag-STD
F51SVS	T12 Linear Fluorescent	Fluorescent, (1) 60", VHO ES lamp	1	135	165	Mag-STD
F52SHE	T12 Linear Fluorescent	Fluorescent, (2) 60", STD HO lamps	2	75	176	Mag-ES
F52SHL	T12 Linear Fluorescent	Fluorescent, (2) 60", STD HO lamps	2	75	138	Electronic
F52SHS	T12 Linear Fluorescent	Fluorescent, (2) 60", STD HO lamps	2	75	168	Mag-STD
F52SVS	T12 Linear Fluorescent	Fluorescent, (2) 60", VHO ES lamps	2	135	310	Mag-STD
F61ISL	T12 Linear Fluorescent	Fluorescent, (1) 72", STD lamp, IS electronic ballast	1	55	68	Electronic
F61SHS	T12 Linear Fluorescent	Fluorescent, (1) 72", STD HO lamp	1	85	106	Mag-STD
F61SS	T12 Linear Fluorescent	Fluorescent, (1) 72", STD lamp	1	55	76	Mag-STD
F62ISL	T12 Linear Fluorescent	Fluorescent, (2) 72", STD lamps, IS electronic ballast	2	55	108	Electronic
F62SE	T12 Linear Fluorescent	Fluorescent, (2) 72", STD lamps	2	55	122	Mag-ES

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F62SHE	T12 Linear Fluorescent	Fluorescent, (2) 72", STD HO lamps	2	85	194	Mag-ES
F62SHL	T12 Linear Fluorescent	Fluorescent, (2) 72", STD HO lamps	2	85	167	Electronic
F62SHS	T12 Linear Fluorescent	Fluorescent, (2) 72", STD HO lamps	2	85	200	Mag-STD
F62SL	T12 Linear Fluorescent	Fluorescent, (2) 72", STD lamps	2	55	108	Electronic
F62SS	T12 Linear Fluorescent	Fluorescent, (2) 72", STD lamps	2	55	142	Mag-STD
F63ISL	T12 Linear Fluorescent	Fluorescent, (3) 72", STD lamps, IS electronic ballast	3	55	176	Electronic
F63SS	T12 Linear Fluorescent	Fluorescent, (3) 72", STD lamps	3	55	202	Mag-STD
F64ISL	T12 Linear Fluorescent	Fluorescent, (4) 72", STD lamps, IS electronic ballast	4	55	216	Electronic
F64SE	T12 Linear Fluorescent	Fluorescent, (4) 72", STD lamps	4	55	244	Mag-ES
F64SS	T12 Linear Fluorescent	Fluorescent, (4) 72", STD lamps	4	56	244	Mag-STD
F64SHE	T12 Linear Fluorescent	Fluorescent, (4) 72", HO lamps	4	85	388	Mag-ES
F61SVS	T12 Linear Fluorescent	Fluorescent, (1) 72", VHO lamp	1	160	180	Mag-STD
F62SVS	T12 Linear Fluorescent	Fluorescent, (2) 72", VHO lamps	2	160	330	Mag-STD
F71HS	T12 Linear Fluorescent	Fluorescent, (1) 84", HO lamp	1	100	104	Mag-ES
F72HS	T12 Linear Fluorescent	Fluorescent, (2) 84", HO lamp	2	100	198	Mag-ES
F81EE	T12 Linear Fluorescent	Fluorescent, (1) 96" ES lamp	1	60	75	Mag-ES
F81EE/T2	T12 Linear Fluorescent	Fluorescent, (1) 96", ES lamp, Tandem 2-lamp ballast	1	60	62	Mag-ES
F81EHL	T12 Linear Fluorescent	Fluorescent, (1) 96", ES HO lamp	1	95	80	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F81EHS	T12 Linear Fluorescent	Fluorescent, (1) 96", ES HO lamp	1	95	113	Mag-STD
F81EL	T12 Linear Fluorescent	Fluorescent, (1) 96", ES lamp	1	60	69	Electronic
F81EL/T2	T12 Linear Fluorescent	Fluorescent, (1) 96", ES lamp, Tandem 2-lamp ballast	1	60	55	Electronic
F81EVS	T12 Linear Fluorescent	Fluorescent, (1) 96", ES VHO lamp	1	185	205	Mag-STD
F81SGS	T17 Linear Fluorescent	Fluorescent, (1) 96", T17 Grooved lamp	1	215	235	Mag-STD
F81SHS	T12 Linear Fluorescent	Fluorescent, (1) 96", STD HO lamp	1	110	121	Mag-STD
F81SL	T12 Linear Fluorescent	Fluorescent, (1) 96", STD lamp	1	75	69	Electronic
F81SL/T2	T12 Linear Fluorescent	Fluorescent, (1) 96", STD lamp, Tandem 2-lamp ballast	1	75	55	Electronic
F81SVS	T12 Linear Fluorescent	Fluorescent, (1) 96", STD VHO lamp	1	215	205	Mag-STD
F82EE	T12 Linear Fluorescent	Fluorescent, (2) 96", ES lamps	2	60	123	Mag-ES
F82EHE	T12 Linear Fluorescent	Fluorescent, (2) 96", ES HO lamps	2	95	207	Mag-ES
F82EHL	T12 Linear Fluorescent	Fluorescent, (2) 96", ES HO lamps	2	95	173	Electronic
F82EHS	T12 Linear Fluorescent	Fluorescent, (2) 96", ES HO lamps	2	95	207	Mag-STD
F82EL	T12 Linear Fluorescent	Fluorescent, (2) 96", ES lamps	2	60	110	Electronic
F82EVS	T12 Linear Fluorescent	Fluorescent, (2) 96", ES VHO lamps	2	195	380	Mag-STD
F82SHE	T12 Linear Fluorescent	Fluorescent, (2) 96", STD HO lamps	2	110	207	Mag-ES
F82SHL	T12 Linear Fluorescent	Fluorescent, (2) 96", STD HO lamps	2	110	173	Electronic
F82SHS	T12 Linear Fluorescent	Fluorescent, (2) 96", STD HO lamps	2	110	207	Mag-STD

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F82SL	T12 Linear Fluorescent	Fluorescent, (2) 96", STD lamps	2	75	110	Electronic
F82SVS	T12 Linear Fluorescent	Fluorescent, (2) 96", STD VHO lamps	2	215	380	Mag-STD
F83EE	T12 Linear Fluorescent	Fluorescent, (3) 96", ES lamps	3	60	198	Mag-ES
F83EHE	T12 Linear Fluorescent	Fluorescent, (3) 96", ES HO lamps, (1) 2-lamp ES Ballast and (1) 1-lamp STD Ballast	3	95	319	Mag- ES/STD
F83EHS	T12 Linear Fluorescent	Fluorescent, (3) 96", ES HO lamps	3	95	319	Mag-STD
F83EL	T12 Linear Fluorescent	Fluorescent, (3) 96", ES lamps	3	60	179	Electronic
F83EVS	T12 Linear Fluorescent	Fluorescent, (3) 96", ES VHO lamps	3	185	585	Mag-STD
F83SHE	T12 Linear Fluorescent	Fluorescent, (3) 96", STD HO lamps	3	110	319	Mag-ES
F83SHS	T12 Linear Fluorescent	Fluorescent, (3) 96", STD HO lamps	3	110	319	Mag-STD
F83SL	T12 Linear Fluorescent	Fluorescent, (3) 96", STD lamps	3	75	179	Electronic
F83SVS	T12 Linear Fluorescent	Fluorescent, (3) 96", STD VHO lamps	3	215	585	Mag-STD
F84EE	T12 Linear Fluorescent	Fluorescent, (4) 96", ES lamps	4	60	246	Mag-ES
F84EHE	T12 Linear Fluorescent	Fluorescent, (4) 96", ES HO lamps	4	95	414	Mag-ES
F84EHL	T12 Linear Fluorescent	Fluorescent, (4) 96", ES HO lamps	4	95	346	Electronic
F84EHS	T12 Linear Fluorescent	Fluorescent, (4) 96", ES HO lamps	4	95	414	Mag-STD
F84EL	T12 Linear Fluorescent	Fluorescent, (4) 96", ES lamps	4	60	220	Electronic
F84EVS	T12 Linear Fluorescent	Fluorescent, (4) 96", ES VHO lamps	4	185	760	Mag-STD
F84SHE	T12 Linear Fluorescent	Fluorescent, (4) 96", STD HO lamps	4	110	414	Mag-ES
F84SHL	T12 Linear Fluorescent	Fluorescent, (4) 96", STD HO lamps	4	110	346	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
F84SHS	T12 Linear Fluorescent	Fluorescent, (4) 96", STD HO lamps	4	110	414	Mag-STD
F84SL	T12 Linear Fluorescent	Fluorescent, (4) 96", STD lamps	4	75	220	Electronic
F84SVS	T12 Linear Fluorescent	Fluorescent, (4) 96", STD VHO lamps	4	215	760	Mag-STD
F86EE	T12 Linear Fluorescent	Fluorescent, (6) 96", ES lamps	6	60	369	Mag-ES
F86EHS	T12 Linear Fluorescent	Fluorescent, (6) 96", ES HO lamps	6	95	519	Mag-STD
F88EHE	T12 Linear Fluorescent	Fluorescent, (8) 96", ES HO lamps	8	95	828	Mag-ES
F88SHS	T12 Linear Fluorescent	Fluorescent, (8) 96", STD HO lamps	8	110	828	Mag-STD
F40SE/D1	Other Linear Fluorescent	Fluorescent, (0) 48" lamps, Completely delamped fixture with (1) hot ballast	1	0	4	Mag-ES
F40SE/D2	Other Linear Fluorescent	Fluorescent, (0) 48" lamps, Completely delamped fixture with (2) hot ballast	1	0	8	Mag-ES
FC6/1	Circline Fluorescent	Fluorescent, (1) 6" circular lamp, RS ballast	1	20	25	Mag-STD
FC8/1	Circline Fluorescent	Fluorescent, (1) 8" circular lamp, RS ballast	1	22	26	Mag-STD
FC8/2	Circline Fluorescent	Fluorescent, (2) 8" circular lamps, RS ballast	2	22	52	Mag-STD
FC20	Circline Fluorescent	Fluorescent, Circline, (1) 20W lamp, preheat ballast	1	20	20	Mag-STD
FC22	Circline Fluorescent	Fluorescent, Circline, (1) 22W lamp, preheat ballast	1	22	20	Mag-STD
FC12/1	Circline Fluorescent	Fluorescent, (1) 12" circular lamp, RS ballast	1	32	31	Mag-STD
FC12/2	Circline Fluorescent	Fluorescent, (2) 12" circular lamps, RS ballast	2	32	62	Mag-STD

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
FC32	Circline Fluorescent	Fluorescent, Circline, (1) 32W lamp, preheat ballast	1	32	40	Mag-STD
FC16/1	Circline Fluorescent	Fluorescent, (1) 16" circular lamp	1	40	35	Mag-STD
FC40	Circline Fluorescent	Fluorescent, Circline, (1) 32W lamp, preheat ballast	1	32	42	Mag-STD
FEI40/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 40W lamp	1	40	44	Electronic
FEI55/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 55W lamp	1	55	59	Electronic
FEI70/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 70W lamp	1	70	74	Electronic
FEI80/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 80W lamp	1	80	84	Electronic
FEI85/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 85W lamp	1	85	89	Electronic
FEI100/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 100W lamp	1	100	105	Electronic
FEI125/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 125W lamp	1	125	131	Electronic
FEI150/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 150W lamp	1	150	157	Electronic
FEI165/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 165W lamp	1	165	173	Electronic
FEI200/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 200W lamp	1	200	210	Electronic
FEI250/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 250W lamp	1	250	263	Electronic
FEI300/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 300W lamp	1	300	315	Electronic
FEI400/1	Electrodeless Induction Fluorescent	Electrodeless Fluorescent System, (1) 400W lamp	1	400	420	Electronic
FU1ILL	U-Tube Fluorescent	Fluorescent, (1) U-Tube, T-8 lamp, Instant Start ballast	1	32	31	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
FU1LL	U-Tube Fluorescent	Fluorescent, (1) U-Tube, T-8 lamp	1	32	32	Electronic
FU1LL-R	U-Tube Fluorescent	Fluorescent, (1) U-Tube, T-8 lamp, RLO (BF < 0.85)	1	31	27	Electronic
FU2ILL	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast	2	32	59	Electronic
FU2ILL-H	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start HLO Ballast	2	32	65	Electronic
FU2ILL-R	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start RLO Ballast	2	32	52	Electronic
FU2ILL/T4	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast, Tandem 4-lamp ballast	2	32	56	Electronic
FU2ILL/T4-R	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps, Instant Start Ballast, RLO, Tandem 4-lamp ballast	2	32	49	Electronic
FU2LL	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps	2	32	60	Electronic
FU2LL-R	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps, RLO (BF< 0.85)	2	31	54	Electronic
FU2LL/T2	U-Tube Fluorescent	Fluorescent, (2) U-Tube, T-8 lamps, Tandem 4- lamp ballast	2	32	59	Electronic
FU3ILL	U-Tube Fluorescent	Fluorescent, (3) U-Tube, T-8 lamps, Instant Start Ballast	3	32	89	Electronic
FU3ILL-R	U-Tube Fluorescent	Fluorescent, (3) U-Tube, T-8 lamps, Instant Start RLO Ballast	3	32	78	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
FU1ILU	U-Tube Fluorescent	Fluorescent, (1) 6" spacing U-Tube, T-8 lamp, IS Ballast, NLO (0.85 < BF < 0.95)	1	32	29	Prem. Elec.
FU1ILU-H	U-Tube Fluorescent	Fluorescent, (1) 6" spacing U-Tube, T-8 lamp, IS Ballast, HLO (.95 < BF < 1.1)	1	32	34	Prem. Elec.
FU2ILU	U-Tube Fluorescent	Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, NLO (0.85 < BF < 0.95)	2	32	55	Prem. Elec.
FU2ILU-R	U-Tube Fluorescent	Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, RLO (BF < 0.85)	2	32	48	Prem. Elec.
FU2ILU-V	U-Tube Fluorescent	Fluorescent, (2) 6" spacing U-Tube, T-8 lamps, IS Ballast, VHLO (BF > 1.1)	2	32	73	Prem. Elec.
FU3ILU	U-Tube Fluorescent	Fluorescent, (3) 6" spacing U-Tube, T-8 lamps, IS Ballast, NLO (0.85 < BF < 0.95)	3	32	81	Prem. Elec.
FU3ILU-R	U-Tube Fluorescent	Fluorescent, (3) 6" spacing U-Tube, T-8 lamps, IS Ballast, RLO (BF < 0.85)	3	32	73	Prem. Elec.
FU1T12	U-Tube Fluorescent	Fluorescent, (1) U-Tube T12 lamp (T8 Baseline)	1	32	32	Mag/Elec
FU2T12	U-Tube Fluorescent	Fluorescent, (2) U-Tube T12 lamps (T8 Baseline)	2	32	60	Mag/Elec
FU3T12	U-Tube Fluorescent	Fluorescent, (3) U-Tube T12 lamps (T8 Baseline)	3	32	89	Mag/Elec
FU1SE	U-Tube Fluorescent	Fluorescent, (1) U-Tube, STD lamp	1	40	43	Mag-ES
FU1SS	U-Tube Fluorescent	Fluorescent, (1) U-Tube, ES lamp	1	40	43	Mag-STD
FU2SE	U-Tube Fluorescent	Fluorescent, (2) U-Tube, STD lamps	2	40	72	Mag-ES
FU2SL	U-Tube Fluorescent	Fluorescent (2) 48" U-bent Standard lamps, Electronic ballast, NLO (0.85 < BF < 0.95)	2	40	63	Electronic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
FU2SS	U-Tube Fluorescent	Fluorescent, (1) U-Tube, STD lamp, STD Mag Ballast	2	40	72	Mag-STD
FU3SE	U-Tube Fluorescent	Fluorescent, (3) U-Tube, STD lamp	3	40	115	Mag-ES
FU1EE	U-Tube Fluorescent	Fluorescent, (1) U-Tube, ES lamp	1	35	43	Mag-ES
FU1ES	U-Tube Fluorescent	Fluorescent, (1) U-Tube, ES Lamp	1	34	43	Mag-STD
FU2EE	U-Tube Fluorescent	Fluorescent, (2) U-Tube, ES lamp	2	35	72	Mag-ES
FU2EL	U-Tube Fluorescent	Fluorescent (2) 48" U-bent ES lamp, Electronic ballast, NLO (0.85 < BF < 0.95)	2	34	63	Electronic
FU2ES	U-Tube Fluorescent	Fluorescent, (2) U-Tube, ES lamp	1	35	72	Mag-STD
FU3EE	U-Tube Fluorescent	Fluorescent, (3) U-Tube, ES lamp	3	35	115	Mag-ES
H20/1	Halogen	Halogen, (1) 20W lamp	1	20	20	NA
H21/1	Halogen	Halogen, (1) 21W lamp	1	21	21	NA
H22/1	Halogen	Halogen, (1) 22W lamp	1	22	22	NA
H23/1	Halogen	Halogen, (1) 23W lamp	1	23	23	NA
H24/1	Halogen	Halogen, (1) 24W lamp	1	24	24	NA
H25/1	Halogen	Halogen, (1) 25W lamp	1	25	25	NA
H26/1	Halogen	Halogen, (1) 26W lamp	1	26	26	NA
H27/1	Halogen	Halogen, (1) 27W lamp	1	27	27	NA
H28/1	Halogen	Halogen, (1) 28W lamp	1	28	28	NA
H29/1	Halogen	Halogen, (1) 29W lamp	1	29	29	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
H30/1	Halogen	Halogen, (1) 30W lamp	1	30	30	NA
H31/1	Halogen	Halogen, (1) 31W lamp	1	31	31	NA
H32/1	Halogen	Halogen, (1) 32W lamp	1	32	32	NA
H33/1	Halogen	Halogen, (1) 33W lamp	1	33	33	NA
H34/1	Halogen	Halogen, (1) 34W lamp	1	34	34	NA
H35/1	Halogen	Halogen, (1) 35W lamp	1	35	35	NA
H36/1	Halogen	Halogen, (1) 36W lamp	1	36	36	NA
H37/1	Halogen	Halogen, (1) 37W lamp	1	37	37	NA
H38/1	Halogen	Halogen, (1) 38W lamp	1	38	38	NA
H39/1	Halogen	Halogen, (1) 39W lamp	1	39	39	NA
H40/1	Halogen	Halogen, (1) 40W lamp	1	40	40	NA
H41/1	Halogen	Halogen, (1) 41W lamp	1	41	41	NA
H42/1	Halogen	Halogen, (1) 42W lamp	1	42	42	NA
H43/1	Halogen	Halogen, (1) 43W lamp	1	43	43	NA
H44/1	Halogen	Halogen, (1) 44W lamp	1	44	44	NA
H45/1	Halogen	Halogen, (1) 45W lamp	1	45	45	NA
H46/1	Halogen	Halogen, (1) 46W lamp	1	46	46	NA
H47/1	Halogen	Halogen, (1) 47W lamp	1	47	47	NA
H48/1	Halogen	Halogen, (1) 48W lamp	1	48	48	NA
H49/1	Halogen	Halogen, (1) 49W lamp	1	49	49	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
H50/1	Halogen	Halogen, (1) 50W lamp	1	50	50	NA
H51/1	Halogen	Halogen, (1) 51W lamp	1	51	51	NA
H52/1	Halogen	Halogen, (1) 52W lamp	1	52	52	NA
H53/1	Halogen	Halogen, (1) 53W lamp	1	53	53	NA
H54/1	Halogen	Halogen, (1) 54W lamp	1	54	54	NA
H55/1	Halogen	Halogen, (1) 55W lamp	1	55	55	NA
H56/1	Halogen	Halogen, (1) 56W lamp	1	56	56	NA
H57/1	Halogen	Halogen, (1) 57W lamp	1	57	57	NA
H58/1	Halogen	Halogen, (1) 58W lamp	1	58	58	NA
H59/1	Halogen	Halogen, (1) 59W lamp	1	59	59	NA
H60/1	Halogen	Halogen, (1) 60W lamp	1	60	60	NA
H61/1	Halogen	Halogen, (1) 61W lamp	1	61	61	NA
H62/1	Halogen	Halogen, (1) 62W lamp	1	62	62	NA
H63/1	Halogen	Halogen, (1) 63W lamp	1	63	63	NA
H64/1	Halogen	Halogen, (1) 64W lamp	1	64	64	NA
H65/1	Halogen	Halogen, (1) 65W lamp	1	65	65	NA
H66/1	Halogen	Halogen, (1) 66W lamp	1	66	66	NA
H67/1	Halogen	Halogen, (1) 67W lamp	1	67	67	NA
H68/1	Halogen	Halogen, (1) 68W lamp	1	68	68	NA
H69/1	Halogen	Halogen, (1) 69W lamp	1	69	69	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
H70/1	Halogen	Halogen, (1) 70W lamp	1	70	70	NA
H71/1	Halogen	Halogen, (1) 71W lamp	1	71	71	NA
H72/1	Halogen	Halogen, (1) 72W lamp	1	72	72	NA
H73/1	Halogen	Halogen, (1) 73W lamp	1	73	73	NA
H74/1	Halogen	Halogen, (1) 74W lamp	1	74	74	NA
H75/1	Halogen	Halogen, (1) 75W lamp	1	75	75	NA
H80/1	Halogen	Halogen, (1) 80W lamp	1	80	80	NA
H90/1	Halogen	Halogen, (1) 90W lamp	1	90	90	NA
H100/1	Halogen	Halogen, (1) 100W lamp	1	100	100	NA
H150/1	Halogen	Halogen, (1) 150W lamp	1	150	150	NA
H250/1	Halogen	Halogen, (1) 250W lamp	1	250	250	NA
H300/1	Halogen	Halogen, (1) 300W lamp	1	300	300	NA
H500/1	Halogen	Halogen, (1) 500W lamp	1	500	500	NA
I7.5/1	Incandescent	Tungsten exit light, (1) 7.5 W lamp, used in night light application	1	7.5	8	NA
I10/1	Incandescent	Incandescent, (1) 10W lamp	1	10	10	NA
I11/1	Incandescent	Incandescent, (1) 11W lamp	1	11	11	NA
I12/1	Incandescent	Incandescent, (1) 12W lamp	1	12	12	NA
I13/1	Incandescent	Incandescent, (1) 13W lamp	1	13	13	NA
I14/1	Incandescent	Incandescent, (1) 14W lamp	1	14	14	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
I15/1	Incandescent	Incandescent, (1) 15W lamp	1	15	15	NA
I16/1	Incandescent	Incandescent, (1) 16W lamp	1	16	16	NA
I17/1	Incandescent	Incandescent, (1) 17W lamp	1	17	17	NA
I18/1	Incandescent	Incandescent, (1) 18W lamp	1	18	18	NA
I19/1	Incandescent	Incandescent, (1) 19W lamp	1	19	19	NA
I20/1	Incandescent	Incandescent, (1) 20W lamp	1	20	20	NA
I21/1	Incandescent	Incandescent, (1) 21W lamp	1	21	21	NA
I22/1	Incandescent	Incandescent, (1) 22W lamp	1	22	22	NA
I23/1	Incandescent	Incandescent, (1) 23W lamp	1	23	23	NA
I24/1	Incandescent	Incandescent, (1) 24W lamp	1	24	24	NA
I25/1	Incandescent	Incandescent, (1) 25W lamp	1	25	25	NA
I26/1	Incandescent	Incandescent, (1) 26W lamp	1	26	26	NA
I27/1	Incandescent	Incandescent, (1) 27W lamp	1	27	27	NA
I28/1	Incandescent	Incandescent, (1) 28W lamp	1	28	28	NA
I29/1	Incandescent	Incandescent, (1) 29W lamp	1	29	29	NA
I30/1	Incandescent	Incandescent, (1) 30W lamp	1	30	30	NA
I31/1	Incandescent	Incandescent, (1) 31W lamp	1	31	31	NA
I32/1	Incandescent	Incandescent, (1) 32W lamp	1	32	32	NA
I33/1	Incandescent	Incandescent, (1) 33W lamp	1	33	33	NA
I34/1	Incandescent	Incandescent, (1) 34W lamp	1	34	34	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
I35/1	Incandescent	Incandescent, (1) 35W lamp	1	35	35	NA
I36/1	Incandescent	Incandescent, (1) 36W lamp	1	36	36	NA
I37/1	Incandescent	Incandescent, (1) 37W lamp	1	37	37	NA
I38/1	Incandescent	Incandescent, (1) 38W lamp	1	38	38	NA
I39/1	Incandescent	Incandescent, (1) 39W lamp	1	39	39	NA
I40/1	Incandescent	Incandescent, (1) 40W lamp – EISA Compliant	1	29	29	NA
I40S/1	Incandescent	Incandescent, (1) 40W lamp – Specialty	1	40	40	NA
I40E/1	Incandescent	Incandescent, (1) 40W ES lamp	1	34	34	NA
I40EL/1	Incandescent	Incandescent, (1) 40W ES/LL lamp	1	34	34	NA
I41/1	Incandescent	Incandescent, (1) 41W lamp	1	41	41	NA
I42/1	Incandescent	Incandescent, (1) 42W lamp	1	42	42	NA
I43/1	Incandescent	Incandescent, (1) 43W lamp	1	43	43	NA
I44/1	Incandescent	Incandescent, (1) 44W lamp	1	44	44	NA
I45/1	Incandescent	Incandescent, (1) 45W lamp	1	45	45	NA
I46/1	Incandescent	Incandescent, (1) 46W lamp	1	46	46	NA
I47/1	Incandescent	Incandescent, (1) 47W lamp	1	47	47	NA
I48/1	Incandescent	Incandescent, (1) 48W lamp	1	48	48	NA
I49/1	Incandescent	Incandescent, (1) 49W lamp	1	49	49	NA
I50/1	Incandescent	Incandescent, (1) 50W lamp	1	50	50	NA
I51/1	Incandescent	Incandescent, (1) 51W lamp	1	51	51	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
I52/1	Incandescent	Incandescent, (1) 52W lamp	1	52	52	NA
I53/1	Incandescent	Incandescent, (1) 53W lamp	1	53	53	NA
I54/1	Incandescent	Incandescent, (1) 54W lamp	1	54	54	NA
I55/1	Incandescent	Incandescent, (1) 55W lamp	1	55	55	NA
I56/1	Incandescent	Incandescent, (1) 56W lamp	1	56	56	NA
I57/1	Incandescent	Incandescent, (1) 57W lamp	1	57	57	NA
I58/1	Incandescent	Incandescent, (1) 58W lamp	1	58	58	NA
I59/1	Incandescent	Incandescent, (1) 59W lamp	1	59	59	NA
I60/1	Incandescent	Incandescent, (1) 60W lamp – EISA Compliant	1	43	43	NA
I60S/1	Incandescent	Incandescent, (1) 60W lamp – Specialty	1	60	60	NA
I60E/1	Incandescent	Incandescent, (1) 60W ES lamp	1	52	52	NA
I60EL/1	Incandescent	Incandescent, (1) 60W ES/LL lamp	1	52	52	NA
I61/1	Incandescent	Incandescent, (1) 61W lamp	1	61	61	NA
I62/1	Incandescent	Incandescent, (1) 62W lamp	1	62	62	NA
I63/1	Incandescent	Incandescent, (1) 63W lamp	1	63	63	NA
I64/1	Incandescent	Incandescent, (1) 64W lamp	1	64	64	NA
I65/1	Incandescent	Incandescent, (1) 65W lamp	1	65	65	NA
I66/1	Incandescent	Incandescent, (1) 66W lamp	1	66	66	NA
I67/1	Incandescent	Incandescent, (1) 67W lamp	1	67	67	NA
I68/1	Incandescent	Incandescent, (1) 68W lamp	1	68	68	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
I69/1	Incandescent	Incandescent, (1) 69W lamp	1	69	69	NA
I70/1	Incandescent	Incandescent, (1) 70W lamp	1	70	70	NA
I71/1	Incandescent	Incandescent, (1) 71W lamp	1	71	71	NA
I72/1	Incandescent	Incandescent, (1) 72W lamp	1	72	72	NA
I73/1	Incandescent	Incandescent, (1) 73W lamp	1	73	73	NA
I74/1	Incandescent	Incandescent, (1) 74W lamp	1	74	74	NA
I75/1	Incandescent	Incandescent, (1) 75W lamp – EISA Compliant	1	53	53	NA
I75S/1	Incandescent	Incandescent, (1) 75W lamp – Specialty	1	75	75	NA
I75E/1	Incandescent	Incandescent, (1) 75W ES lamp	1	67	67	NA
I75EL/1	Incandescent	Incandescent, (1) 75W ES/LL lamp	1	67	67	NA
I80/1	Incandescent	Incandescent, (1) 80W lamp	1	80	80	NA
I85/1	Incandescent	Incandescent, (1) 85W lamp	1	85	85	NA
I90/1	Incandescent	Incandescent, (1) 90W lamp	1	90	90	NA
I93/1	Incandescent	Incandescent, (1) 93W lamp	1	93	93	NA
I95/1	Incandescent	Incandescent, (1) 95W lamp	1	95	95	NA
I100/1	Incandescent	Incandescent, (1) 100W lamp – EISA Compliant	1	72	72	NA
I100S/1	Incandescent	Incandescent, (1) 100W lamp – Specialty	1	100	100	NA
I100E/1	Incandescent	Incandescent, (1) 100W ES lamp	1	90	90	NA
I100EL/1	Incandescent	Incandescent, (1) 100W ES/LL lamp	1	90	90	NA
I110/1	Incandescent	Incandescent, (1) 110W lamp	1	110	110	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
I116/1	Incandescent	Incandescent, (1) 116W lamp	1	116	116	NA
I120/1	Incandescent	Incandescent, (1) 120W lamp	1	120	120	NA
I125/1	Incandescent	Incandescent, (1) 125W lamp	1	125	125	NA
I130/1	Incandescent	Incandescent, (1) 130W lamp	1	130	130	NA
I135/1	Incandescent	Incandescent, (1) 135W lamp	1	135	135	NA
I150/1	Incandescent	Incandescent, (1) 150W lamp	1	150	150	NA
I150E/1	Incandescent	Incandescent, (1) 150W ES lamp	1	135	135	NA
I150EL/1	Incandescent	Incandescent, (1) 150W ES/LL lamp	1	135	135	NA
I160/1	Incandescent	Incandescent, (1) 160W lamp	1	160	160	NA
I170/1	Incandescent	Incandescent, (1) 170W lamp	1	170	170	NA
I200/1	Incandescent	Incandescent, (1) 200W lamp	1	200	200	NA
I200L/1	Incandescent	Incandescent, (1) 200W LL lamp	1	200	200	NA
I250/1	Incandescent	Incandescent, (1) 250W lamp	1	250	250	NA
I300/1	Incandescent	Incandescent, (1) 300W lamp	1	300	300	NA
I400/1	Incandescent	Incandescent, (1) 400W lamp	1	400	400	NA
I448/1	Incandescent	Incandescent, (1) 448W lamp	1	448	448	NA
I500/1	Incandescent	Incandescent, (1) 500W lamp	1	500	500	NA
I750/1	Incandescent	Incandescent, (1) 750W lamp	1	750	750	NA
I1000/1	Incandescent	Incandescent, (1) 1000W lamp	1	1000	1000	NA
I1500/1	Incandescent	Incandescent, (1) 1500W lamp	1	1500	1500	NA

Arkansas TRM Version 10.0 Vol. 3

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
I2000/1	Incandescent	Incandescent, (1) 2000W lamp	1	2000	2000	NA
HPS35/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 35W lamp	1	35	46	NA
HPS50/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 50W lamp	1	50	66	NA
HPS70/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 70W lamp	1	70	95	NA
HPS100/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 100W lamp	1	100	138	NA
HPS150/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 150W lamp	1	150	188	NA
HPS200/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 200W lamp	1	200	250	NA
HPS250/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 250W lamp	1	250	295	NA
HPS310/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 310W lamp	1	310	365	NA
HPS360/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 360W lamp	1	360	414	NA
HPS400/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 400W lamp	1	400	465	NA
HPS1000/1	High Intensity Discharge (HID)	High Pressure Sodium, (1) 1000W lamp	1	1000	1100	NA
MH20/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 20W lamp	1	20	23	Electronic
MH22/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 22W lamp	1	22	26	Electronic
MH32/1	High Intensity Discharge (HID)	Metal Halide, (1) 32W lamp, Magnetic ballast	1	32	42	Magnetic
MH39/1	High Intensity Discharge (HID)	Metal Halide, (1) 39W lamp, Magnetic ballast	1	39	51	Magnetic
MH39/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 39W lamp	1	39	44	Electronic
MH50/1	High Intensity Discharge (HID)	Metal Halide, (1) 50W lamp, Magnetic ballast	1	50	64	Magnetic
MH50/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 50W lamp	1	50	56	Electronic
MH70/1	High Intensity Discharge (HID)	Metal Halide, (1) 70W lamp, Magnetic ballast	1	70	91	Magnetic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
MH70/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 70W lamp	1	70	78	Electronic
MH100/1	High Intensity Discharge (HID)	Metal Halide, (1) 100W lamp, Magnetic ballast	1	100	124	Magnetic
MH100/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 100W lamp	1	100	108	Electronic
MH125/1	High Intensity Discharge (HID)	Metal Halide, (1) 125W lamp, Magnetic ballast	1	125	148	Magnetic
MH150/1	High Intensity Discharge (HID)	Metal Halide, (1) 150W lamp, Magnetic ballast	1	150	183	Magnetic
MH150/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 150W lamp	1	150	163	Electronic
MH175/1	High Intensity Discharge (HID)	Metal Halide, (1) 175W lamp, Magnetic ballast	1	175	208	Magnetic
MH175/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 175W lamp	1	175	196	Electronic
MH200/1	High Intensity Discharge (HID)	Metal Halide, (1) 200W lamp, Magnetic ballast	1	200	228	Magnetic
MH200/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 200W lamp	1	200	219	Electronic
MH250/1	High Intensity Discharge (HID)	Metal Halide, (1) 250W lamp, Magnetic ballast	1	250	288	Magnetic
MH250/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 250W lamp	1	250	275	Electronic
MH320/1	High Intensity Discharge (HID)	Metal Halide, (1) 320W lamp, Magnetic ballast	1	320	362	Magnetic
MH320/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 320W lamp	1	320	343	Electronic
MH350/1	High Intensity Discharge (HID)	Metal Halide, (1) 350W lamp, Magnetic ballast	1	350	391	Magnetic
MH350/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 350W lamp	1	350	375	Electronic
MH360/1	High Intensity Discharge (HID)	Metal Halide, (1) 360W lamp, Magnetic ballast	1	360	418	Magnetic
MH400/1	High Intensity Discharge (HID)	Metal Halide, (1) 400W lamp, Magnetic ballast	1	400	453	Magnetic
MH400/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 400W lamp	1	400	429	Electronic
MH450/1	High Intensity Discharge (HID)	Metal Halide, (1) 450W lamp, Magnetic ballast	1	450	499	Magnetic

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
MH450/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 450W lamp	1	450	486	Electronic
MH575/1	High Intensity Discharge (HID)	Metal Halide, (1) 575W lamp, Magnetic ballast	1	575	630	Magnetic
MH750/1	High Intensity Discharge (HID)	Metal Halide, (1) 750W lamp, Magnetic ballast	1	750	812	Magnetic
MH775/1	High Intensity Discharge (HID)	Metal Halide, (1) 775W lamp, Magnetic ballast	1	775	843	Magnetic
MH875/1	High Intensity Discharge (HID)	Metal Halide, (1) 875W lamp	1	875	939	Magnetic
MH1000/1	High Intensity Discharge (HID)	Metal Halide, (1) 1000W lamp, Magnetic ballast	1	1000	1078	Magnetic
MH1000/1-L	High Intensity Discharge (HID)	Metal Halide, (1) 1000W lamp	1	1000	1067	Electronic
MH1500/1	High Intensity Discharge (HID)	Metal Halide, (1) 1500W lamp, Magnetic ballast	1	1500	1605	Magnetic
MH1650/1	High Intensity Discharge (HID)	Metal Halide, (1) 1650W lamp	1	1650	1765	Magnetic
MH2000/1	High Intensity Discharge (HID)	Metal Halide, (1) 2000W lamp	1	2000	2140	Magnetic
MV40/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 40W lamp	1	40	50	NA
MV50/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 50W lamp	1	50	74	NA
MV75/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 75W lamp	1	75	93	NA
MV100/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 100W lamp	1	100	125	NA
MV160/1	High Intensity Discharge (HID)	Mercury Vapor, Self-Ballasted, (1) 160W self- ballasted lamp	1	160	160	NA
MV175/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 175W lamp	1	175	205	NA
MV250/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 250W lamp	1	250	290	NA
MV400/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 400W lamp	1	400	455	NA
MV700/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 700W lamp	1	700	780	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
MV1000/1	High Intensity Discharge (HID)	Mercury Vapor, (1) 1000W lamp	1	1000	1075	NA
NEONEPH	Modular CFL and CCFL Fixtures	NEON E (lectonic ballast) P(edestrian) H(and)	1	26	26	NA
NEONEPP	Modular CFL and CCFL Fixtures	NEON E (lectonic ballast) P(edestrian) P(erson)	1	26	26	NA
NEONMPDW	Modular CFL and CCFL Fixtures	NEON M (agnetic transformer) P(edestrian) D(on't)W(alk)	1	81	81	NA
NEONMPH	Modular CFL and CCFL Fixtures	NEON M (agnetic transformer) P(edestrian) H(and)	1	45	45	NA
NEONMPP	Modular CFL and CCFL Fixtures	NEON M (agnetic transformer) P(edestrian) P(erson)	1	38	38	NA
TI12RB	Incandescent Traffic Signal	12" Red Incandescent Ball	1	149	149	NA
TI12YB	Incandescent Traffic Signal	12" Yellow Incandescent Ball	1	149	149	NA
TI12GB	Incandescent Traffic Signal	12" Green Incandescent Ball	1	149	149	NA
TI8RB	Incandescent Traffic Signal	8" Red Incandescent Ball	1	86	86	NA
TI8YB	Incandescent Traffic Signal	8" Yellow Incandescent Ball	1	86	86	NA
TI8GB	Incandescent Traffic Signal	8" Green Incandescent Ball	1	86	86	NA
TI12RA	Incandescent Traffic Signal	12" Red Incandescent Arrow	1	128	128	NA
TI12YA	Incandescent Traffic Signal	12" Yellow Incandescent Arrow	1	128	128	NA
TI12GA	Incandescent Traffic Signal	12" Green Incandescent Arrow	1	128	128	NA
TILPEDCT	Incandescent Traffic Signal	Large (16" x 18") Incandescent Pedestrian Signal with Countdown	1	149	149	NA

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
TISMPEDCT	Incandescent Traffic Signal	Small (12" x 12") Incandescent Pedestrian Signal with Countdown1107		107	107	NA
TILGPED	Incandescent Traffic Signal	Large (16" x 18") Incandescent Pedestrian Signal without Countdown	1	116	116	NA
TISMPED	Incandescent Traffic Signal	Small (12" x 12") Incandescent Pedestrian Signal without Countdown	1	68	68	NA
TLED12RB	LED Traffic Signal	12" Red LED Ball	1	9	9	NA
TLED12YB	LED Traffic Signal	12" Yellow LED Ball	1	17	17	NA
TLED12GB	LED Traffic Signal	12" Green LED Ball	1	11	11	NA
TLED8RB	LED Traffic Signal	8" Red LED Ball	1	6	6	NA
TLED8YB	LED Traffic Signal	8" Yellow LED Ball	1	12	12	NA
TLED8GB	LED Traffic Signal	8" Green LED Ball	1	6	6	NA
TLED12RA	LED Traffic Signal	12" Red LED Arrow	1	5	5	NA
TLED12YA	LED Traffic Signal	12" Yellow LED Arrow	1	8	8	NA
TLED12GA	LED Traffic Signal	12" Green LED Arrow	1	5	5	NA
TLEDLPEDCT	LED Traffic Signal	Large (16" x 18") LED Pedestrian Signal with Countdown	1	17	17	NA
TLEDSMPEDC T	LED Traffic Signal	Small (12" x 12") LED Pedestrian Signal with Countdown	1	10	10	NA
TLEDLGPED	LED Traffic Signal	Large (16" x 18") LED Pedestrian Signal without Countdown	1	6	6	NA

Arkansas TRM Version 10.0 Vol. 3

FIXTURE CODE	LAMP TYPE	DESCRIPTION	LAMP / FIXT	WATT / LAMP	WATT / FIXT	BALLAST
TLEDSMPED	LED Traffic Signal	Small (12" x 12") LED Pedestrian Signal without Countdown	1	5	5	NA
Removed	Removed	Fixture completely removed from service	0	0	0	NA

Appendix F: Lighting Power Densities

Building Area Type	Entire Building LPD (W/ft ²)
Automotive Facility	0.9
Convention Center	1.2
Courthouse	1.2
Dining: Bar Lounge/Leisure	1.3
Dining: Cafeteria/Fast Food	1.4
Dining: Family	1.6
Dormitory	1.0
Exercise Center	1.0
Gymnasium	1.1
Health-Care Clinic	1.0
Hospital	1.2
Hotel	1.0
Library	1.3
Manufacturing Facility	1.3
Motel	1.0
Motion Picture Theater	1.2
Multifamily	0.7
Museum	1.1
Office	1.0
Parking Garage	0.3
Penitentiary	1.0
Performing Arts Theater	1.6
Police/Fire Station	1.0
Post Office	1.1
Religious Building	1.3
Retail	1.5
School/University	1.2

 Table F1: ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Building Area Method¹⁴

¹⁴ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.5.1

Building Area Type	Entire Building LPD (W/ft ²)
Sports Arena	1.1
Town Hall	1.1
Transportation	1.0
Warehouse	0.8
Workshop	1.4

Table F2: ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Space-by-Space Method by Space
Types ¹⁵

Common Space Types ¹⁶	LPD (W/ft ²)
Office—Enclosed	1.1
Office—Open Plan	1.1
Conference/Meeting/Multipurpose	1.3
Classroom/Lecture/Training	1.4
For Penitentiary	1.3
Lobby	1.3
For Hotel	1.1
For Performing Arts Center	3.3
For Motion Picture Theater	1.1
Audiences/Seating Area	0.9
For Gymnasium	0.4
For Exercise Center	0.3
Audiences/Seating Area (Continued)	0.9
For Convention Center	0.7
For Penitentiary	0.7
For Religious Building	1.7
For Sports Arena	0.4
For Performing Arts Theater	2.6
For Motion Picture Theater	1.2
For Transportation	0.5
Atrium—First Three Floors	0.6
Atrium—Each Additional Floor	0.2
Lounge/Recreation	1.2
For Hospital	0.8

¹⁵ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.6.1

¹⁶ In cases where both a common space type and a building-specific space type are listed, the building-specific space type shall apply.

Common Space Types ¹⁶	LPD (W/ft ²)
Dining Area	0.9
For Penitentiary	1.3
For Hotel	1.3
For Motel	1.2
For Bar Lounge/Leisure Dining	1.4
For Family Dining	2.1
Food Preparation	1.2
Laboratory	1.4
Restrooms	0.9
Dressing/Locker/Fitting Room	0.6
Corridor/Transition	0.5
For Hospital	1.0
For Manufacturing Facility	0.5
Stairs—Active	0.6
Active Storage	0.8
For Hospital	0.9
Inactive Storage	0.3
For Museum	0.8
Electrical/Mechanical	1.5
Workshop	1.9
Sales Area (for accent lighting)	1.7

Building-Specific Space Types ¹⁸	LPD (W/ft ²)
Gymnasium/Exercise Center	
Playing Area	1.4
Exercise Area	0.9
Courthouse/Police Station/Penitentiary	
Courtroom	1.9
Confinement Cells	0.9
Judges' Chambers	1.3
Fire Stations	
Engine Room	0.8
Sleeping Quarters	0.3
Post Office—Sorting Area	1.2
Convention Center—Exhibit Space	1.3
Library	
Card File and Cataloging	1.1
Stacks	1.7
Reading Area	1.2
Hospital	
Emergency	2.7
Recovery	0.8
Nurses' Station	1.0
Exam/Treatment	1.5
Pharmacy	1.2
Patient Room	0.7
Operating Room	2.2
Nursery	0.6
Medical Supply	1.4
Physical Therapy	0.9
Radiology	0.4
Laundry—Washing	0.6
Automotive—Service/Repair	0.7
Manufacturing	
Low Bay (< 25 ft. Floor to Ceiling Height)	1.2

 Table F3: ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Space-by-Space Method by

 Building-Specific Space Types¹⁷

¹⁷ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.6.1

¹⁸ In cases where both a common space type and a building-specific space type are listed, the building-specific space type shall apply.

Building-Specific Space Types ¹⁸	LPD (W/ft ²)
Manufacturing (Continued)	
High Bay (\geq 25 ft. Floor to Ceiling Height)	1.7
Detailed Manufacturing	2.1
Equipment Room	1.2
Control Room	0.5
Hotel/Motel Guest Rooms	1.1
Dormitory—Living Quarters	1.1
Museum	
General Exhibition	1.0
Restoration	1.7
Bank/Office—Banking Activity Area	1.5
Religious Building	
Worship Pulpit, Choir	2.4
Fellowship Hall	0.9
Retail	
Sales Area (for accent lighting)	1.7
Mall Concourse	1.7
Sports Arena	
Ring Sports Area	2.7
Court Sports Area	2.3
Indoor Playing Field Area	1.4
Warehouse	
Fine Material Storage	1.4
Medium/Bulky Material Storage	0.9
Parking Garage—Garage Area	0.2
Transportation	
Airport—Concourse	0.6
Air/Train/Bus—Baggage Area	1.0
Terminal—Ticket Counter	1.5

Tradable/ Nontradable	Exterior Space Type	LPD
	Uncovered Parking Areas Parking lots and drives	0.15 W/ft ²
	Building Grounds Walkways < 10 ft. wide Walkways ≥ 10 ft. wide, Plaza areas, and Special feature areas Stairways	1.0 W/linear ft. 0.2 W/ft ² 1.0 W/ft ²
Tradable Surfaces	Building Entrances and Exits Main entries Other doors	30 W/linear ft. (of door width) 20 W/linear ft. (of door width)
	Canopies and Overhangs Canopies (free standing, attached, & overhangs)	1.25 W/ft ²
	Outdoor Sales Open areas (including vehicle sales lots) Street frontage for vehicle sales lots (in addition to above)	0.5 W/ft ² 20 W/linear ft.
	Building Facades For each illuminated wall or surface OR For each illuminated wall or surface length	0.2 W/ft ² 5.0 W/linear ft.
	Automated Teller Machines and Night Depositories Per location Per additional ATM per location	270 W 90 W
Nontradable Surfaces	Entrances and Gatehouse Inspection Stations at Guarded Facilities Uncovered areas (for covered areas use Canopies/Overhangs)	1.25 W/ft ²
	Loading Areas for Emergency Service Vehicles Uncovered areas (for covered areas use Canopies/Overhangs)	0.5 W/ft ²
	Drive-up Windows at Fast Food Restaurants Per drive-through	400 W
	Parking Near 24-hour Retail Entrances Per main entry	800 W

Table F4: ASHRAE 90.1-2007 Lighting Power Densities (LPD) – Building Exteriors¹⁹

¹⁹ ANSI/ASHRAE/IESNA Standard 90.1-2007, Table 9.4.5

Appendix G: Estimation of Gas Peak Day Savings

Typical Meteorological Year (TMY) data used in building simulation models to estimate energy savings for certain measures in the TRM are not appropriate for estimating peak day gas savings consistent with gas utility capacity planning procedures. TMY datasets are drawn from the past 15-30 years of weather data, with months selected to represent the most typical conditions seen in the recent historical record for the weather station for which the TMY series is being developed. The "typical month" format of TMY data includes commonly observed temperature and wind extremes, whereas utility gas planning models identify "peak days" by applying the most extreme temperature and wind conditions observed over the past 25 to 30 years.

For those measures for which energy savings have been estimated using building simulation models, peak day gas savings are estimated using a regression analysis that relates the daily gas savings predicted by the simulation models to the more extreme conditions that drive gas utility capacity planning. Simulations performed for early versions of the TRM relied on TMY2 data: measures incorporated later, or updated in subsequent versions of the TRM, have been simulated using TMY3 data. The regression approach used to estimate gas savings under peak day conditions is independent of the source of TMY data used in simulation.

Overview

The regression analysis relates model-estimated daily gas savings for a given energy efficiency measure to weather conditions on that day in the TMY data used in the simulation that produced the savings estimates. The regression is performed for each measure in each weather zone: the peak gas savings due to each measure on a 25 or 30-year peak day are then estimated by extrapolating from the derived relationship.

Time series of hourly heating degree days (HDD) and average daily wind speeds (W) were constructed from the TMY files for each weather zone. The heating degree days (HDD) were found by subtracting the daily average temperature (in degrees Fahrenheit) from 65° F. (All days with an average temperature above 65° F were assigned an HDD of 0.) The hourly gas savings for each measure in each weather zone are summed for each day to give daily total gas savings (G).

Regression

It was found that daily gas savings are typically well described as a quadratic function in the two variables, heating degree days (HDD) and daily average wind speed (W):

$$G = A \times HDD + B \times HDD^{2} + C \times W + D \times W^{2} + E \times HDD \times W + F$$

(1)

The coefficients A, B, C, D, E, and F are found using Microsoft Excel's Regression tool with a Y-input of G and X-inputs of HDD, HDD^2 , W, W^2 , and $HDD \times W$. Only data points from days on which the average temperature in the TMY data was below 65° F, i.e., only data points from days with HDD>0, were used in the regression.

Once the coefficients have been estimated for a given measure in a given weather zone, Equation 1 is used to calculate the predicted daily gas savings for that measure by applying the estimated coefficients to the HDD and average wind speed of the 25- or 30-year peak day for that weather zone. The peak day HDD and wind speed values, as supplied by the gas utilities, are provided in Table G1, below. For Zone 8, three different peak days were provided, two of which did not specify an average wind speed. The average of daily wind speeds for days with HDD > 0 in the TMY data was used to calculate the predicted gas savings for those two peak days.

Zon e	Region	Gas Company	Day	Years Hist.	HDD	AVG. Wind Speed (knots)	City
9	Norther n	Black Hills	12/25/1983	25	71	12	Fayetteville ²⁰
8	NE/NC	Black Hills	12/22/1989	25	63	14	Blytheville
8	NE/NC	AOG	12/24/1983	25	61	7	Fort Smith
8	NE/NC	СР	12/22/1989	30	63	7	Jonesboro
7	Central	СР	12/24/1983	30	59	14	Little Rock - Adams Field
6	South	СР	12/25/1983	30	56	7	El Dorado

Table G1: Design Day Weather Conditions for Arkansas Gas Utilities

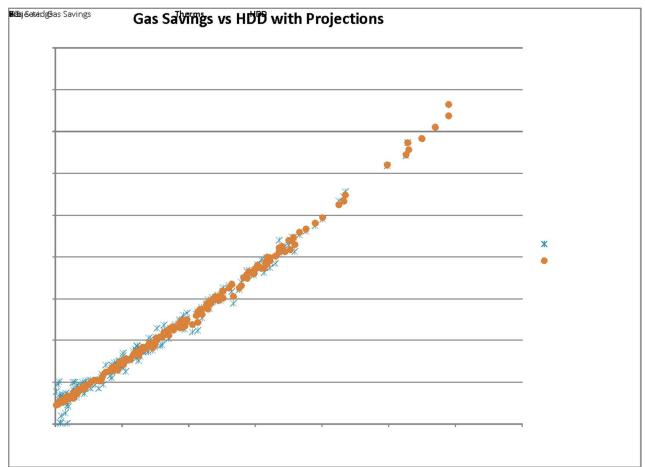
Example:

Using the simulation model outputs and weather data for the wall insulation measure in Zone 6, the regression described above produces the values A = 0.048, B = 0.00013, C = 0.013, D = -0.00067, E = 0.0014, and F = 0.23. The predicted peak day gas savings are calculated, using 56 for HDD and 7 for the wind speed (from the table), as:

 $G = 0.048 \times 56 + 0.00013 \times 56^{2} + 0.013 \times 7 - 0.00067 \times 7^{2} + 0.0014 \times 56 \times 7 + 0.23$ = 3.93

The peak day gas savings (G) are then divided by the wall area to give the value reported in the deemed savings report. (The peak gas savings for wall insulation is reported in therms per square foot. The wall area used in the calculation is 952 square feet, so the reported value is 3.93/952 = 0.00413.)

The relationships found using this method were very good in most cases. The coefficient of determination, R^2 , which gives the fraction of the variability in the data that is accounted for by the derived relationship, is a good indicator of the reliability of the predictions made with this relationship. The regressions for most modeled measures had coefficients of determination above 0.5, indicating that the majority of the variability in the data was described by the specified explanatory variables.²¹


To illustrate how the coefficient of determination relates to the reliability of the fit, a graph of daily gas savings versus heating degree days is provided in Figure G1 for the wall insulation measure in Zone 7. It shows the daily savings as estimated by the building simulation model (indicated as an 'x' in the figures)

²⁰ Consistent with Table 1: Arkansas Weather Zones and Design Weather Data, data for Rogers is taken from Fayetteville as data specific to Rogers are not available.

²¹ An alternate method was used to establish peak day gas savings for those measures for which the regression fits were not good (R-squared coefficient below 0.5). It is discussed in the last section of this appendix.

and the projected savings according to the derived regression relationship (indicated as a dot $[\bullet]$). The projected savings are shown for those days used in the simulations as well as for the relevant gas utilities' design day weather conditions from Table G1.

For relationships with coefficients of determination very close to the number 1, the calculated points lie very close to the projected points. For the lower coefficients of determination, there is more noticeable error, but the projections still reasonably reflect the general flow of the simulated values.

Figure G1: Gas Savings vs. HDD with Projections

Regression Results

Coefficients of determination and regression variable coefficients for the measures for which regression *models* have been used to estimate peak day gas savings are provided in the following tables.

Measure	Zone 6	Zone 7	Zone 8	Zone 9
Air Infiltration	0.988	0.995	0.994	0.995
R19 Attic Knee Wall	0.931	0.960	0.957	0.955
R30 Attic Knee Wall	0.930	0.960	0.957	0.955
R38 Ceiling Insulation (R0-1 Base)	0.878	0.924	0.907	0.967
R38 Ceiling Insulation (R2-4 Base)	0.864	0.918	0.865	0.962
R38 Ceiling Insulation (R5-8 Base)	0.864	0.887	0.907	0.959
R38 Ceiling Insulation (R9-14 Base)	0.861	0.857	0.704	0.958
R38 Ceiling Insulation (R15-22 Base)	0.784	0.75	0.592	0.953
R49 Ceiling Insulation (R0-1 Base)	0.939	0.965	0.961	0.951
R49 Ceiling Insulation (R2-4 Base)	0.931	0.959	0.955	0.943
R49 Ceiling Insulation (R5-8 Base)	0.928	0.956	0.952	0.939
R49 Ceiling Insulation (R9-14 Base)	0.924	0.954	0.948	0.937
R49 Ceiling Insulation (R15-22 Base)	0.91	0.946	0.941	0.926
Crawlspace Insulation	0.811	0.772	0.797	0.693
ENERGY STAR [®] Windows Double to Double	0.640	0.829	0.659	0.883
ENERGY STAR® Windows Single to Double	0.585	0.799	0.703	0.734
Gas Furnace Replacement ENERGY STAR®	0.906	0.936	0.939	0.95
Gas Furnace Replacement Federal Tax Credit	0.906	0.936	0.939	0.95
Gas Furnace Tune-Up	0.906	0.936	0.939	0.95
Radiant Barrier R12	0.53	0.649	0.387	0.706
Radiant Barrier R22	0.353	0.364	0.419	0.669
R19 Roof Deck Insulation (R0-1 Base)	0.948	0.974	0.970	0.964
R19 Roof Deck Insulation (R2-4 Base)	0.940	0.974	0.971	0.962
R19 Roof Deck Insulation (R5-8 Base)	0.928	0.973	0.971	0.959
R19 Roof Deck Insulation (R9-14 Base)	0.902	0.964	0.964	0.945
R19 Roof Deck Insulation R15-22 Base)	0.836	0.939	0.931	0.893
R38 Roof Deck Insulation (R0-1 Base)	0.943	0.971	0.967	0.959
R38 Roof Deck Insulation (R2-4 Base)	0.934	0.970	0.967	0.955
R38 Roof Deck Insulation (R5-8 Base)	0.925	0.970	0.967	0.953
R38 Roof Deck Insulation (R9-14 Base)	0.910	0.967	0.965	0.946
R38 Roof Deck Insulation (R15-22 Base)	0.875	0.956	0.955	0.923
R13 Wall Insulation	0.973	0.987	0.984	0.986
R23 Wall Insulation	0.973	0.987	0.984	0.953

Table G2: Coefficients of Determination (R²)

Appendix G: Estimation of Gas Peak Day Savings

Measure	Variable	Zone 6	Zone 7	Zone 8	Zone 9
	Intercept	0.32329	0.22621	0.35788	0.03526
	HDD	0.02374	0.0168	0.01793	0.02895
	HDD ²	0.00094	0.00086	0.00085	0.00076
Air Infiltration	AVG Wind Speed (knots)	-0.08053	-0.04536	-0.08976	-0.0249
•	(AVG Wind Speed) ²	0.00737	0.00424	0.00762	0.00315
	HDD x AVG Wind Speed	0.00206	0.00222	0.00174	0.00164
	Intercept	0.08138	0.05323	0.05827	0.00835
•	HDD	0.00828	0.00939	0.00833	0.01125
R19 Attic Knee	HDD ²	0.00003	0.00004	0.00002	0
Wall	AVG Wind Speed (knots)	-0.0065	-0.00171	-0.00141	0.00096
•	(AVG Wind Speed) ²	-0.00004	-0.00002	-0.00036	0.00005
•	HDD x AVG Wind Speed	0.00027	0.00005	0.00032	-0.00004
	Intercept	0.08597	0.05627	0.06148	0.0087
•	HDD	0.00878	0.00996	0.00884	0.01193
R30 Attic Knee	HDD ²	0.00003	0.00004	0.00002	0
Wall	AVG Wind Speed (knots)	-0.00678	-0.00178	-0.00143	0.00105
•	(AVG Wind Speed) ²	-0.00006	-0.00002	-0.00038	0.00006
	HDD x AVG Wind Speed	0.00029	0.00006	0.00034	-0.00004
	Intercept	0.34131	0.21702	0.38637	0.09136
	HDD	0.05137	0.04461	0.03967	0.11867
R38 Ceiling Insulation	HDD ²	0.00061	0.00098	0.00065	0.00022
(R0 - R1 Base)	AVG Wind Speed (knots)	-0.02309	0.00309	-0.04476	0.01446
	(AVG Wind Speed) ²	0.00071	-0.00064	-0.00022	0.0005
	HDD x AVG Wind Speed	-0.00068	-0.00043	0.00233	-0.00038
	Intercept	0.22286	0.20072	0.3533	0.05007
	HDD	0.03734	0.02676	0.03156	0.06961
R38 Ceiling Insulation	HDD ²	0.00028	0.00061	0.00037	0.00004
(R2 - R4 Base)	AVG Wind Speed (knots)	-0.0134	-0.00668	-0.07097	0.00678
	(AVG Wind Speed) ²	0.00029	-0.00031	0.00338	0.00038
	HDD x AVG Wind Speed	-0.00052	0.00017	0.00098	-0.0004
R38 Ceiling	Intercept	0.14271	0.17964	0.38637	0.03864
Insulation	HDD	0.02556	0.01796	0.03967	0.04265
(R5 - R8 Base)	HDD ²	0.00006	0.00029	0.00065	0

 Table G3: Regression Coefficients by Measure

Measure	Variable	Zone 6	Zone 7	Zone 8	Zone 9
	AVG Wind Speed (knots)	-0.01116	-0.01849	-0.04476	0.00252
	(AVG Wind Speed) ²	0.00025	0.00043	-0.00022	0.00031
	HDD x AVG Wind Speed	-0.0002	0.00046	0.00233	-0.00028
	Intercept	0.09739	0.09341	0.12369	0.03508
	HDD	0.01678	0.01352	0.01962	0.02586
R38 Ceiling	HDD ²	0	0.00012	0.00004	0
Insulation (R9 - R14 Base)	AVG Wind Speed (knots)	-0.00962	-0.00612	-0.03401	0.00015
	(AVG Wind Speed) ²	0.00031	-0.00023	0.00249	0.00025
	HDD x AVG Wind Speed	-0.00014	0.00041	-0.00049	-0.00016
	Intercept	0.04279	0.04859	0.08668	0.00844
	HDD	0.00868	0.00863	0.01317	0.01322
R38 Ceiling	HDD ²	-0.00001	0	-0.00004	-0.00001
Insulation (R15 - R22 Base)	AVG Wind Speed (knots)	-0.00279	-0.00507	-0.0308	0.00086
· · · · · · · · · · · · · · · · · · ·	(AVG Wind Speed) ²	0.00001	-0.0002	0.0021	0.0001
	HDD x AVG Wind Speed	-0.0002	0.00039	-0.00001	-0.00012
	Intercept	0.93274	0.61208	0.68316	0.30108
	HDD	0.08498	0.09868	0.08885	0.10599
R49 Ceiling	HDD ²	0.00048	0.00057	0.00031	0.00034
Insulation (R0 - R1 Base)	AVG Wind Speed (knots)	-0.06950	-0.01701	-0.02132	0.02937
· · · · ·	(AVG Wind Speed) ²	-0.00067	-0.00034	-0.00358	-0.00080
	HDD x AVG Wind Speed	0.00314	0.00069	0.00361	0.00057
	Intercept	0.52247	0.34253	0.38130	0.15285
	HDD	0.05212	0.05986	0.05431	0.06373
R49 Ceiling	HDD ²	0.00017	0.00023	0.00008	0.00010
Insulation (R2 - R4 Base)	AVG Wind Speed (knots)	-0.03786	-0.01060	-0.01322	0.02047
× ,	(AVG Wind Speed) ²	-0.00059	-0.00017	-0.00200	-0.00067
	HDD x AVG Wind Speed	0.00161	0.00022	0.00188	0.00013
	Intercept	0.33577	0.22763	0.24665	0.09643
	HDD	0.03364	0.03762	0.03472	0.04018
R49 Ceiling	HDD ²	0.00006	0.00011	0.00002	0.00004
Insulation (R5 - R8 Base)	AVG Wind Speed (knots)	-0.02689	-0.00996	-0.01144	0.01303
· · · · · ·	(AVG Wind Speed) ²	-0.00013	0.00004	-0.00104	-0.00046
	HDD x AVG Wind Speed	0.00095	0.00013	0.00110	0.00004
R49 Ceiling	Intercept	0.23309	0.16444	0.17140	0.07298

Measure	Variable	Zone 6	Zone 7	Zone 8	Zone 9
Insulation (R9 - R14 Base)	HDD	0.02162	0.02355	0.02227	0.02542
	HDD ²	0.00001	0.00006	0.00000	0.00002
	AVG Wind Speed (knots)	-0.02165	-0.00951	-0.01022	0.00696
	(AVG Wind Speed) ²	0.00022	0.00016	-0.00048	-0.00026
	HDD x AVG Wind Speed	0.00063	0.00013	0.00068	0.00004
	Intercept	0.11436	0.07803	0.08231	0.02982
	HDD	0.01210	0.01328	0.01239	0.01429
R49 Ceiling	HDD ²	0.00001	0.00003	-0.00001	0.00000
Insulation (R15 - R22 Base)	AVG Wind Speed (knots)	-0.00900	-0.00343	-0.00367	0.00493
	(AVG Wind Speed) ²	-0.00010	-0.00001	-0.00039	-0.00018
	HDD x AVG Wind Speed	0.00028	0.00002	0.00036	-0.00002
	Intercept	-0.07946	-0.27065	-0.20881	-0.06864
	HDD	0.04504	0.05127	0.05018	0.04351
Crawlspace	HDD ²	-0.00020	-0.00021	-0.00030	-0.00028
Insulation	AVG Wind Speed (knots)	0.06410	0.09567	0.08442	0.06301
	(AVG Wind Speed) ²	-0.00340	-0.00490	-0.00510	-0.00299
	HDD x AVG Wind Speed	-0.00155	-0.00273	-0.00170	-0.00187
	Intercept	-0.02108	-0.02894	0.00473	0.06349
ENEDCY	HDD	-0.00248	-0.00174	-0.00062	-0.00767
ENERGY STAR®	HDD ²	0.00021	0.00035	0.00017	0.00038
Windows Double	AVG Wind Speed (knots)	0.01635	0.00659	-0.00746	-0.00357
to Double	(AVG Wind Speed) ²	-0.00229	-0.00033	0.0001	-0.00065
	HDD x AVG Wind Speed	0.00117	0.00015	0.00082	0.00148
	Intercept	-0.03729	0.00105	0.00733	0.05211
ENEDCY	HDD	-0.00595	-0.00602	-0.0054	-0.00748
ENERGY STAR®	HDD ²	0.00034	0.00046	0.00035	0.00029
Windows Single	AVG Wind Speed (knots)	0.02488	-0.00234	-0.00905	-0.0068
to Double	(AVG Wind Speed) ²	-0.00346	-0.00008	0.00007	-0.00135
	HDD x AVG Wind Speed	0.00165	0.00068	0.00113	0.00255
	Intercept	0.03156	0.00394	0.03209	0.00561
	HDD	-0.00056	0.00009	-0.00226	0.00318
Radiant Barrier R12	HDD ²	0.00006	0.00012	0.0001	0.00003
	AVG Wind Speed (knots)	-0.00268	0.00204	-0.00147	-0.0026
	(AVG Wind Speed) ²	-0.00035	-0.00016	-0.00044	0.00015

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446	
APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Docket 10-100-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 3	

Measure	Variable	Zone 6	Zone 7	Zone 8	Zone 9
	HDD x AVG Wind Speed	0.00027	-0.00016	0.00026	-0.00006
	Intercept	0.01932	0.01335	0.04388	0.00087
	HDD	0.00008	0.00041	-0.00333	0.00143
Radiant Barrier	HDD ²	0.00003	0.00006	0.00017	0.00003
R22	AVG Wind Speed (knots)	-0.0024	-0.00331	-0.0082	-0.00171
	(AVG Wind Speed) ²	-0.00014	0.00022	0.00051	0.00011
	HDD x AVG Wind Speed	0.00005	-0.00015	-0.00009	-0.00005
	Intercept	0.8960	0.6830	0.7480	0.4860
	HDD	0.0870	0.0930	0.0850	0.0950
R19 Roof Deck	HDD ²	0.0010	0.0010	0.0000	0.0000
Ins. (R0-1 Base)	AVG Wind Speed (knots)	-0.0580	-0.0220	-0.0320	0.0150
	(AVG Wind Speed) ²	0.0000	0.0000	-0.0020	0.0000
	HDD x AVG Wind Speed	0.0030	0.0020	0.0040	0.0020
	Intercept	0.5290	0.4040	0.4530	0.3450
	HDD	0.0510	0.0530	0.0480	0.0520
R19 Roof Deck	HDD ²	0.0000	0.0000	0.0000	0.0000
Ins. (R2-4 Base)	AVG Wind Speed (knots)	-0.0390	-0.0130	-0.0240	0.0010
	(AVG Wind Speed) ²	0.0010	0.0000	0.0000	0.0000
	HDD x AVG Wind Speed	0.0020	0.0010	0.0020	0.0010
	Intercept	0.3760	0.2770	0.3170	0.2940
	HDD	0.0300	0.0300	0.0280	0.0280
R19 Roof Deck	HDD ²	0.0000	0.0000	0.0000	0.0000
Ins. (R5-8 Base)	AVG Wind Speed (knots)	-0.0370	-0.0090	-0.0220	-0.0090
	(AVG Wind Speed) ²	0.0020	0.0000	0.0000	0.0000
	HDD x AVG Wind Speed	0.0010	0.0010	0.0020	0.0010
	Intercept	0.2950	0.2060	0.2420	0.2690
	HDD	0.0170	0.0160	0.0150	0.0130
R19 Roof Deck Ins. (R9-14 Base)	HDD ²	0.0000	0.0000	0.0000	0.0000
	AVG Wind Speed (knots)	-0.0380	-0.0070	-0.0210	-0.0160
	(AVG Wind Speed) ²	0.0030	0.0000	0.0010	0.0010
	HDD x AVG Wind Speed	0.0010	0.0010	0.0010	0.0010
R19 Roof Deck	Intercept	0.2080	0.1140	0.2040	0.2240
Ins. (R15-22	HDD	0.0060	0.0050	0.0010	0.0020
Base)	HDD ²	0.0000	0.0000	0.0000	0.0000

APSC FILED Time: 11/14/2024 10:39:15 AM: Recvd 11/14/2024 10:33:49 AM: Docket 13-002-U-Doc. 446
APSC FILED Time: 8/30/2024 9:55:35 AM: Recvd 8/30/2024 9:50:37 AM: Doeket 10 1/00-r-Doc. 247 Arkansas TRM Version 10.0 Vol. 3

Measure	Variable	Zone 6	Zone 7	Zone 8	Zone 9
	AVG Wind Speed (knots)	-0.0330	0.0000	-0.0230	-0.0180
	(AVG Wind Speed) ²	0.0030	0.0000	0.0010	0.0010
	HDD x AVG Wind Speed	0.0010	0.0010	0.0010	0.0010
	Intercept	0.8930	0.6860	0.7540	4.4540
	HDD	0.0930	0.1000	0.0900	1.0350
R38 Roof Deck	HDD ²	0.0010	0.0010	0.0000	0.0040
Ins. (R0-1 Base)	AVG Wind Speed (knots)	-0.0500	-0.0220	-0.0310	0.2240
	(AVG Wind Speed) ²	-0.0010	0.0000	-0.0020	-0.0070
	HDD x AVG Wind Speed	0.0030	0.0010	0.0040	0.0150
	Intercept	0.5260	0.4080	0.4590	0.3050
	HDD	0.0570	0.0590	0.0540	0.0600
R38 Roof Deck	HDD ²	0.0000	0.0000	0.0000	0.0000
Ins. (R2-4 Base)	AVG Wind Speed (knots)	-0.0320	-0.0120	-0.0240	0.0090
	(AVG Wind Speed) ²	0.0000	0.0000	-0.0010	0.0000
	HDD x AVG Wind Speed	0.0020	0.0010	0.0030	0.0010
	Intercept	0.3740	0.2810	0.3230	0.2530
	HDD	0.0360	0.0360	0.0340	0.0360
R38 Roof Deck	HDD ²	0.0000	0.0000	0.0000	0.0000
Ins. (R5-8 Base)	AVG Wind Speed (knots)	-0.0300	-0.0090	-0.0210	-0.0020
	(AVG Wind Speed) ²	0.0010	0.0000	0.0000	0.0000
	HDD x AVG Wind Speed	0.0010	0.0010	0.0020	0.0010
	Intercept	0.2920	0.2100	0.2480	0.2280
	HDD	0.0230	0.0220	0.0210	0.0210
R38 Roof Deck	HDD ²	0.0000	0.0000	0.0000	0.0000
Ins. (R9-14 Base)	AVG Wind Speed (knots)	-0.0300	-0.0070	-0.0200	-0.0080
	(AVG Wind Speed) ²	0.0020	0.0000	0.0010	0.0000
	HDD x AVG Wind Speed	0.0010	0.0010	0.0010	0.0010
	Intercept	0.2050	0.1180	0.2160	0.1830
	HDD	0.0120	0.0120	0.0060	0.0100
R38 Roof Deck	HDD ²	0.0000	0.0000	0.0000	0.0000
Ins. (R15-22 Base)	AVG Wind Speed (knots)	-0.0260	0.0010	-0.0240	-0.0110
	(AVG Wind Speed) ²	0.0020	0.0000	0.0010	0.0000
	HDD x AVG Wind Speed	0.0010	0.0010	0.0010	0.0010
R13 Wall	Intercept	0.25318	0.14165	0.18163	0.02344

Measure	Variable	Zone 6	Zone 7	Zone 8	Zone 9
Insulation	HDD	0.04133	0.04527	0.04164	0.05622
	HDD ²	0.00015	0.00018	0.00012	0.00007
	AVG Wind Speed (knots)	-0.00089	0.02307	0.01984	0.0237
	(AVG Wind Speed) ²	-0.00042	-0.00141	-0.00202	-0.00077
	HDD x AVG Wind Speed	0.00114	0.00042	0.00118	0.00033
	Intercept	0.32563	0.18556	0.24193	0.24391
	HDD	0.04920	0.05616	0.05175	0.05234
R23 Wall	HDD ²	0.00013	0.00011	0.00004	0.00008
Insulation	AVG Wind Speed (knots)	0.00998	0.03127	0.02481	0.02419
	(AVG Wind Speed) ²	-0.00151	-0.00185	-0.00259	-0.00146
	HDD x AVG Wind Speed	0.00124	0.00031	0.00139	0.00080

Alternate (fall-back) Method for Estimating Peak Day Gas Savings

Regressions for certain measures, particularly those that affect the solar heat gain in buildings, had low coefficients of determination and thus did not provide reasonable predictions of peak day gas savings. Some measures were also not well-described by a quadratic function in heating degree days, leading to illogical predictions. This is not surprising for measures that primarily affect the solar heat gain of buildings. The statistical method attempts to explain gas usage in terms of wind speed and temperature only, which are not necessarily correlated to the solar indicators that affect solar heat gain. Therefore, by not accounting for solar heat gains directly, this statistical method produced low coefficients of determination.

For measures for which regressions produced poor fits ($R^2 < 0.5$, as described above), peak gas impacts were estimated using the simulated daily savings from extreme days identified in the TMY3 weather data that were consistent with expectations of coincident peak gas usage days. Given that TMY3 weather data are less extreme than gas utility peak planning data, this is a conservative approach; however, it should be noted that many of the affected measures actually increase gas usage such that more extreme winter weather conditions could translate into greater gas consumption (more negative gas savings) than what is captured by the deemed peak gas savings values reported in this document.

In these cases, peak day gas savings were estimated from the sum total of the hourly gas savings for the coldest weekday in January according to the TMY data. Peak days utilized in those cases were the following:

Peak-Therm Days	Julian Date	Day Name	Month	Day Number	Min Dry Bulb Temp (deg F)
Zone 9 (Rogers)	11	Fri	January	11	2
Zone 8	19	Wed	January	19	8
Zone 7	11	Tue	January	11	3
Zone 6	13	Thu	January	13	24

 Table G4: Peak Days from TMY3 Data by Climate Zone:

Appendix H: Lighting Interactive Effects Derivation

Reduction in lighting load in air conditioned and refrigerated spaces reduces heat to the space, decreasing the cooling requirement during the cooling season and increasing the heating requirement during the heating season. This reduction in heat load has the effect of reducing electricity used for cooling and increasing electricity or gas used for heating.

Commercial deemed interactive effects factors for both demand and energy savings are shown in Table I1 and Table I2. Residential deemed interactive effects factors are available in Table I3. These factors represent the percentage increase or decrease in energy savings for the refrigeration system's electric load attributed to the heat dissipated by the more efficient lighting system. For example, a factor of 1.20 indicates a 20% increase in savings.

Building Type	Temperature Description	Heating Type	IEF _D	IEF _E ²²		
	No space cooling	Electric Resistance	1.00	0.78		
		Gas		1.09		
	Air Conditioned Space – Normal Temps. (> 41°F)	Normal Temps. (>41°F) Heat Pump	Air Conditioned Space – Elect	Electric Resistance	1.00	0.87
All building types			Heat Pump	1.20	1.02	
(Except Outdoor &			Heating Unknown ²³		0.98	
Parking Structure)	Refrigerated Space – Med. Temps. (33-41°F)	All	1.25	1.25		
	Refrigerated Space – Low Temps. (-10-10°F)	All	1.30	1.30		

Table I1: Commercial Conditioned and Refrigerated Space Interactive Effects Factors

Table I2: Commercial Conditioned Space Gas Heating Penalty

Building Type	Heating Type	IEF _G (Therms/kWh)
All building types	Gas	- 0.008
(Except Outdoor & Parking Structure)	Heating Unknown ²⁴	- 0.004

http://www.eia.gov/consumption/commercial/data/2003/index.cfm?view=microdata.

²² Electric heating penalties (if applicable) are incorporated into the interactive effects presented in this table.

²³ These values should be used for programs where heat type cannot be determined. Weighted average based on Commercial Building Energy Consumption Survey (CBECS) 2003 data.

²⁴ These values should be used for programs where heat type cannot be determined. Weighted average based on Commercial Building Energy Consumption Survey (CBECS) 2003 data.

http://www.eia.gov/consumption/commercial/data/2003/index.cfm?view=microdata.

Building Type	Heating Type	IEFD	IEF _E ²⁶	IEF _G (Therms/kWh)
	Gas Heat with AC	1.29	1.10	-0.011
	Gas Heat with no AC	1.00	1.00	-0.011
Residential	Electric Resistance Heat with AC	1.29	0.83	0
Kesidentiai	Electric Resistance Heat with no AC	1.00	0.73	0
	Heat Pump	1.29	0.96	0
	Heating/Cooling Unknown ²⁷	1.25	0.97	-0.0063

 Table I3: Residential Conditioned Space Interactive Effects Factors²⁵

Commercial Air Conditioned Space Interactive Effects

The Interactive Demand and Energy Savings Factors for Normal Temperatures (>41°F) were chosen based on a review of interactive effects factors used in the CPUC DEER 2011 "Lighting HVAC Interactive Effects" Calculator.²⁸ The DEER analysis was one of the most recent and comprehensive studies available, with interactive effects based on field measurement, statistical analysis of utility bills, spreadsheet analysis, and building energy simulations. Additionally, of all the states with interactive effects factors available for analysis, California has the greatest climate zone similarity (comparing cooling and heating degree days) with Arkansas.

The calculator provides a range of interactive effects factors for existing commercial buildings. This analysis used California climate Zone 11,²⁹ based on similarity of cooling and heating degree days with Arkansas.³⁰ Table I4 and Table I5 show the range of interactive effects for commercial buildings in California climate Zone 11. Interactive effects factors for existing residential buildings were derived as part of a residential lighting logging study performed by Cadmus for Entergy Arkansas, Inc.

²⁵ Residential light logging study performed by Cadmus for Entergy Arkansas, Inc. Cadmus EMV 2014.

²⁶ Electric heating penalties (if applicable) are incorporated into the interactive effects presented in this table.

²⁷ These values should be used for programs where heating or cooling type cannot be determined.

²⁸ "Lighting HVAC Interactive Effects 13 Dec 2011 Calculator." California Public Utilities Commission Database for Energy Efficient Resources. DEER 2011 for 13-14:

²⁹ Average of four cities within CA climate zone 11. HDD: 3,149; CDD: 1,354. Source: "The Pacific Energy Center's Guide to: California Climate Zones and Bioclimatic Design." Pacific Energy Center. October 2006. <u>http://www.pge.com/includes/docs/pdfs/about/edusafety/training/pec/toolbox/arch/climate/california_climate_zones_01-16.pdf</u>

³⁰ Average across weather zones: HDD = 3,317; CDD = 1,895. Source: Appendix C.

		IEFD		IEF _E		
Building Type	Min	Max	Avg	Min	Max	Adj Avg ³¹
Assembly	1.14	1.17	1.16	1.01	1.04	1.04
Education – Primary School	1.00	1.00	1.00	1.03	1.08	1.08
Education – Sec. School	1.00	1.00	1.00	1.04	1.10	1.10
Education – Comm. College	1.27	1.37	1.31	1.09	1.12	1.15
Education – University	1.22	1.31	1.26	1.09	1.14	1.17
Education – Reloc. Classroom	1.00	1.00	1.00	1.03	1.11	1.07
Grocery	1.26	1.39	1.32	0.95	1.02	0.97
Health/Med – Hospital	1.19	1.24	1.22	1.07	1.10	1.13
Health/Med – Nursing Home	1.26	1.27	1.26	1.03	1.06	1.07
Lodging – Hotel	1.21	1.27	1.25	0.99	1.04	1.04
Lodging – Motel	1.22	1.26	1.24	1.01	1.06	1.06
Manf. – Bio/Tech	1.17	1.26	1.21	1.07	1.11	1.14
Manf. – Light Industrial	1.14	1.17	1.15	1.03	1.04	1.06
Office – Large	1.24	1.39	1.32	1.11	1.12	1.17
Office – Small	1.20	1.26	1.23	1.05	1.07	1.08
Restaurant – Sit-Down	1.15	1.23	1.18	1.00	1.05	1.04
Restaurant – Fast-Food	1.15	1.22	1.18	1.00	1.05	1.04
Retail – Multistory Large	1.16	1.22	1.19	1.04	1.06	1.07
Retail – Single-Story Large	1.17	1.29	1.22	1.04	1.08	1.08
Retail – Small	1.15	1.22	1.19	1.03	1.06	1.06
Storage – Conditioned	1.18	1.23	1.20	0.98	0.98	0.97
Warehouse – Refrigerated	1.22	1.24	1.23	1.26	1.43	1.49
All Buildings			1.20			1.09

Table I4: DEER 2011 Conditioned Space Interactive Effects Factors for Commercial Buildings

 $^{^{31}}$ Average adjusted by 40.0% due to higher CDD in Arkansas: (1,895-1,354) / 1,354 = 40.0%

Duilding Turns	IEF _G (Therms/kWh Min Max		h)	IEF _{ER} (kWh/kWh)	IEF _{HP} (kWh/kWh)
Building Type			Adj Avg ³²	Adj Avg ³³	Adj Avg ³⁴
Assembly	-0.0088	-0.0093	-0.0096	-0.281	-0.091
Education – Primary School	-0.0096	-0.0111	-0.0105	-0.309	-0.100
Education – Sec. School	-0.0110	-0.0121	-0.0119	-0.349	-0.112
Education – Comm. College	-0.0087	-0.0113	-0.0108	-0.318	-0.103
Education – University	-0.0053	-0.0080	-0.0073	-0.213	-0.069
Education – Reloc. Classroom	-0.0098	-0.0110	-0.0110	-0.321	-0.104
Grocery	-0.0097	-0.0119	-0.0116	-0.339	-0.110
Health/Med – Hospital	-0.0057	-0.0068	-0.0067	-0.198	-0.064
Health/Med – Nursing Home	-0.0119	-0.0137	-0.0135	-0.395	-0.127
Lodging – Hotel	-0.0052	-0.0066	-0.0061	-0.179	-0.058
Lodging – Motel	-0.0051	-0.0066	-0.0062	-0.182	-0.059
Manf. – Bio/Tech	-0.0006	-0.0009	-0.0007	-0.022	-0.007
Manf. – Light Industrial	-0.0059	-0.0067	-0.0066	-0.194	-0.063
Office – Large	-0.0033	-0.0077	-0.0059	-0.173	-0.056
Office – Small	-0.0035	-0.0050	-0.0044	-0.130	-0.042
Restaurant – Sit-Down	-0.0064	-0.0087	-0.0080	-0.235	-0.076
Restaurant – Fast-Food	-0.0068	-0.0080	-0.0079	-0.231	-0.075
Retail – Multistory Large	-0.0060	-0.0074	-0.0072	-0.210	-0.068
Retail – Single-Story Large	-0.0066	-0.0071	-0.0073	-0.213	-0.069
Retail – Small	-0.0062	-0.0065	-0.0067	-0.198	-0.064
Storage – Conditioned	-0.0078	-0.0078	-0.0082	-0.241	-0.078
Warehouse – Refrigerated	-0.0000	-0.0001	-0.0001	-0.003	-0.001
All Buildings			-0.008	-0.22	-0.07

Table 15: DEER 2011 Conditioned Space Heating Penalties for Commercial Buildings

³² Average adjusted by 5.3% due to higher HDD in Arkansas: (3,317-3,149) / 3,149 = 5.3%

³³ Ibid.

³⁴ Ibid.

Residential Interactive Effects

The interactive effects specifically for Arkansas were determined by the evaluator during the 2013 program evaluation³⁵. To determine interactive effects specific to Arkansas energy simulation models using BEoptTM Version 2.1^{36} were developed. A total of five models were used to represent various heating and cooling combinations (see Table I6) and applied the weather from Little Rock³⁷ as the simulation location. Little Rock was chosen due to its central location and large population center as a proxy for the state because weather patterns in Arkansas are relatively consistent, so weather differences across the state would not result in a great deal of variation.

The lighting IEF is dependent on many influences, but the major defining factors are:

- The length of the respective heating and cooling seasons
- Electric heating saturation
- Cooling saturation
- Electric resistance versus heat-pump electric heating
- Gas heating saturation

Heating and cooling saturation indicates the percentage of houses for which interactive effects are relevant. The different efficiencies of electric resistance heating and heat pump heating affect the impact of lighting on heating load. In general, areas with long cooling seasons and low saturations of electric heating tend to have higher IEFE values. Table I6 shows Arkansas saturation data for different heating and cooling systems.

Table I6: Heating and Cooling Saturations

Тур	Туре		
Central Cooling [1]	85.6%		
Electric Hesting [1, 2]	Heat Pump	7.1%	
Electric Heating [1, 2]	Electric Resistance	37.9%	
Gas Heating [1]	41.5%		

Sources:

[1] American Community Survey.2012.

[2] Residential Energy Consumption Survey (RECS). 2009.

The simulated homes were designed according to the parameters in the Arkansas TRM 3.0 Prototype Home A3. The heating and cooling setpoints on the thermostat were modified to conform to survey data from the 2009 RECS. Table I7 lists the simulation characteristics that were used.

³⁵ EAI 2013 Annual EM&V report.

³⁶ BEopt is a residential energy simulation program developed by NREL. It uses either DOE 2.2 or EnergyPlus as the simulation engine, both of which are among the most advanced simulation engines available. The Team completed these simulations using EnergyPlus.

³⁷ Specifically, we used the Little Rock Air Force Base TMY3 weather.

Parameter	Value
Size [1]	1,850 sq. ft.
Attic Insulation [1]	R-19
Wall Insulation [1]	R-11
Window Type [1]	Double-Pane Metal
Building Leakage [1]	10 ACH50
Heating Thermostat [2]	71°F w/68°F setback
Cooling Thermostat [2]	72°F w/74°F setback
Heat Pump [1]	7.2 HSPF 10.0 SEER
Gas Furnace [1]	78 AFUE
Air Conditioner [1]	10.0 SEER
Electric Furnace [1]	1.0 COP

Table I7: Simulation Characteristics

Sources:

[1] Arkansas TRM 3.0 Prototype Home A3

[2] 2009 RECS for Arkansas, Louisiana, and Oklahoma

Using the BEopt model, lighting usage was simulated with load-shape information from the 2013 evaluation light logging study. A load shape represents the average hourly load for each hour of the day and for each day of the year. The load shape reflects real occupant behavior for lighting usage and is important for calculating lighting interaction during peak periods.

The simulation model assumes that all lighting energy from interior fixtures dissipates into the conditioned space of the home. While this is likely true for most interior fixtures, certain fixture types (such as recessed-can lighting) extend beyond the thermal boundary of the home. Cadmus conducted can lighting tests in their laboratory to quantify the lighting energy that dissipates through the attic and enters the home. The test showed that, on average, 60 percent of the lighting energy enters the home. By weighting socket studies with these results, it was determined that two percent of the lighting energy used in recessed lighting fixtures is dissipated outside. The factor was ten applied this to the model results.

The results for the upstream lighting value were weighted using socket survey data from the 2013 light logging study to account for lamps with no HVAC interaction. The study results showed that 84 percent of high-efficiency lighting was installed in conditioned spaces (living room, bedroom, etc.) and 16 percent was installed in unconditioned spaces (exterior, garage, etc.).

For each home two lighting scenarios were modeled: one with the baseline scenario of 34 percent fluorescent lighting (which consumed approximately 1,700 kWh/year) and one with 80 percent fluorescent lighting (which consumed 1,330 kWh/year). The latter model allowed the ability to calculate the proportion of heating and cooling energy changes associated with reduced lighting loads, which applies to any level of incandescent-to-CFL conversion.

The following equation was used to determine the IEFE for electrical energy.

$$\frac{\Delta \ Lighting \ kWh + \Delta Cooling \ kWh + \Delta Heating \ kWh}{\Delta \ Lighting \ kWh} = IEF_E$$

(2)

To determine the IEFD for electrical demand, the following equation was used. Peak period was defined as July and August weekdays from 3:00 p.m. to 6:00 p.m.

$$\frac{Average \ \Delta \ Lighting \ kW @ \ Peak \ Period + Average \ \Delta Cooling \ kW @ \ Peak \ Period}{Average \ \Delta \ Lighting \ kW @ \ Peak \ Period} = IEF_D$$

(3)

The final equation used determines the IEFG for gas demand.

$$\frac{\Delta Heating Therms}{\Delta Lighting kW} = IEF_G$$

(4)

Applying all three equations to the hourly output of the simulations yields the results in Table I8.

 Table I8: Interactive Effects by Equipment Type

HVAC Equipment	IEFE	IEFD	IEFG
Fuel Heat w/ CAC	1.12	1.35	-0.014
Fuel Heat w/o CAC	1.00	1.00	-0.014
Heat Pump	0.96	1.35	0
Electric Resistance w/ CAC	0.80	1.35	0
Electric Resistance w/o CAC	0.68	1.00	0

Weighting the values to statewide average heating and cooling system saturations and lamp locations resulted in an IEF_E of 0.97, an IEF_D of 1.25, and an IEF_G of -0.0063 (Table I9). These results show that on average, every 1 kWh of lighting energy saved results in 0.97 kWh of total electricity being saved and an additional 0.0063 therms of gas being burned; and 1 kW of lighting demand reduction results in a total 1.25 kW of net demand reduction.

Table I9: Weighted IEF Results

HVAC Equipment	IEFE	IEFD	IEFG	Weight
Fuel Heat w/ CAC	1.10	1.29	-0.011	47.1%
Fuel Heat w/o CAC	1.00	1.00	-0.011	7.9%
Heat Pump	0.96	1.29	0	7.1%
Electric Resistance w/ CAC	0.83	1.29	0	31.4%
Electric Resistance w/o CAC	0.73	1.00	0	6.5%
Weighted Average	0.97	1.25	-0.0063	

Method of Converting Gas Heating Penalty to Electric Heating Penalty

$IEF_{ER,HP} =$	$IEF_G \times 100,000$
	$3,412 \times COP_{ER,HP}$

Where:

 IEF_G = Interactive effects factor for gas heating savings

 IEF_{ER} = Interactive effects factor for electric resistance heating savings

 IEF_{HP} = Interactive effects factor for heat pump heating savings

100,000 =Constant to convert from therms to BTU

3,412 =Constant to convert from BTU to kWh

COP = 1.0 (for Electric Resistance); 3.1 (for Commercial Heat Pump)³⁸; 2.3 (for Residential Heat Pump)³⁹

Refrigerated Space Interactive Effects

Refrigerated spaces refer to both building floor areas and equipment spaces cooled to temperatures lower than 41 degrees Fahrenheit. Examples of medium and low temperature spaces include, but are not limited to, low temperature warehouses, meat lockers, grocery store dairy storage and displays, and low temperature test areas. Examples of refrigerated equipment spaces include, but are not limited to, grocery and convenience store beverage, dairy, and frozen food open and closed cases.

Refrigerated spaces are typically illuminated using general fluorescent lighting technology. Recent emphasis on energy efficiency has promoted the practice of designing lighting systems with lower heat producing characteristics and/or designing lighting with the heat dissipating components outside the refrigerated area.

For medium and low temperature spaces, the demand and energy savings factors are equal because refrigeration is required 24 hours per day. Therefore, the refrigeration system is operating regardless of the time of peak coincidence. In developing the Interactive Savings Factors, it is assumed that the refrigerated

(5)

³⁸ ASHRAE 90.1-2001-2007 minimum efficiency requirement for air cooled heat pumps

 $^{^{39}}$ COP = HSPF * 1055 J/BTU ÷ 3600 J/W-hr, using HSPF = 7.7 (based on current federal standard as of January 23, 2006).

https://www.energy.gov/eere/buildings/appliance-and-equipment-standards-program

area lighting is continuous and the refrigeration system cycles as required to maintain the refrigerated area's set point.

Nine different sources were used to generate estimates of compressor kWh/kW savings per 1 kWh/1kW of lighting savings. Using these nine different sources, the most conservative savings ratios were chosen to be refrigerated spaces interactive effects factors.

Table I10 provides the resulting savings factors from each source.

Table I10: Refrigerated Interactive Effects Factors from Sources

1	LED Refrigerated Case Study	Low Temperature Factor (1): 0.45
	David Bisbee, CEM (SMUD – July 2008)	Medium Temperature Factor (1): 0.31 ⁴⁰
2	Energy-Efficient Lighting for Commercial Refrigeration	Low Temperature Factor (2): 0.35
	Narendran, Brons, Taylor (LRC – Nov 2006)	Low Temperature Factor (3): 0.42 ⁴¹
3	LED Study, Fred Meyer Energy	Low Temperature Factor (4): 0.68 ⁴²
	Schmidlkofer (Fred Meyer – June 2009)	
4	Fiber Optic Lighting in Low Temperature Reach-In	Low Temperature Factor (5): 0.354
	Refrigerated Display Cases	Low Temperature Factor (6): 0.340^{43}
	Mitchell (So-Cal – 2007 ASHRAE)	
5	Niche Market Lighting Study	Low Temperature Factor (7): 0.333 ⁴⁴
	Navigant (Oct 2008)	Medium Temperature Factor (2): 0.250 ⁴⁵
6	DOE Gateway Demonstration	Low Temperature Factor (8): 0.327 ⁴⁶
	PNNL (Albertsons Grocery, Oct 2009)	
7	LED Supermarket Case Lighting	Low Temperature Factor (9): 0.479 ⁴⁷
	Theobald with EMCOR for PG&E (Jan 2006)	
8	LED Supermarket Case Lighting	Low Temperature Factor (10): 0.471 ⁴⁸
	Theobald with EMCOR for PG&E (June 2008)	
9	LED Reach In Freezer Case Lighting	Low Temperature Factor (11): 0.500 ⁴⁹
	Theobald with EMCOR for PG&E (Dec 2008)	

⁴⁰ Savings cited on page 13

⁴¹ Light and compressor kWh deltas between fluorescent and LEDs with 100% and 50% control voltage used to generate factors

⁴² kWh (heat load) = 1 kWh (Lighting) * (3.412 Btu/Wh)/(5 Btu/Wh)

⁴³ Light and compressor kWh deltas between fluorescent and LED refrigerator case lighting at standard power and low power used to generate factors

⁴⁴ Factor calculated from the market potential for the currently installed base of LED refrigerator case lighting, mostly low temperature: 0.02 TWh/yr (compressor) / 0.06 TWh/yr (lighting)

⁴⁵ Factor calculated from the potential for the installation of all LED refrigerator case lighting in all commercial applications, mostly medium temperature: 0.4 TWh/yr (compressor) / 1.6 TWh/yr (lighting)

⁴⁶ Test case: 655 kWh/yr (compressor) / 2,004 kWh/yr (lighting with occupancy sensor reduction)

⁴⁷ Test case: 0.46 kW (load reduction on refrigeration system) / 0.96 kW (demand reduction from lighting system)

⁴⁸ Test case: 2.4 kW (load reduction on refrigeration system) / 5.1 kW (demand reduction from lighting system)

⁴⁹ Test case: 0.039 kW (load reduction on refrigeration system) / 0.078 kW (demand reduction from lighting system

The following sources were used in determining medium and low temperature factors in Table I10:

- Bisbee, Dave, CEM. "LED Freezer Case Lighting Systems." Sacramento Municipal Utility District (SMUD), Energy Efficiency, Customer Research & Development. July 2008.
- Narendran, Brons, Taylor (Rensselaer Polytechnic Institute Lighting Research Center). "Energy-Efficient Lighting Alternative for Commercial Refrigeration, Final Report." The New York State Energy Research and Development Authority. November 2006.
- Schmidlkofer, Daniel. LED Study. Fred Meyer Energy. June 2009.
- Watt Stopper/Legrand. "Case Study: Watt Stopper/Legrand Helps Wal-Mart Achieve Environmental Goals." Wal-Mart. July 2007.
- Southern California Edison, Design & Engineering Services Customer Service Business Unit. "Fiber Optic Lighting in Low Temperature Reach-In Refrigerated Display Cases." Southern California Edison. December 15, 2006.
- Navigant Consulting Inc. "Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications." U.S. Department of Energy. October 2008.
- Pacific Northwest National Laboratory (PNNL), et al. "Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting, Host Site: Albertson's Grocery in Eugene, OR." U.S. Department of Energy. October 2009.
- Theobald, Marc A., EMCOR Energy Services. "LED Supermarket Case Lighting Grocery Store, Northern California: Application Assessment Report #0608." Pacific Gas & Electric (PG&E), Emerging Technologies Program. January 2006.
- Theobald, Marc A., EMCOR Energy Services. "LED Refrigerated Case Lighting, Costco, Northern California." Pacific Gas & Electric (PG&E), Emerging Technologies Program. June 2008.
- Theobald, Marc A., EMCOR Energy Services. "LED Lighting in Reach In Freezer Cases: Retail Sector." Pacific Gas & Electric (PG&E), Emerging Technologies Program. January 2006.